An Adaptive Ridge Procedure for L0 Regularization

Penalized selection criteria like AIC or BIC are among the most popular methods for variable selection. Their theoretical properties have been studied intensively and are well understood, but making use of them in case of high-dimensional data is difficult due to the non-convex optimization problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-02, Vol.11 (2), p.e0148620-e0148620
Hauptverfasser: Frommlet, Florian, Nuel, Grégory
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0148620
container_issue 2
container_start_page e0148620
container_title PloS one
container_volume 11
creator Frommlet, Florian
Nuel, Grégory
description Penalized selection criteria like AIC or BIC are among the most popular methods for variable selection. Their theoretical properties have been studied intensively and are well understood, but making use of them in case of high-dimensional data is difficult due to the non-convex optimization problem induced by L0 penalties. In this paper we introduce an adaptive ridge procedure (AR), where iteratively weighted ridge problems are solved whose weights are updated in such a way that the procedure converges towards selection with L0 penalties. After introducing AR its specific shrinkage properties are studied in the particular case of orthogonal linear regression. Based on extensive simulations for the non-orthogonal case as well as for Poisson regression the performance of AR is studied and compared with SCAD and adaptive LASSO. Furthermore an efficient implementation of AR in the context of least-squares segmentation is presented. The paper ends with an illustrative example of applying AR to analyze GWAS data.
doi_str_mv 10.1371/journal.pone.0148620
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1762831370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_85dc1607b1ac4cae8652feeead214205</doaj_id><sourcerecordid>3944509881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4410-21c53a4124931758c3ef3d0672b638159fb31c0e13d4d76811c346cca4c9b4fd3</originalsourceid><addsrcrecordid>eNptUl1v1DAQtBCIloN_gCASL7zc4fU6jvOCdKr4qHQSqIJny7E3h0-5-LCTSuXXk-ulVYt48sqemd1ZD2Ovga8AK_iwi2Pqbbc6xJ5WHKRWgj9h51CjWE4lPn1Qn7EXOe84L1Er9ZydCaVlDQLPGaz7Yu3tYQjXVFwFv6Xie4qO_JioaGMqNry4ou3Y2RT-2CHE_iV71tou06v5XLCfnz_9uPi63Hz7cnmx3iydlMCXAlyJVoKQNUJVaofUoueqEo1CDWXdNgiOE6CXvlIawKFUzlnp6ka2Hhfs7Un30MVsZrfZQKWExmkDfEJcnhA-2p05pLC36cZEG8ztRUxbY9MQXEdGl96B4lUD1klnSatStERkvQAppr0s2Me529jsyTvqh2S7R6KPX_rwy2zjtZGVxBqqSeD9LJDi75HyYPYhO-o621Mcb-eWgJrXR-i7f6D_dydPKJdizona-2GAm2MC7ljmmAAzJ2CivXlo5J509-X4F6BcrHo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762831370</pqid></control><display><type>article</type><title>An Adaptive Ridge Procedure for L0 Regularization</title><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central (Open Access)</source><source>Public Library of Science</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Directory of Open Access Journals (Open Access)</source><creator>Frommlet, Florian ; Nuel, Grégory</creator><contributor>Wang, Xiaofeng</contributor><creatorcontrib>Frommlet, Florian ; Nuel, Grégory ; Wang, Xiaofeng</creatorcontrib><description>Penalized selection criteria like AIC or BIC are among the most popular methods for variable selection. Their theoretical properties have been studied intensively and are well understood, but making use of them in case of high-dimensional data is difficult due to the non-convex optimization problem induced by L0 penalties. In this paper we introduce an adaptive ridge procedure (AR), where iteratively weighted ridge problems are solved whose weights are updated in such a way that the procedure converges towards selection with L0 penalties. After introducing AR its specific shrinkage properties are studied in the particular case of orthogonal linear regression. Based on extensive simulations for the non-orthogonal case as well as for Poisson regression the performance of AR is studied and compared with SCAD and adaptive LASSO. Furthermore an efficient implementation of AR in the context of least-squares segmentation is presented. The paper ends with an illustrative example of applying AR to analyze GWAS data.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0148620</identifier><identifier>PMID: 26849123</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Biology and Life Sciences ; Computer and Information Sciences ; Convex analysis ; Convexity ; Data processing ; Economic models ; Estimates ; Fines &amp; penalties ; Genomes ; Haplotypes ; Models, Theoretical ; Optimization ; Physical Sciences ; Poisson density functions ; Regression analysis ; Regularization ; Regularization methods ; Research and Analysis Methods ; Segmentation ; Shrinkage ; Sparsity ; Statistical analysis ; Studies</subject><ispartof>PloS one, 2016-02, Vol.11 (2), p.e0148620-e0148620</ispartof><rights>2016 Frommlet, Nuel. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Frommlet, Nuel 2016 Frommlet, Nuel</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4410-21c53a4124931758c3ef3d0672b638159fb31c0e13d4d76811c346cca4c9b4fd3</citedby><cites>FETCH-LOGICAL-c4410-21c53a4124931758c3ef3d0672b638159fb31c0e13d4d76811c346cca4c9b4fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4743917/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4743917/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26849123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wang, Xiaofeng</contributor><creatorcontrib>Frommlet, Florian</creatorcontrib><creatorcontrib>Nuel, Grégory</creatorcontrib><title>An Adaptive Ridge Procedure for L0 Regularization</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Penalized selection criteria like AIC or BIC are among the most popular methods for variable selection. Their theoretical properties have been studied intensively and are well understood, but making use of them in case of high-dimensional data is difficult due to the non-convex optimization problem induced by L0 penalties. In this paper we introduce an adaptive ridge procedure (AR), where iteratively weighted ridge problems are solved whose weights are updated in such a way that the procedure converges towards selection with L0 penalties. After introducing AR its specific shrinkage properties are studied in the particular case of orthogonal linear regression. Based on extensive simulations for the non-orthogonal case as well as for Poisson regression the performance of AR is studied and compared with SCAD and adaptive LASSO. Furthermore an efficient implementation of AR in the context of least-squares segmentation is presented. The paper ends with an illustrative example of applying AR to analyze GWAS data.