Model-Based Analysis of Cell Cycle Responses to Dynamically Changing Environments
Cell cycle progression is carefully coordinated with a cell's intra- and extracellular environment. While some pathways have been identified that communicate information from the environment to the cell cycle, a systematic understanding of how this information is dynamically processed is lackin...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2016-01, Vol.12 (1), p.e1004604-e1004604 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1004604 |
---|---|
container_issue | 1 |
container_start_page | e1004604 |
container_title | PLoS computational biology |
container_volume | 12 |
creator | Seaton, Daniel D Krishnan, J |
description | Cell cycle progression is carefully coordinated with a cell's intra- and extracellular environment. While some pathways have been identified that communicate information from the environment to the cell cycle, a systematic understanding of how this information is dynamically processed is lacking. We address this by performing dynamic sensitivity analysis of three mathematical models of the cell cycle in Saccharomyces cerevisiae. We demonstrate that these models make broadly consistent qualitative predictions about cell cycle progression under dynamically changing conditions. For example, it is shown that the models predict anticorrelated changes in cell size and cell cycle duration under different environments independently of the growth rate. This prediction is validated by comparison to available literature data. Other consistent patterns emerge, such as widespread nonmonotonic changes in cell size down generations in response to parameter changes. We extend our analysis by investigating glucose signalling to the cell cycle, showing that known regulation of Cln3 translation and Cln1,2 transcription by glucose is sufficient to explain the experimentally observed changes in cell cycle dynamics at different glucose concentrations. Together, these results provide a framework for understanding the complex responses the cell cycle is capable of producing in response to dynamic environments. |
doi_str_mv | 10.1371/journal.pcbi.1004604 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1764352278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_eb2fc134418e4b1c9a9b67ea13d3cd9b</doaj_id><sourcerecordid>1760856863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-3165076236031200c8e65a4dd3c9c5da573ce5496c37bd5bff76de60cf48c6c63</originalsourceid><addsrcrecordid>eNpVUU1v1DAUtBCIlsI_QOAjlyx2_JkLUgkFKhUhEJwtx3a2Xjn2Ymcr5d_jdtOqPfnJb968mTcAvMVog4nAH3fpkKMOm70Z_AYjRDmiz8ApZow0gjD5_FF9Al6VskOolh1_CU5aLijGBJ-CXz-SdaH5rIuz8LzyLcUXmEbYuxBgv5jg4G9X9ikWV-Cc4Jcl6skbHcIC-2sdtz5u4UW88TnFycW5vAYvRh2Ke7O-Z-Dv14s__ffm6ue3y_78qjG0k3NDMGdI8JZwRHCLkJGOM02tJaYzzGomiHGMdtwQMVg2jKPg1nFkRioNN5ycgfdH3n1IRa3XKAoLTglrWyEr4vKIsEnv1D77SedFJe3V3UfKW6Xz7KtF5YZ2NJhQiqWjAzad7gYunMak6rHdULk-rdsOw-SsqU6zDk9In3aiv1bbdKOoQFRiVAk-rAQ5_Tu4MqvJF1OPrKNLhzvdSDIuOalQeoSanErJbnxYg5G6zf7erbrNXq3Z17F3jyU-DN2HTf4DxUmt3g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760856863</pqid></control><display><type>article</type><title>Model-Based Analysis of Cell Cycle Responses to Dynamically Changing Environments</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Seaton, Daniel D ; Krishnan, J</creator><contributor>Tyson, John J.</contributor><creatorcontrib>Seaton, Daniel D ; Krishnan, J ; Tyson, John J.</creatorcontrib><description>Cell cycle progression is carefully coordinated with a cell's intra- and extracellular environment. While some pathways have been identified that communicate information from the environment to the cell cycle, a systematic understanding of how this information is dynamically processed is lacking. We address this by performing dynamic sensitivity analysis of three mathematical models of the cell cycle in Saccharomyces cerevisiae. We demonstrate that these models make broadly consistent qualitative predictions about cell cycle progression under dynamically changing conditions. For example, it is shown that the models predict anticorrelated changes in cell size and cell cycle duration under different environments independently of the growth rate. This prediction is validated by comparison to available literature data. Other consistent patterns emerge, such as widespread nonmonotonic changes in cell size down generations in response to parameter changes. We extend our analysis by investigating glucose signalling to the cell cycle, showing that known regulation of Cln3 translation and Cln1,2 transcription by glucose is sufficient to explain the experimentally observed changes in cell cycle dynamics at different glucose concentrations. Together, these results provide a framework for understanding the complex responses the cell cycle is capable of producing in response to dynamic environments.