The Influence of a Metal Stent on the Distribution of Thermal Energy during Irreversible Electroporation

Irreversible electroporation (IRE) uses short duration, high-voltage electrical pulses to induce cell death via nanoscale defects resulting from altered transmembrane potential. The technique is gaining interest for ablations in unresectable pancreatic and hepatobiliary cancer. Metal stents are ofte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-02, Vol.11 (2), p.e0148457
Hauptverfasser: Scheffer, Hester J, Vogel, Jantien A, van den Bos, Willemien, Neal, 2nd, Robert E, van Lienden, Krijn P, Besselink, Marc G H, van Gemert, Martin J C, van der Geld, Cees W M, Meijerink, Martijn R, Klaessens, John H, Verdaasdonk, Rudolf M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page e0148457
container_title PloS one
container_volume 11
creator Scheffer, Hester J
Vogel, Jantien A
van den Bos, Willemien
Neal, 2nd, Robert E
van Lienden, Krijn P
Besselink, Marc G H
van Gemert, Martin J C
van der Geld, Cees W M
Meijerink, Martijn R
Klaessens, John H
Verdaasdonk, Rudolf M
description Irreversible electroporation (IRE) uses short duration, high-voltage electrical pulses to induce cell death via nanoscale defects resulting from altered transmembrane potential. The technique is gaining interest for ablations in unresectable pancreatic and hepatobiliary cancer. Metal stents are often used for palliative biliary drainage in these patients, but are currently seen as an absolute contraindication for IRE due to the perceived risk of direct heating of the metal and its surroundings. This study investigates the thermal and tissue viability changes due to a metal stent during IRE. IRE was performed in a homogeneous tissue model (polyacrylamide gel), without and with a metal stent placed perpendicular and parallel to the electrodes, delivering 90 and 270 pulses (15-35 A, 90 μsec, 1.5 cm active tip exposure, 1.5 cm interelectrode distance, 1000-1500 V/cm, 90 pulses/min), and in-vivo in a porcine liver (4 ablations). Temperature changes were measured with an infrared thermal camera and with fiber-optic probes. Tissue viability after in-vivo IRE was investigated macroscopically using 5-triphenyltetrazolium chloride (TTC) vitality staining. In the gel, direct stent-heating was not observed. Contrarily, the presence of a stent between the electrodes caused a higher increase in median temperature near the electrodes (23.2 vs 13.3°C [90 pulses]; p = 0.021, and 33.1 vs 24.8°C [270 pulses]; p = 0.242). In-vivo, no temperature difference was observed for ablations with and without a stent. Tissue examination showed white coagulation 1mm around the electrodes only. A rim of vital tissue remained around the stent, whereas ablation without stent resulted in complete tissue avitality. IRE in the vicinity of a metal stent does not cause notable direct heating of the metal, but results in higher temperatures around the electrodes and remnant viable tissue. Future studies should determine for which clinical indications IRE in the presence of metal stents is safe and effective.
doi_str_mv 10.1371/journal.pone.0148457
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1762675385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A442385452</galeid><doaj_id>oai_doaj_org_article_7951d132e9a843809062d447e9381931</doaj_id><sourcerecordid>A442385452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-a7a235a471dade5ae0950dd98093795ddc46b6d6635d98905fba25c84549e06c3</originalsourceid><addsrcrecordid>eNqNkl9r1EAUxYMotla_gWhAEHzYdTL_krwIpa66UCnY6uswO3OTnZLNbGcmxX5773bTsgEFyUPCze-cuXM4Wfa6IPOClcXHaz-EXnfzre9hTgpecVE-yY6LmtGZpIQ9Pfg-yl7EeE2IYJWUz7MjKivOhSDH2fpqDfmyb7oBegO5b3Kdf4eku_wyQZ9y3-cJic8upuBWQ3I4QAhVYYPQoofQ3uV2CK5v82UIcAshulUH-aIDk4Lf-qB3qpfZs0Z3EV6N75Ps55fF1dm32fnF1-XZ6fnMyJqmmS41ZULzsrDagtBAakGsrStSs7IW1houV9JKyQQOayKalabC4OV5DUQadpK93ftuOx_VGFJURSmpLPH-AonlnrBeX6ttcBsd7pTXTt0PfGiVDsmZDhSeWNiCUah1xRnuQCS1nJdQswrDLdDr03jasNqANRhZ0N3EdPqnd2vV-lvFS04pl2jwbjQI_maAmP6x8ki1GrdyfePRzGxcNOqUc4oIFxSp-V8ofCxsnMGaNA7nE8GHiQCZBL9Tq4cY1fLyx_-zF7-m7PsDdg26S-vou_v2xCnI96AJPsYAzWNyBVG7lj-koXYtV2PLUfbmMPVH0UOt2R_3QfaH</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762675385</pqid></control><display><type>article</type><title>The Influence of a Metal Stent on the Distribution