</description><subject>Algorithms</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Convex analysis</subject><subject>Convexity</subject><subject>Data processing</subject><subject>Economic models</subject><subject>Estimates</subject><subject>Fines &amp; penalties</subject><subject>Genomes</subject><subject>Haplotypes</subject><subject>Models, Theoretical</subject><subject>Optimization</subject><subject>Physical Sciences</subject><subject>Poisson density functions</subject><subject>Regression analysis</subject><subject>Regularization</subject><subject>Regularization methods</subject><subject>Research and Analysis Methods</subject><subject>Segmentation</subject><subject>Shrinkage</subject><subject>Sparsity</subject><subject>Statistical analysis</subject><subject>Studies</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUl1v1DAQtBCIloN_gCASL7zc4fU6jvOCdKr4qHQSqIJny7E3h0-5-LCTSuXXk-ulVYt48sqemd1ZD2Ovga8AK_iwi2Pqbbc6xJ5WHKRWgj9h51CjWE4lPn1Qn7EXOe84L1Er9ZydCaVlDQLPGaz7Yu3tYQjXVFwFv6Xie4qO_JioaGMqNry4ou3Y2RT-2CHE_iV71tou06v5XLCfnz_9uPi63Hz7cnmx3iydlMCXAlyJVoKQNUJVaofUoueqEo1CDWXdNgiOE6CXvlIawKFUzlnp6ka2Hhfs7Un30MVsZrfZQKWExmkDfEJcnhA-2p05pLC36cZEG8ztRUxbY9MQXEdGl96B4lUD1klnSatStERkvQAppr0s2Me529jsyTvqh2S7R6KPX_rwy2zjtZGVxBqqSeD9LJDi75HyYPYhO-o621Mcb-eWgJrXR-i7f6D_dydPKJdizona-2GAm2MC7ljmmAAzJ2CivXlo5J509-X4F6BcrHo</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Frommlet, Florian</creator><creator>Nuel, Grégory</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160201</creationdate><title>An Adaptive Ridge Procedure for L0 Regularization</title><author>Frommlet, Florian ; Nuel, Grégory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4410-21c53a4124931758c3ef3d0672b638159fb31c0e13d4d76811c346cca4c9b4fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Convex analysis</topic><topic>Convexity</topic><topic>Data processing</topic><topic>Economic models</topic><topic>Estimates</topic><topic>Fines &amp; penalties</topic><topic>Genomes</topic><topic>Haplotypes</topic><topic>Models, Theoretical</topic><topic>Optimization</topic><topic>Physical Sciences</topic><topic>Poisson density functions</topic><topic>Regression analysis</topic><topic>Regularization</topic><topic>Regularization methods</topic><topic>Research and Analysis Methods</topic><topic>Segmentation</topic><topic>Shrinkage</topic><topic>Sparsity</topic><topic>Statistical analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frommlet, Florian</creatorcontrib><creatorcontrib>Nuel, Grégory</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frommlet, Florian</au><au>Nuel, Grégory</au><au>Wang, Xiaofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Ridge Procedure for L0 Regularization</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>11</volume><issue>2</issue><spage>e0148620</spage><epage>e0148620</epage><pages>e0148620-e0148620</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Penalized selection criteria like AIC or BIC are among the most popular methods for variable selection. Their theoretical properties have been studied intensively and are well understood, but making use of them in case of high-dimensional data is difficult due to the non-convex optimization problem induced by L0 penalties. In this paper we introduce an adaptive ridge procedure (AR), where iteratively weighted ridge problems are solved whose weights are updated in such a way that the procedure converges towards selection with L0 penalties. After introducing AR its specific shrinkage properties are studied in the particular case of orthogonal linear regression. Based on extensive simulations for the non-orthogonal case as well as for Poisson regression the performance of AR is studied and compared with SCAD and adaptive LASSO. Furthermore an efficient implementation of AR in the context of least-squares segmentation is presented. The paper ends with an illustrative example of applying AR to analyze GWAS data.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26849123</pmid><doi>10.1371/journal.pone.0148620</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-02, Vol.11 (2), p.e0148620-e0148620
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1762831370
source MEDLINE; Full-Text Journals in Chemistry (Open access); PubMed Central (Open Access); Public Library of Science; Free E-Journal (出版社公開部分のみ); Directory of Open Access Journals (Open Access)
subjects Algorithms
Biology and Life Sciences
Computer and Information Sciences
Convex analysis
Convexity
Data processing
Economic models
Estimates
Fines & penalties
Genomes
Haplotypes
Models, Theoretical
Optimization
Physical Sciences
Poisson density functions
Regression analysis
Regularization
Regularization methods
Research and Analysis Methods
Segmentation
Shrinkage
Sparsity
Statistical analysis
Studies
title An Adaptive Ridge Procedure for L0 Regularization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A52%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Ridge%20Procedure%20for%20L0%20Regularization&rft.jtitle=PloS%20one&rft.au=Frommlet,%20Florian&rft.date=2016-02-01&rft.volume=11&rft.issue=2&rft.spage=e0148620&rft.epage=e0148620&rft.pages=e0148620-e0148620&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0148620&rft_dat=%3Cproquest_plos_%3E3944509881%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762831370&rft_id=info:pmid/26849123&rft_doaj_id=oai_doaj_org_article_85dc1607b1ac4cae8652feeead214205&rfr_iscdi=true