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1004604</identifier><identifier>PMID: 26741131</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Behavior ; Cell cycle ; Cell Cycle - physiology ; Cell division ; Cell growth ; Deoxyribonucleic acid ; DNA ; Glucose ; Glucose - metabolism ; Growth rate ; Mathematical models ; Models, Biological ; Saccharomyces cerevisiae - metabolism ; Sensitivity analysis ; Signal Transduction - physiology ; Studies ; Systems Biology - methods ; Yeast</subject><ispartof>PLoS computational biology, 2016-01, Vol.12 (1), p.e1004604-e1004604</ispartof><rights>2016 Seaton, Krishnan 2016 Seaton, Krishnan</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Seaton DD, Krishnan J (2016) Model-Based Analysis of Cell Cycle Responses to Dynamically Changing Environments. PLoS Comput Biol 12(1): e1004604. doi:10.1371/journal.pcbi.1004604</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-3165076236031200c8e65a4dd3c9c5da573ce5496c37bd5bff76de60cf48c6c63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4704810/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4704810/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26741131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Tyson, John J.</contributor><creatorcontrib>Seaton, Daniel D</creatorcontrib><creatorcontrib>Krishnan, J</creatorcontrib><title>Model-Based Analysis of Cell Cycle Responses to Dynamically Changing Environments</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Cell cycle progression is carefully coordinated with a cell's intra- and extracellular environment. While some pathways have been identified that communicate information from the environment to the cell cycle, a systematic understanding of how this information is dynamically processed is lacking. We address this by performing dynamic sensitivity analysis of three mathematical models of the cell cycle in Saccharomyces cerevisiae. We demonstrate that these models make broadly consistent qualitative predictions about cell cycle progression under dynamically changing conditions. For example, it is shown that the models predict anticorrelated changes in cell size and cell cycle duration under different environments independently of the growth rate. This prediction is validated by comparison to available literature data. Other consistent patterns emerge, such as widespread nonmonotonic changes in cell size down generations in response to parameter changes. We extend our analysis by investigating glucose signalling to the cell cycle, showing that known regulation of Cln3 translation and Cln1,2 transcription by glucose is sufficient to explain the experimentally observed changes in cell cycle dynamics at different glucose concentrations. Together, these results provide a framework for understanding the complex responses the cell cycle is capable of producing in response to dynamic environments.</description><subject>Behavior</subject><subject>Cell cycle</subject><subject>Cell Cycle - physiology</subject><subject>Cell division</subject><subject>Cell growth</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Growth rate</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Sensitivity analysis</subject><subject>Signal Transduction - physiology</subject><subject>Studies</subject><subject>Systems Biology - methods</subject><subject>Yeast</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpVUU1v1DAUtBCIlsI_QOAjlyx2_JkLUgkFKhUhEJwtx3a2Xjn2Ymcr5d_jdtOqPfnJb968mTcAvMVog4nAH3fpkKMOm70Z_AYjRDmiz8ApZow0gjD5_FF9Al6VskOolh1_CU5aLijGBJ-CXz-SdaH5rIuz8LzyLcUXmEbYuxBgv5jg4G9X9ikWV-Cc4Jcl6skbHcIC-2sdtz5u4UW88TnFycW5vAYvRh2Ke7O-Z-Dv14s__ffm6ue3y_78qjG0k3NDMGdI8JZwRHCLkJGOM02tJaYzzGomiHGMdtwQMVg2jKPg1nFkRioNN5ycgfdH3n1IRa3XKAoLTglrWyEr4vKIsEnv1D77SedFJe3V3UfKW6Xz7KtF5YZ2NJhQiqWjAzad7gYunMak6rHdULk-rdsOw-SsqU6zDk9In3aiv1bbdKOoQFRiVAk-rAQ5_Tu4MqvJF1OPrKNLhzvdSDIuOalQeoSanErJbnxYg5G6zf7erbrNXq3Z17F3jyU-DN2HTf4DxUmt3g</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Seaton, Daniel