of Thermal Energy during Irreversible Electroporation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Scheffer, Hester J ; Vogel, Jantien A ; van den Bos, Willemien ; Neal, 2nd, Robert E ; van Lienden, Krijn P ; Besselink, Marc G H ; van Gemert, Martin J C ; van der Geld, Cees W M ; Meijerink, Martijn R ; Klaessens, John H ; Verdaasdonk, Rudolf M</creator><creatorcontrib>Scheffer, Hester J ; Vogel, Jantien A ; van den Bos, Willemien ; Neal, 2nd, Robert E ; van Lienden, Krijn P ; Besselink, Marc G H ; van Gemert, Martin J C ; van der Geld, Cees W M ; Meijerink, Martijn R ; Klaessens, John H ; Verdaasdonk, Rudolf M</creatorcontrib><description>Irreversible electroporation (IRE) uses short duration, high-voltage electrical pulses to induce cell death via nanoscale defects resulting from altered transmembrane potential. The technique is gaining interest for ablations in unresectable pancreatic and hepatobiliary cancer. Metal stents are often used for palliative biliary drainage in these patients, but are currently seen as an absolute contraindication for IRE due to the perceived risk of direct heating of the metal and its surroundings. This study investigates the thermal and tissue viability changes due to a metal stent during IRE. IRE was performed in a homogeneous tissue model (polyacrylamide gel), without and with a metal stent placed perpendicular and parallel to the electrodes, delivering 90 and 270 pulses (15-35 A, 90 μsec, 1.5 cm active tip exposure, 1.5 cm interelectrode distance, 1000-1500 V/cm, 90 pulses/min), and in-vivo in a porcine liver (4 ablations). Temperature changes were measured with an infrared thermal camera and with fiber-optic probes. Tissue viability after in-vivo IRE was investigated macroscopically using 5-triphenyltetrazolium chloride (TTC) vitality staining. In the gel, direct stent-heating was not observed. Contrarily, the presence of a stent between the electrodes caused a higher increase in median temperature near the electrodes (23.2 vs 13.3°C [90 pulses]; p = 0.021, and 33.1 vs 24.8°C [270 pulses]; p = 0.242). In-vivo, no temperature difference was observed for ablations with and without a stent. Tissue examination showed white coagulation 1mm around the electrodes only. A rim of vital tissue remained around the stent, whereas ablation without stent resulted in complete tissue avitality. IRE in the vicinity of a metal stent does not cause notable direct heating of the metal, but results in higher temperatures around the electrodes and remnant viable tissue. Future studies should determine for which clinical indications IRE in the presence of metal stents is safe and effective.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0148457</identifier><identifier>PMID: 26844550</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Ablation ; Analysis ; Animals ; Apoptosis ; Biology and Life Sciences ; Cancer ; Cancer therapies ; Cancer treatment ; Cell death ; Coagulation ; Electrodes ; Electroporation ; Electroporation - methods ; Energy distribution ; Engineering and Technology ; Experiments ; Fiber optics ; Heat ; Heating ; High temperature ; Hot Temperature ; Implants ; Infrared cameras ; Liver ; Liver - injuries ; Liver - pathology ; Medical technology ; Medicine and Health Sciences ; Membrane potential ; Metals ; Metals - adverse effects ; Methods ; Nuclear medicine ; Optical fibers ; Pancreas ; Pancreatic cancer ; Physical Sciences ; Physics ; Physiological aspects ; Research and Analysis Methods ; Risk perception ; Stents ; Stents - adverse effects ; Surgical implants ; Swine ; Temperature ; Temperature changes ; Temperature effects ; Thermal energy ; Tissues ; Triphenyltetrazolium chloride ; Tumors ; Viability</subject><ispartof>PloS one, 2016-02, Vol.11 (2), p.e0148457</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Scheffer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Scheffer et al 2016 Scheffer et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-a7a235a471dade5ae0950dd98093795ddc46b6d6635d98905fba25c84549e06c3</citedby><cites>FETCH-LOGICAL-c692t-a7a235a471dade5ae0950dd98093795ddc46b6d6635d98905fba25c84549e06c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4742246/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4742246/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26844550$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scheffer, Hester