Coherent Motion of Monolayer Sheets under Confinement and Its Pathological Implications

Coherent angular rotation of epithelial cells is thought to contribute to many vital physiological processes including tissue morphogenesis and glandular formation. However, factors regulating this motion, and the implications of this motion if perturbed, remain incompletely understood. In the curre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2015-12, Vol.11 (12), p.e1004670-e1004670
Hauptverfasser: Soumya, S S, Gupta, Animesh, Cugno, Andrea, Deseri, Luca, Dayal, Kaushik, Das, Dibyendu, Sen, Shamik, Inamdar, Mandar M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1004670
container_issue 12
container_start_page e1004670
container_title PLoS computational biology
container_volume 11
creator Soumya, S S
Gupta, Animesh
Cugno, Andrea
Deseri, Luca
Dayal, Kaushik
Das, Dibyendu
Sen, Shamik
Inamdar, Mandar M
description Coherent angular rotation of epithelial cells is thought to contribute to many vital physiological processes including tissue morphogenesis and glandular formation. However, factors regulating this motion, and the implications of this motion if perturbed, remain incompletely understood. In the current study, we address these questions using a cell-center based model in which cells are polarized, motile, and interact with the neighboring cells via harmonic forces. We demonstrate that, a simple evolution rule in which the polarization of any cell tends to orient with its velocity vector can induce coherent motion in geometrically confined environments. In addition to recapitulating coherent rotational motion observed in experiments, our results also show the presence of radial movements and tissue behavior that can vary between solid-like and fluid-like. We show that the pattern of coherent motion is dictated by the combination of different physical parameters including number density, cell motility, system size, bulk cell stiffness and stiffness of cell-cell adhesions. We further observe that perturbations in the form of cell division can induce a reversal in the direction of motion when cell division occurs synchronously. Moreover, when the confinement is removed, we see that the existing coherent motion leads to cell scattering, with bulk cell stiffness and stiffness of cell-cell contacts dictating the invasion pattern. In summary, our study provides an in-depth understanding of the origin of coherent rotation in confined tissues, and extracts useful insights into the influence of various physical parameters on the pattern of such movements.
doi_str_mv 10.1371/journal.pcbi.1004670
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1764360408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A454360767</galeid><doaj_id>oai_doaj_org_article_b2b3399a8c8d41faaa82a71ac4694aea</doaj_id><sourcerecordid>A454360767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-67c88b8abc23d5c3c9d55e0148c5743051fddb26d01000e25a498b9974337a3c3</originalsourceid><addsrcrecordid>eNqVkktv1DAQxyMEoqXwDRBE4gKHXezY8eNSqVrxiFQeoiCO1sR2dr1y7CVOEP32ON1t1ZW4IB88nvnN357xFMVzjJaYcPx2G6chgF_udOuWGCHKOHpQnOK6JgtOavHwnn1SPElpi1A2JXtcnFSMSUwoPi1-ruLGDjaM5ac4uhjK2GUrRA_XdiivNtaOqZyCyYdVDJ0Ltp9hCKZscuQrjJvo49pp8GXT73w2Zpn0tHjUgU_22WE_K368f_d99XFx-eVDs7q4XGhGyLhgXAvRCmh1RUytiZamri3CVOiaU4Jq3BnTVsygXCGyVQ1UilbKHCMciCZnxcu97s7HpA49SQpzRglDFIlMNHvCRNiq3eB6GK5VBKduHHFYKxhGp71VbdUSIiUILQzFHQCICjgGTZmkYCFrnR9um9reGp1bMYA_Ej2OBLdR6_hbUSaYFDILvD4IDPHXZNOoepe09R6CjdP87jrXzvgN-mqPriE_zYUuZkU94-qC1nN1nPFMLf9B5WVs73QMtnPZf5Tw5ighM6P9M65hSkk1V9_-g_18zNI9q4eY0mC7u65gpOaBvf0cNQ-sOgxsTntxv6N3SbcTSv4CYeDnBg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751486789</pqid></control><display><type>article</type><title>Coherent Motion of Monolayer Sheets under Confinement and Its Pathological Implications</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Soumya, S S ; Gupta, Animesh ; Cugno, Andrea ; Deseri, Luca ; Dayal, Kaushik ; Das, Dibyendu ; Sen, Shamik ; Inamdar, Mandar M</creator><contributor>Asthagiri, Anand R.</contributor><creatorcontrib>Soumya, S S ; Gupta, Animesh ; Cugno, Andrea ; Deseri, Luca ; Dayal, Kaushik ; Das, Dibyendu ; Sen, Shamik ; Inamdar, Mandar M ; Asthagiri, Anand R.