D</creator><creator>Krishnan, J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160101</creationdate><title>Model-Based Analysis of Cell Cycle Responses to Dynamically Changing Environments</title><author>Seaton, Daniel D ; Krishnan, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-3165076236031200c8e65a4dd3c9c5da573ce5496c37bd5bff76de60cf48c6c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Behavior</topic><topic>Cell cycle</topic><topic>Cell Cycle - physiology</topic><topic>Cell division</topic><topic>Cell growth</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Growth rate</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Sensitivity analysis</topic><topic>Signal Transduction - physiology</topic><topic>Studies</topic><topic>Systems Biology - methods</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seaton, Daniel D</creatorcontrib><creatorcontrib>Krishnan, J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seaton, Daniel D</au><au>Krishnan, J</au><au>Tyson, John J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-Based Analysis of Cell Cycle Responses to Dynamically Changing Environments</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>12</volume><issue>1</issue><spage>e1004604</spage><epage>e1004604</epage><pages>e1004604-e1004604</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Cell cycle progression is carefully coordinated with a cell's intra- and extracellular environment. While some pathways have been identified that communicate information from the environment to the cell cycle, a systematic understanding of how this information is dynamically processed is lacking. We address this by performing dynamic sensitivity analysis of three mathematical models of the cell cycle in Saccharomyces cerevisiae. We demonstrate that these models make broadly consistent qualitative predictions about cell cycle progression under dynamically changing conditions. For example, it is shown that the models predict anticorrelated changes in cell size and cell cycle duration under different environments independently of the growth rate. This prediction is validated by comparison to available literature data. Other consistent patterns emerge, such as widespread nonmonotonic changes in cell size down generations in response to parameter changes. We extend our analysis by investigating glucose signalling to the cell cycle, showing that known regulation of Cln3 translation and Cln1,2 transcription by glucose is sufficient to explain the experimentally observed changes in cell cycle dynamics at different glucose concentrations. Together, these results provide a framework for understanding the complex responses the cell cycle is capable of producing in response to dynamic environments.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26741131</pmid><doi>10.1371/journal.pcbi.1004604</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2016-01, Vol.12 (1), p.e1004604-e1004604 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1764352278 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Behavior Cell cycle Cell Cycle - physiology Cell division Cell growth Deoxyribonucleic acid DNA Glucose Glucose - metabolism Growth rate Mathematical models Models, Biological Saccharomyces cerevisiae - metabolism Sensitivity analysis Signal Transduction - physiology Studies Systems Biology - methods Yeast |
title | Model-Based Analysis of Cell Cycle Responses to Dynamically Changing Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A46%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-Based%20Analysis%20of%20Cell%20Cycle%20Responses%20to%20Dynamically%20Changing%20Environments&rft.jtitle=PLoS%20computational%20biology&rft.au=Seaton,%20Daniel%20D&rft.date=2016-01-01&rft.volume=12&rft.issue=1&rft.spage=e1004604&rft.epage=e1004604&rft.pages=e1004604-e1004604&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1004604&rft_dat=%3Cproquest_plos_%3E1760856863%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1760856863&rft_id=info:pmid/26741131&rft_doaj_id=oai_doaj_org_article_eb2fc134418e4b1c9a9b67ea13d3cd9b&rfr_iscdi=true |