J</creatorcontrib><creatorcontrib>Vogel, Jantien A</creatorcontrib><creatorcontrib>van den Bos, Willemien</creatorcontrib><creatorcontrib>Neal, 2nd, Robert E</creatorcontrib><creatorcontrib>van Lienden, Krijn P</creatorcontrib><creatorcontrib>Besselink, Marc G H</creatorcontrib><creatorcontrib>van Gemert, Martin J C</creatorcontrib><creatorcontrib>van der Geld, Cees W M</creatorcontrib><creatorcontrib>Meijerink, Martijn R</creatorcontrib><creatorcontrib>Klaessens, John H</creatorcontrib><creatorcontrib>Verdaasdonk, Rudolf M</creatorcontrib><title>The Influence of a Metal Stent on the Distribution of Thermal Energy during Irreversible Electroporation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Irreversible electroporation (IRE) uses short duration, high-voltage electrical pulses to induce cell death via nanoscale defects resulting from altered transmembrane potential. The technique is gaining interest for ablations in unresectable pancreatic and hepatobiliary cancer. Metal stents are often used for palliative biliary drainage in these patients, but are currently seen as an absolute contraindication for IRE due to the perceived risk of direct heating of the metal and its surroundings. This study investigates the thermal and tissue viability changes due to a metal stent during IRE. IRE was performed in a homogeneous tissue model (polyacrylamide gel), without and with a metal stent placed perpendicular and parallel to the electrodes, delivering 90 and 270 pulses (15-35 A, 90 μsec, 1.5 cm active tip exposure, 1.5 cm interelectrode distance, 1000-1500 V/cm, 90 pulses/min), and in-vivo in a porcine liver (4 ablations). Temperature changes were measured with an infrared thermal camera and with fiber-optic probes. Tissue viability after in-vivo IRE was investigated macroscopically using 5-triphenyltetrazolium chloride (TTC) vitality staining. In the gel, direct stent-heating was not observed. Contrarily, the presence of a stent between the electrodes caused a higher increase in median temperature near the electrodes (23.2 vs 13.3°C [90 pulses]; p = 0.021, and 33.1 vs 24.8°C [270 pulses]; p = 0.242). In-vivo, no temperature difference was observed for ablations with and without a stent. Tissue examination showed white coagulation 1mm around the electrodes only. A rim of vital tissue remained around the stent, whereas ablation without stent resulted in complete tissue avitality. IRE in the vicinity of a metal stent does not cause notable direct heating of the metal, but results in higher temperatures around the electrodes and remnant viable tissue. Future studies should determine for which clinical indications IRE in the presence of metal stents is safe and effective.</description><subject>Ablation</subject><subject>Analysis</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biology and Life Sciences</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Cancer treatment</subject><subject>Cell death</subject><subject>Coagulation</subject><subject>Electrodes</subject><subject>Electroporation</subject><subject>Electroporation - methods</subject><subject>Energy distribution</subject><subject>Engineering and Technology</subject><subject>Experiments</subject><subject>Fiber optics</subject><subject>Heat</subject><subject>Heating</subject><subject>High temperature</subject><subject>Hot Temperature</subject><subject>Implants</subject><subject>Infrared cameras</subject><subject>Liver</subject><subject>Liver - injuries</subject><subject>Liver - pathology</subject><subject>Medical technology</subject><subject>Medicine and Health Sciences</subject><subject>Membrane potential</subject><subject>Metals</subject><subject>Metals - adverse effects</subject><subject>Methods</subject><subject>Nuclear medicine</subject><subject>Optical fibers</subject><subject>Pancreas</subject><subject>Pancreatic cancer</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physiological aspects</subject><subject>Research and Analysis Methods</subject><subject>Risk perception</subject><subject>Stents</subject><subject>Stents - adverse effects</subject><subject>Surgical implants</subject><subject>Swine</subject><subject>Temperature</subject><subject>Temperature changes</subject><subject>Temperature