Coherent Motion of Monolayer Sheets under Confinement and Its Pathological Implications
Coherent angular rotation of epithelial cells is thought to contribute to many vital physiological processes including tissue morphogenesis and glandular formation. However, factors regulating this motion, and the implications of this motion if perturbed, remain incompletely understood. In the curre...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2015-12, Vol.11 (12), p.e1004670-e1004670 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1004670 |
---|---|
container_issue | 12 |
container_start_page | e1004670 |
container_title | PLoS computational biology |
container_volume | 11 |
creator | Soumya, S S Gupta, Animesh Cugno, Andrea Deseri, Luca Dayal, Kaushik Das, Dibyendu Sen, Shamik Inamdar, Mandar M |
description | Coherent angular rotation of epithelial cells is thought to contribute to many vital physiological processes including tissue morphogenesis and glandular formation. However, factors regulating this motion, and the implications of this motion if perturbed, remain incompletely understood. In the current study, we address these questions using a cell-center based model in which cells are polarized, motile, and interact with the neighboring cells via harmonic forces. We demonstrate that, a simple evolution rule in which the polarization of any cell tends to orient with its velocity vector can induce coherent motion in geometrically confined environments. In addition to recapitulating coherent rotational motion observed in experiments, our results also show the presence of radial movements and tissue behavior that can vary between solid-like and fluid-like. We show that the pattern of coherent motion is dictated by the combination of different physical parameters including number density, cell motility, system size, bulk cell stiffness and stiffness of cell-cell adhesions. We further observe that perturbations in the form of cell division can induce a reversal in the direction of motion when cell division occurs synchronously. Moreover, when the confinement is removed, we see that the existing coherent motion leads to cell scattering, with bulk cell stiffness and stiffness of cell-cell contacts dictating the invasion pattern. In summary, our study provides an in-depth understanding of the origin of coherent rotation in confined tissues, and extracts useful insights into the influence of various physical parameters on the pattern of such movements. |
doi_str_mv | 10.1371/journal.pcbi.1004670 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1764360408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A454360767</galeid><doaj_id>oai_doaj_org_article_b2b3399a8c8d41faaa82a71ac4694aea</doaj_id><sourcerecordid>A454360767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-67c88b8abc23d5c3c9d55e0148c5743051fddb26d01000e25a498b9974337a3c3</originalsourceid><addsrcrecordid>eNqVkktv1DAQxyMEoqXwDRBE4gKHXezY8eNSqVrxiFQeoiCO1sR2dr1y7CVOEP32ON1t1ZW4IB88nvnN357xFMVzjJaYcPx2G6chgF_udOuWGCHKOHpQnOK6JgtOavHwnn1SPElpi1A2JXtcnFSMSUwoPi1-ruLGDjaM5ac4uhjK2GUrRA_XdiivNtaOqZyCyYdVDJ0Ltp9hCKZscuQrjJvo49pp8GXT73w2Zpn0tHjUgU_22WE_K368f_d99XFx-eVDs7q4XGhGyLhgXAvRCmh1RUytiZamri3CVOiaU4Jq3BnTVsygXCGyVQ1UilbKHCMciCZnxcu97s7HpA49SQpzRglDFIlMNHvCRNiq3eB6GK5VBKduHHFYKxhGp71VbdUSIiUILQzFHQCICjgGTZmkYCFrnR9um9reGp1bMYA_Ej2OBLdR6_hbUSaYFDILvD4IDPHXZNOoepe09R6CjdP87jrXzvgN-mqPriE_zYUuZkU94-qC1nN1nPFMLf9B5WVs73QMtnPZf5Tw5ighM6P9M65hSkk1V9_-g_18zNI9q4eY0mC7u65gpOaBvf0cNQ-sOgxsTntxv6N3SbcTSv4CYeDnBg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751486789</pqid></control><display><type>article</type><title>Coherent Motion of Monolayer Sheets under Confinement and Its Pathological Implications</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Soumya, S S ; Gupta, Animesh ; Cugno, Andrea ; Deseri, Luca ; Dayal, Kaushik ; Das, Dibyendu ; Sen, Shamik ; Inamdar, Mandar M</creator><contributor>Asthagiri, Anand R.</contributor><creatorcontrib>Soumya, S S ; Gupta, Animesh ; Cugno, Andrea ; Deseri, Luca ; Dayal, Kaushik ; Das, Dibyendu ; Sen, Shamik ; Inamdar, Mandar M ; Asthagiri, Anand R.