</creatorcontrib><description>Coherent angular rotation of epithelial cells is thought to contribute to many vital physiological processes including tissue morphogenesis and glandular formation. However, factors regulating this motion, and the implications of this motion if perturbed, remain incompletely understood. In the current study, we address these questions using a cell-center based model in which cells are polarized, motile, and interact with the neighboring cells via harmonic forces. We demonstrate that, a simple evolution rule in which the polarization of any cell tends to orient with its velocity vector can induce coherent motion in geometrically confined environments. In addition to recapitulating coherent rotational motion observed in experiments, our results also show the presence of radial movements and tissue behavior that can vary between solid-like and fluid-like. We show that the pattern of coherent motion is dictated by the combination of different physical parameters including number density, cell motility, system size, bulk cell stiffness and stiffness of cell-cell adhesions. We further observe that perturbations in the form of cell division can induce a reversal in the direction of motion when cell division occurs synchronously. Moreover, when the confinement is removed, we see that the existing coherent motion leads to cell scattering, with bulk cell stiffness and stiffness of cell-cell contacts dictating the invasion pattern. In summary, our study provides an in-depth understanding of the origin of coherent rotation in confined tissues, and extracts useful insights into the influence of various physical parameters on the pattern of such movements.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1004670</identifier><identifier>PMID: 26691341</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Cell adhesion &amp; migration ; Cell Aggregation - physiology ; Cell Communication - physiology ; Cell division ; Cell interaction ; Cell Movement - physiology ; Computer Simulation ; Connectivity ; Elasticity - physiology ; Epithelial cells ; Epithelial Cells - cytology ; Epithelial Cells - physiology ; Experiments ; Focal Adhesions - physiology ; Funding ; Health aspects ; Humans ; Insects ; Mechanotransduction, Cellular - physiology ; Models, Biological ; Morphogenesis ; Motility ; Neoplasm Invasiveness - physiopathology ; Observations ; Physiology ; Velocity</subject><ispartof>PLoS computational biology, 2015-12, Vol.11 (12), p.e1004670-e1004670</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Soumya et al 2015 Soumya et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Soumya SS, Gupta A, Cugno A, Deseri L, Dayal K, Das D, et al. (2015) Coherent Motion of Monolayer Sheets under Confinement and Its Pathological Implications. PLoS Comput Biol 11(12): e1004670. doi:10.1371/journal.pcbi.1004670</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-67c88b8abc23d5c3c9d55e0148c5743051fddb26d01000e25a498b9974337a3c3</citedby><cites>FETCH-LOGICAL-c633t-67c88b8abc23d5c3c9d55e0148c5743051fddb26d01000e25a498b9974337a3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686989/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686989/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26691341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Asthagiri, Anand R.</contributor><creatorcontrib>Soumya, S S</creatorcontrib><creatorcontrib>Gupta, Animesh</creatorcontrib><creatorcontrib>Cugno, Andrea</creatorcontrib><creatorcontrib>Deseri, Luca</creatorcontrib><creatorcontrib>Dayal, Kaushik</creatorcontrib><creatorcontrib>Das, Dibyendu</creatorcontrib><creatorcontrib>Sen, Shamik</creatorcontrib><creatorcontrib>Inamdar, Mandar M</creatorcontrib><title>Coherent Motion of Monolayer Sheets under Confinement and Its Pathological Implications</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Coherent angular rotation of epithelial cells is thought to contribute to many vital physiological processes including tissue morphogenesis and glandular formation. However, factors regulating this motion, and the implications of this motion if perturbed, remain incompletely understood. In the current study, we address these questions using a cell-center based model in which cells are