effects</subject><subject>Thermal energy</subject><subject>Tissues</subject><subject>Triphenyltetrazolium chloride</subject><subject>Tumors</subject><subject>Viability</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl9r1EAUxYMotla_gWhAEHzYdTL_krwIpa66UCnY6uswO3OTnZLNbGcmxX5773bTsgEFyUPCze-cuXM4Wfa6IPOClcXHaz-EXnfzre9hTgpecVE-yY6LmtGZpIQ9Pfg-yl7EeE2IYJWUz7MjKivOhSDH2fpqDfmyb7oBegO5b3Kdf4eku_wyQZ9y3-cJic8upuBWQ3I4QAhVYYPQoofQ3uV2CK5v82UIcAshulUH-aIDk4Lf-qB3qpfZs0Z3EV6N75Ps55fF1dm32fnF1-XZ6fnMyJqmmS41ZULzsrDagtBAakGsrStSs7IW1houV9JKyQQOayKalabC4OV5DUQadpK93ftuOx_VGFJURSmpLPH-AonlnrBeX6ttcBsd7pTXTt0PfGiVDsmZDhSeWNiCUah1xRnuQCS1nJdQswrDLdDr03jasNqANRhZ0N3EdPqnd2vV-lvFS04pl2jwbjQI_maAmP6x8ki1GrdyfePRzGxcNOqUc4oIFxSp-V8ofCxsnMGaNA7nE8GHiQCZBL9Tq4cY1fLyx_-zF7-m7PsDdg26S-vou_v2xCnI96AJPsYAzWNyBVG7lj-koXYtV2PLUfbmMPVH0UOt2R_3QfaH</recordid><startdate>20160204</startdate><enddate>20160204</enddate><creator>Scheffer, Hester J</creator><creator>Vogel, Jantien A</creator><creator>van den Bos, Willemien</creator><creator>Neal, 2nd, Robert E</creator><creator>van Lienden, Krijn P</creator><creator>Besselink, Marc G H</creator><creator>van Gemert, Martin J C</creator><creator>van der Geld, Cees W M</creator><creator>Meijerink, Martijn R</creator><creator>Klaessens, John H</creator><creator>Verdaasdonk, Rudolf M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160204</creationdate><title>The Influence of a Metal Stent on the Distribution of Thermal Energy during Irreversible Electroporation</title><author>Scheffer, Hester J ; Vogel, Jantien A ; van den Bos, Willemien ; Neal, 2nd, Robert E ; van Lienden, Krijn P ; Besselink, Marc G H ; van Gemert, Martin J C ; van der Geld, Cees W M ; Meijerink, Martijn R ; Klaessens, John H ; Verdaasdonk, Rudolf M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-a7a235a471dade5ae0950dd98093795ddc46b6d6635d98905fba25c84549e06c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Ablation</topic><topic>Analysis</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biology and Life Sciences</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Cancer treatment</topic><topic>Cell death</topic><topic>Coagulation</topic><topic>Electrodes</topic><topic>Electroporation</topic><topic>Electroporation - methods</topic><topic>Energy distribution</topic><topic>Engineering and Technology</topic><topic>Experiments</topic><topic>Fiber optics</topic><topic>Heat</topic><topic>Heating</topic><topic>High temperature</topic><topic>Hot Temperature</topic><topic>Implants</topic><topic>Infrared cameras</topic><topic>Liver</topic><topic>Liver - injuries</topic><topic>Liver - pathology</topic><topic>Medical technology</topic><topic>Medicine and Health Sciences</topic><topic>Membrane potential</topic><topic>Metals</topic><topic>Metals - adverse effects</topic><topic>Methods</topic><topic>Nuclear medicine</topic><topic>Optical fibers</topic><topic>Pancreas</topic><topic>Pancreatic cancer</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physiological aspects</topic><topic>Research and Analysis Methods</topic><topic>Risk perception</topic><topic>Stents</topic><topic>Stents - adverse effects</topic><topic>Surgical implants</topic><topic>Swine</topic><topic>Temperature</topic><topic>Temperature changes</topic><topic>Temperature effects</topic><topic>Thermal energy</topic><topic>Tissues</topic><topic>Triphenyltetrazolium chloride</topic><topic>Tumors</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheffer, Hester J</creatorcontrib><creatorcontrib>Vogel, Jantien A</creatorcontrib><creatorcontrib>van den Bos, Willemien</creatorcontrib><creatorcontrib>Neal, 2nd, Robert E</creatorcontrib><creatorcontrib>van Lienden, Krijn P</creatorcontrib><creatorcontrib>Besselink, Marc G H</creatorcontrib><creatorcontrib>van Gemert, Martin J C</creatorcontrib><creatorcontrib>van der Geld, Cees W M</creatorcontrib><creatorcontrib>Meijerink, Martijn R</creatorcontrib><creatorcontrib>Klaessens, John H</creatorcontrib><creatorcontrib>Verdaasdonk, Rudolf M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scheffer, Hester J</au><au>Vogel, Jantien A</au><au>van den Bos, Willemien</au><au>Neal, 2nd, Robert E</au><au>van Lienden, Krijn P</au><au>Besselink, Marc G H</au><au>van Gemert, Martin J C</au><au>van der Geld, Cees W M</au><au>Meijerink, Martijn