</creatorcontrib><description>Coherent angular rotation of epithelial cells is thought to contribute to many vital physiological processes including tissue morphogenesis and glandular formation. However, factors regulating this motion, and the implications of this motion if perturbed, remain incompletely understood. In the current study, we address these questions using a cell-center based model in which cells are polarized, motile, and interact with the neighboring cells via harmonic forces. We demonstrate that, a simple evolution rule in which the polarization of any cell tends to orient with its velocity vector can induce coherent motion in geometrically confined environments. In addition to recapitulating coherent rotational motion observed in experiments, our results also show the presence of radial movements and tissue behavior that can vary between solid-like and fluid-like. We show that the pattern of coherent motion is dictated by the combination of different physical parameters including number density, cell motility, system size, bulk cell stiffness and stiffness of cell-cell adhesions. We further observe that perturbations in the form of cell division can induce a reversal in the direction of motion when cell division occurs synchronously. Moreover, when the confinement is removed, we see that the existing coherent motion leads to cell scattering, with bulk cell stiffness and stiffness of cell-cell contacts dictating the invasion pattern. In summary, our study provides an in-depth understanding of the origin of coherent rotation in confined tissues, and extracts useful insights into the influence of various physical parameters on the pattern of such movements.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1004670</identifier><identifier>PMID: 26691341</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Cell adhesion & migration ; Cell Aggregation - physiology ; Cell Communication - physiology ; Cell division ; Cell interaction ; Cell Movement - physiology ; Computer Simulation ; Connectivity ; Elasticity - physiology ; Epithelial cells ; Epithelial Cells - cytology ; Epithelial Cells - physiology ; Experiments ; Focal Adhesions - physiology ; Funding ; Health aspects ; Humans ; Insects ; Mechanotransduction, Cellular - physiology ; Models, Biological ; Morphogenesis ; Motility ; Neoplasm Invasiveness - physiopathology ; Observations ; Physiology ; Velocity</subject><ispartof>PLoS computational biology, 2015-12, Vol.11 (12), p.e1004670-e1004670</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Soumya et al 2015 Soumya et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Soumya SS, Gupta A, Cugno A, Deseri L, Dayal K, Das D, et al. (2015) Coherent Motion of Monolayer Sheets under Confinement and Its Pathological Implications. PLoS Comput Biol 11(12): e1004670. doi:10.1371/journal.pcbi.1004670</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-67c88b8abc23d5c3c9d55e0148c5743051fddb26d01000e25a498b9974337a3c3</citedby><cites>FETCH-LOGICAL-c633t-67c88b8abc23d5c3c9d55e0148c5743051fddb26d01000e25a498b9974337a3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686989/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686989/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26691341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Asthagiri, Anand R.</contributor><creatorcontrib>Soumya, S S</creatorcontrib><creatorcontrib>Gupta, Animesh</creatorcontrib><creatorcontrib>Cugno, Andrea</creatorcontrib><creatorcontrib>Deseri, Luca</creatorcontrib><creatorcontrib>Dayal, Kaushik</creatorcontrib><creatorcontrib>Das, Dibyendu</creatorcontrib><creatorcontrib>Sen, Shamik</creatorcontrib><creatorcontrib>Inamdar, Mandar M</creatorcontrib><title>Coherent Motion of Monolayer Sheets under Confinement and Its Pathological Implications</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Coherent angular rotation of epithelial cells is thought to contribute to many vital physiological processes including tissue morphogenesis and glandular formation. However, factors regulating this motion, and the implications of this motion if perturbed, remain incompletely understood. In the current study, we address these questions using a cell-center based model in which cells are polarized, motile, and interact with the neighboring cells via harmonic forces. We