polarized, motile, and interact with the neighboring cells via harmonic forces. We demonstrate that, a simple evolution rule in which the polarization of any cell tends to orient with its velocity vector can induce coherent motion in geometrically confined environments. In addition to recapitulating coherent rotational motion observed in experiments, our results also show the presence of radial movements and tissue behavior that can vary between solid-like and fluid-like. We show that the pattern of coherent motion is dictated by the combination of different physical parameters including number density, cell motility, system size, bulk cell stiffness and stiffness of cell-cell adhesions. We further observe that perturbations in the form of cell division can induce a reversal in the direction of motion when cell division occurs synchronously. Moreover, when the confinement is removed, we see that the existing coherent motion leads to cell scattering, with bulk cell stiffness and stiffness of cell-cell contacts dictating the invasion pattern. In summary, our study provides an in-depth understanding of the origin of coherent rotation in confined tissues, and extracts useful insights into the influence of various physical parameters on the pattern of such movements.</description><subject>Animals</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Aggregation - physiology</subject><subject>Cell Communication - physiology</subject><subject>Cell division</subject><subject>Cell interaction</subject><subject>Cell Movement - physiology</subject><subject>Computer Simulation</subject><subject>Connectivity</subject><subject>Elasticity - physiology</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - physiology</subject><subject>Experiments</subject><subject>Focal Adhesions - physiology</subject><subject>Funding</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Insects</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Models, Biological</subject><subject>Morphogenesis</subject><subject>Motility</subject><subject>Neoplasm Invasiveness - physiopathology</subject><subject>Observations</subject><subject>Physiology</subject><subject>Velocity</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAQxyMEoqXwDRBE4gKHXezY8eNSqVrxiFQeoiCO1sR2dr1y7CVOEP32ON1t1ZW4IB88nvnN357xFMVzjJaYcPx2G6chgF_udOuWGCHKOHpQnOK6JgtOavHwnn1SPElpi1A2JXtcnFSMSUwoPi1-ruLGDjaM5ac4uhjK2GUrRA_XdiivNtaOqZyCyYdVDJ0Ltp9hCKZscuQrjJvo49pp8GXT73w2Zpn0tHjUgU_22WE_K368f_d99XFx-eVDs7q4XGhGyLhgXAvRCmh1RUytiZamri3CVOiaU4Jq3BnTVsygXCGyVQ1UilbKHCMciCZnxcu97s7HpA49SQpzRglDFIlMNHvCRNiq3eB6GK5VBKduHHFYKxhGp71VbdUSIiUILQzFHQCICjgGTZmkYCFrnR9um9reGp1bMYA_Ej2OBLdR6_hbUSaYFDILvD4IDPHXZNOoepe09R6CjdP87jrXzvgN-mqPriE_zYUuZkU94-qC1nN1nPFMLf9B5WVs73QMtnPZf5Tw5ighM6P9M65hSkk1V9_-g_18zNI9q4eY0mC7u65gpOaBvf0cNQ-sOgxsTntxv6N3SbcTSv4CYeDnBg</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Soumya, S S</creator><creator>Gupta, Animesh</creator><creator>Cugno, Andrea</creator><creator>Deseri, Luca</creator><creator>Dayal, Kaushik</creator><creator>Das, Dibyendu</creator><creator>Sen, Shamik</creator><creator>Inamdar, Mandar M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151201</creationdate><title>Coherent Motion of Monolayer Sheets under Confinement and Its Pathological Implications</title><author>Soumya, S S ; Gupta, Animesh ; Cugno, Andrea ; Deseri, Luca ; Dayal, Kaushik ; Das, Dibyendu ; Sen, Shamik ; Inamdar, Mandar M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-67c88b8abc23d5c3c9d55e0148c5743051fddb26d01000e25a498b9974337a3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Aggregation - physiology</topic><topic>Cell Communication - physiology</topic><topic>Cell division</topic><topic>Cell interaction</topic><topic>Cell Movement - physiology</topic><topic>Computer Simulation</topic><topic>Connectivity</topic><topic>Elasticity - physiology</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - physiology</topic><topic>Experiments</topic><topic>Focal Adhesions - physiology</topic><topic>Funding</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Insects</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Models, Biological</topic><topic>Morphogenesis</topic><topic>Motility</topic><topic>Neoplasm Invasiveness - physiopathology</topic><topic>Observations</topic><topic>Physiology</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soumya, S S</creatorcontrib><creatorcontrib>Gupta, Animesh</creatorcontrib><creatorcontrib>Cugno, Andrea</creatorcontrib><creatorcontrib>Deseri, Luca</creatorcontrib><creatorcontrib>Dayal, Kaushik</creatorcontrib><creatorcontrib>Das, Dibyendu</creatorcontrib><creatorcontrib>Sen, Shamik</creatorcontrib><creatorcontrib>Inamdar, Mandar M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soumya, S S</au><au>Gupta, Animesh</au><au>Cugno, Andrea</au><au>Deseri, Luca</au><au>Dayal, Kaushik</au><au>Das, Dibyendu</au><au>Sen, Shamik</au><au>Inamdar, Mandar M</au><au>Asthagiri, Anand R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent Motion of Monolayer Sheets under Confinement and Its Pathological Implications</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>11</volume><issue>12</issue><spage>e1004670</spage><epage>e1004670</epage><pages>e1004670-e1004670</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Coherent angular rotation of epithelial cells is thought to contribute to many vital physiological processes including tissue morphogenesis and glandular formation. However, factors regulating this motion, and the implications of this motion if perturbed, remain incompletely understood. In the current study, we address these questions using a cell-center based model in which cells are polarized, motile, and interact with the neighboring cells via harmonic forces. We demonstrate that, a simple evolution rule in which the polarization of any cell tends to orient with its velocity vector can induce coherent motion in geometrically confined environments. In addition to recapitulating coherent rotational motion observed in experiments, our results also show the presence of radial movements and tissue behavior that can vary between solid-like and fluid-like. We show that the pattern of coherent motion is dictated by the combination of different physical parameters including number density, cell motility, system size, bulk cell stiffness and stiffness of cell-cell adhesions. We further observe that perturbations in the form of cell division can induce a reversal in the direction of motion when cell division occurs synchronously. Moreover, when the confinement is removed, we see that the existing coherent motion leads to cell scattering, with bulk cell stiffness and stiffness of cell-cell contacts dictating the invasion pattern. In summary, our study provides an in-depth understanding of the origin of coherent rotation in confined tissues, and extracts useful insights into the influence of various physical parameters on the pattern of such movements.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26691341</pmid><doi>10.1371/journal.pcbi.1004670</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2015-12, Vol.11 (12), p.e1004670-e1004670
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1764360408
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Cell adhesion & migration
Cell Aggregation - physiology
Cell Communication - physiology
Cell division
Cell interaction
Cell Movement - physiology
Computer Simulation
Connectivity
Elasticity - physiology
Epithelial cells
Epithelial Cells - cytology
Epithelial Cells - physiology
Experiments
Focal Adhesions - physiology
Funding
Health aspects
Humans
Insects
Mechanotransduction, Cellular - physiology
Models, Biological
Morphogenesis
Motility
Neoplasm Invasiveness - physiopathology
Observations
Physiology
Velocity
title Coherent Motion of Monolayer Sheets under Confinement and Its Pathological Implications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20Motion%20of%20Monolayer%20Sheets%20under%20Confinement%20and%20Its%20Pathological%20Implications&rft.jtitle=PLoS%20computational%20biology&rft.au=Soumya,%20S%20S&rft.date=2015-12-01&rft.volume=11&rft.issue=12&rft.spage=e1004670&rft.epage=e1004670&rft.pages=e1004670-e1004670&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1004670&rft_dat=%3Cgale_plos_%3EA454360767%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1751486789&rft_id=info:pmid/26691341&rft_galeid=A454360767&rft_doaj_id=oai_doaj_org_article_b2b3399a8c8d41faaa82a71ac4694aea&rfr_iscdi=true