R</au><au>Klaessens, John H</au><au>Verdaasdonk, Rudolf M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Influence of a Metal Stent on the Distribution of Thermal Energy during Irreversible Electroporation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-02-04</date><risdate>2016</risdate><volume>11</volume><issue>2</issue><spage>e0148457</spage><pages>e0148457-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Irreversible electroporation (IRE) uses short duration, high-voltage electrical pulses to induce cell death via nanoscale defects resulting from altered transmembrane potential. The technique is gaining interest for ablations in unresectable pancreatic and hepatobiliary cancer. Metal stents are often used for palliative biliary drainage in these patients, but are currently seen as an absolute contraindication for IRE due to the perceived risk of direct heating of the metal and its surroundings. This study investigates the thermal and tissue viability changes due to a metal stent during IRE. IRE was performed in a homogeneous tissue model (polyacrylamide gel), without and with a metal stent placed perpendicular and parallel to the electrodes, delivering 90 and 270 pulses (15-35 A, 90 μsec, 1.5 cm active tip exposure, 1.5 cm interelectrode distance, 1000-1500 V/cm, 90 pulses/min), and in-vivo in a porcine liver (4 ablations). Temperature changes were measured with an infrared thermal camera and with fiber-optic probes. Tissue viability after in-vivo IRE was investigated macroscopically using 5-triphenyltetrazolium chloride (TTC) vitality staining. In the gel, direct stent-heating was not observed. Contrarily, the presence of a stent between the electrodes caused a higher increase in median temperature near the electrodes (23.2 vs 13.3°C [90 pulses]; p = 0.021, and 33.1 vs 24.8°C [270 pulses]; p = 0.242). In-vivo, no temperature difference was observed for ablations with and without a stent. Tissue examination showed white coagulation 1mm around the electrodes only. A rim of vital tissue remained around the stent, whereas ablation without stent resulted in complete tissue avitality. IRE in the vicinity of a metal stent does not cause notable direct heating of the metal, but results in higher temperatures around the electrodes and remnant viable tissue. Future studies should determine for which clinical indications IRE in the presence of metal stents is safe and effective.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26844550</pmid><doi>10.1371/journal.pone.0148457</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-02, Vol.11 (2), p.e0148457
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1762675385
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Ablation
Analysis
Animals
Apoptosis
Biology and Life Sciences
Cancer
Cancer therapies
Cancer treatment
Cell death
Coagulation
Electrodes
Electroporation
Electroporation - methods
Energy distribution
Engineering and Technology
Experiments
Fiber optics
Heat
Heating
High temperature
Hot Temperature
Implants
Infrared cameras
Liver
Liver - injuries
Liver - pathology
Medical technology
Medicine and Health Sciences
Membrane potential
Metals
Metals - adverse effects
Methods
Nuclear medicine
Optical fibers
Pancreas
Pancreatic cancer
Physical Sciences
Physics
Physiological aspects
Research and Analysis Methods
Risk perception
Stents
Stents - adverse effects
Surgical implants
Swine
Temperature
Temperature changes
Temperature effects
Thermal energy
Tissues
Triphenyltetrazolium chloride
Tumors
Viability
title The Influence of a Metal Stent on the Distribution of Thermal Energy during Irreversible Electroporation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A37%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Influence%20of%20a%20Metal%20Stent%20on%20the%20Distribution%20of%20Thermal%20Energy%20during%20Irreversible%20Electroporation&rft.jtitle=PloS%20one&rft.au=Scheffer,%20Hester%20J&rft.date=2016-02-04&rft.volume=11&rft.issue=2&rft.spage=e0148457&rft.pages=e0148457-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0148457&rft_dat=%3Cgale_plos_%3EA442385452%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762675385&rft_id=info:pmid/26844550&rft_galeid=A442385452&rft_doaj_id=oai_doaj_org_article_7951d132e9a843809062d447e9381931&rfr_iscdi=true