demonstrate that, a simple evolution rule in which the polarization of any cell tends to orient with its velocity vector can induce coherent motion in geometrically confined environments. In addition to recapitulating coherent rotational motion observed in experiments, our results also show the presence of radial movements and tissue behavior that can vary between solid-like and fluid-like. We show that the pattern of coherent motion is dictated by the combination of different physical parameters including number density, cell motility, system size, bulk cell stiffness and stiffness of cell-cell adhesions. We further observe that perturbations in the form of cell division can induce a reversal in the direction of motion when cell division occurs synchronously. Moreover, when the confinement is removed, we see that the existing coherent motion leads to cell scattering, with bulk cell stiffness and stiffness of cell-cell contacts dictating the invasion pattern. In summary, our study provides an in-depth understanding of the origin of coherent rotation in confined tissues, and extracts useful insights into the influence of various physical parameters on the pattern of such movements.</description><subject>Animals</subject><subject>Cell adhesion & migration</subject><subject>Cell Aggregation - physiology</subject><subject>Cell Communication - physiology</subject><subject>Cell division</subject><subject>Cell interaction</subject><subject>Cell Movement - physiology</subject><subject>Computer Simulation</subject><subject>Connectivity</subject><subject>Elasticity - physiology</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - physiology</subject><subject>Experiments</subject><subject>Focal Adhesions - physiology</subject><subject>Funding</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Insects</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Models, Biological</subject><subject>Morphogenesis</subject><subject>Motility</subject><subject>Neoplasm Invasiveness - physiopathology</subject><subject>Observations</subject><subject>Physiology</subject><subject>Velocity</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAQxyMEoqXwDRBE4gKHXezY8eNSqVrxiFQeoiCO1sR2dr1y7CVOEP32ON1t1ZW4IB88nvnN357xFMVzjJaYcPx2G6chgF_udOuWGCHKOHpQnOK6JgtOavHwnn1SPElpi1A2JXtcnFSMSUwoPi1-ruLGDjaM5ac4uhjK2GUrRA_XdiivNtaOqZyCyYdVDJ0Ltp9hCKZscuQrjJvo49pp8GXT73w2Zpn0tHjUgU_22WE_K368f_d99XFx-eVDs7q4XGhGyLhgXAvRCmh1RUytiZamri3CVOiaU4Jq3BnTVsygXCGyVQ1UilbKHCMciCZnxcu97s7HpA49SQpzRglDFIlMNHvCRNiq3eB6GK5VBKduHHFYKxhGp71VbdUSIiUILQzFHQCICjgGTZmkYCFrnR9um9reGp1bMYA_Ej2OBLdR6_hbUSaYFDILvD4IDPHXZNOoepe09R6CjdP87jrXzvgN-mqPriE_zYUuZkU94-qC1nN1nPFMLf9B5WVs73QMtnPZf5Tw5ighM6P9M65hSkk1V9_-g_18zNI9q4eY0mC7u65gpOaBvf0cNQ-sOgxsTntxv6N3SbcTSv4CYeDnBg</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Soumya, S S</creator><creator>Gupta, Animesh</creator><creator>Cugno, Andrea</creator><creator>Deseri, Luca</creator><creator>Dayal, Kaushik</creator><creator>Das, Dibyendu</creator><creator>Sen, Shamik</creator><creator>Inamdar, Mandar M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151201</creationdate><title>Coherent Motion of Monolayer Sheets under Confinement and Its Pathological Implications</title><author>Soumya, S S ; Gupta, Animesh ; Cugno, Andrea ; Deseri, Luca ; Dayal, Kaushik ; Das, Dibyendu ; Sen, Shamik ; Inamdar, Mandar M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-67c88b8abc23d5c3c9d55e0148c5743051fddb26d01000e25a498b9974337a3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Cell adhesion & migration</topic><topic>Cell Aggregation - physiology</topic><topic>Cell Communication - physiology</topic><topic>Cell division</topic><topic>Cell interaction</topic><topic>Cell Movement - physiology</topic><topic>Computer Simulation</topic><topic>Connectivity</topic><topic>Elasticity - physiology</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - physiology</topic><topic>Experiments</topic><topic>Focal Adhesions - physiology</topic><topic>Funding</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Insects</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Models, Biological</topic><topic>Morphogenesis</topic><topic>Motility</topic><topic>Neoplasm Invasiveness - physiopathology</topic><topic>Observations</topic><topic>Physiology</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soumya, S S</creatorcontrib><creatorcontrib>Gupta, Animesh</creatorcontrib><creatorcontrib>Cugno, Andrea</creatorcontrib><creatorcontrib>Deseri, Luca</creatorcontrib><creatorcontrib>Dayal, Kaushik</creatorcontrib><creatorcontrib>Das, Dibyendu</creatorcontrib><creatorcontrib>Sen, Shamik</creatorcontrib><creatorcontrib>Inamdar, Mandar M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soumya, S S</au><au>Gupta, Animesh</au><au>Cugno, Andrea</au><au>Deseri, Luca</au><au>Dayal, Kaushik</au><au>Das, Dibyendu</au><au>Sen, Shamik</au><au>Inamdar, Mandar M</au><au>Asthagiri, Anand R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent Motion of Monolayer Sheets under Confinement and Its Pathological Implications</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>11</volume><issue>12</issue><spage>e1004670</spage><epage>e1004670</epage><pages>e1004670-e1004670</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Coherent angular rotation of epithelial cells is thought to contribute to many vital physiological processes including tissue morphogenesis and glandular formation. However, factors regulating this motion, and the implications of this motion if perturbed, remain incompletely understood. In the current study, we address these questions using a cell-center based model in which cells are polarized, motile, and interact with the neighboring cells via harmonic forces. We demonstrate that, a simple evolution rule in which the polarization of any cell tends to orient with its velocity vector can induce coherent motion in geometrically confined environments. In addition to recapitulating coherent rotational motion observed in experiments, our results also show the presence of radial movements and tissue behavior that can vary between solid-like and fluid-like. We show that the pattern of coherent motion is dictated by the combination of different physical parameters including number density, cell motility, system size, bulk cell stiffness and stiffness of cell-cell adhesions. We further observe that perturbations in the form of cell division can induce a reversal in the direction of motion when cell division occurs synchronously. Moreover, when the confinement is removed, we see that the existing coherent motion leads to cell scattering, with bulk cell stiffness and stiffness of cell-cell contacts dictating the invasion pattern. In summary, our study provides an in-depth understanding of the origin of coherent rotation in confined tissues, and extracts useful insights into the influence of various physical parameters on the pattern of such movements.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26691341</pmid><doi>10.1371/journal.pcbi.1004670</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2015-12, Vol.11 (12), p.e1004670-e1004670 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1764360408 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Cell adhesion & migration Cell Aggregation - physiology Cell Communication - physiology Cell division Cell interaction Cell Movement - physiology Computer Simulation Connectivity Elasticity - physiology Epithelial cells Epithelial Cells - cytology Epithelial Cells - physiology Experiments Focal Adhesions - physiology Funding Health aspects Humans Insects Mechanotransduction, Cellular - physiology Models, Biological Morphogenesis Motility Neoplasm Invasiveness - physiopathology Observations Physiology Velocity |
title | Coherent Motion of Monolayer Sheets under Confinement and Its Pathological Implications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20Motion%20of%20Monolayer%20Sheets%20under%20Confinement%20and%20Its%20Pathological%20Implications&rft.jtitle=PLoS%20computational%20biology&rft.au=Soumya,%20S%20S&rft.date=2015-12-01&rft.volume=11&rft.issue=12&rft.spage=e1004670&rft.epage=e1004670&rft.pages=e1004670-e1004670&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1004670&rft_dat=%3Cgale_plos_%3EA454360767%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1751486789&rft_id=info:pmid/26691341&rft_galeid=A454360767&rft_doaj_id=oai_doaj_org_article_b2b3399a8c8d41faaa82a71ac4694aea&rfr_iscdi=true |