Marathon: An Open Source Software Library for the Analysis of Markov-Chain Monte Carlo Algorithms
We present the software library marathon, which is designed to support the analysis of sampling algorithms that are based on the Markov-Chain Monte Carlo principle. The main application of this library is the computation of properties of so-called state graphs, which represent the structure of Marko...
Gespeichert in:
Veröffentlicht in: | PloS one 2016-01, Vol.11 (1), p.e0147935-e0147935 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0147935 |
---|---|
container_issue | 1 |
container_start_page | e0147935 |
container_title | PloS one |
container_volume | 11 |
creator | Rechner, Steffen Berger, Annabell |
description | We present the software library marathon, which is designed to support the analysis of sampling algorithms that are based on the Markov-Chain Monte Carlo principle. The main application of this library is the computation of properties of so-called state graphs, which represent the structure of Markov chains. We demonstrate applications and the usefulness of marathon by investigating the quality of several bounding methods on four well-known Markov chains for sampling perfect matchings and bipartite graphs. In a set of experiments, we compute the total mixing time and several of its bounds for a large number of input instances. We find that the upper bound gained by the famous canonical path method is often several magnitudes larger than the total mixing time and deteriorates with growing input size. In contrast, the spectral bound is found to be a precise approximation of the total mixing time. |
doi_str_mv | 10.1371/journal.pone.0147935 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1761243182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A441791486</galeid><doaj_id>oai_doaj_org_article_9b3ee7ca3a97429b8258db5059dbe4ba</doaj_id><sourcerecordid>A441791486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-f26570c44a7c20ba98c40c3d591903bfc3b04d0c89710f349b4fba317fb4e043</originalsourceid><addsrcrecordid>eNqNk12LEzEUhgdR3LX6D0QHBNGL1nzNZOKFUIofhS4Fd_E2JJmkk5pOajKzuv_edDu7dGQvJBcJyfO-J-ckJ8teQjCDmMIPW9-HVrjZ3rd6BiChDBePsnPIMJqWCODHJ-uz7FmMWwAKXJXl0-wMlRUihKDzTFyIILrGtx_zeZuv97rNL5Ox0mky3W8RdL6yMohwkxsf8q7RiRPuJtqYe5Mn9U9_PV00wrb5hW87nS9EcD6fu40Ptmt28Xn2xAgX9YthnmRXXz5fLb5NV-uvy8V8NVUlQ93UoLKgQBEiqEJAClYpAhSuCwYZwNIoLAGpgaoYhcBgwiQxUmBIjSQaEDzJXh9t985HPhQnckhLiAiGFUrE8kjUXmz5Pthdyop7Yfnthg8bLkJnldOcSaw1VQILRgliskJFVcsCFKyWmqSwk-zTEK2XO10r3XZBuJHp-KS1Dd_4a04oRrSkyeDdYBD8r17Hju9sVNo50Wrf394bAVRiXCT0zT_ow9kN1EakBGxrfIqrDqZ8TgikDJKqTNTsASqNWu-sSj_J2LQ_ErwfCdThjf90G9HHyJeX3_-fXf8Ys29P2EYL1zXRu76zvo1jkBxBFXyMQZv7IkPAD41wVw1-aAQ-NEKSvTp9oHvR3c_HfwEiUQIg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1761243182</pqid></control><display><type>article</type><title>Marathon: An Open Source Software Library for the Analysis of Markov-Chain Monte Carlo Algorithms</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Rechner, Steffen ; Berger, Annabell</creator><contributor>Kestler, Hans A</contributor><creatorcontrib>Rechner, Steffen ; Berger, Annabell ; Kestler, Hans A</creatorcontrib><description>We present the software library marathon, which is designed to support the analysis of sampling algorithms that are based on the Markov-Chain Monte Carlo principle. The main application of this library is the computation of properties of so-called state graphs, which represent the structure of Markov chains. We demonstrate applications and the usefulness of marathon by investigating the quality of several bounding methods on four well-known Markov chains for sampling perfect matchings and bipartite graphs. In a set of experiments, we compute the total mixing time and several of its bounds for a large number of input instances. We find that the upper bound gained by the famous canonical path method is often several magnitudes larger than the total mixing time and deteriorates with growing input size. In contrast, the spectral bound is found to be a precise approximation of the total mixing time.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0147935</identifier><identifier>PMID: 26824442</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Applied mathematics ; Computer and Information Sciences ; Computer programs ; Computer science ; Computer simulation ; Freeware ; Graphs ; Libraries ; Libraries, Digital ; Marathons ; Markov analysis ; Markov Chains ; Markov processes ; Methods ; Monte Carlo Method ; Monte Carlo methods ; Monte Carlo simulation ; Open source software ; Physical Sciences ; Probability distribution ; Problems ; Research and Analysis Methods ; Sampling ; Software ; Technology application ; Upper bounds</subject><ispartof>PloS one, 2016-01, Vol.11 (1), p.e0147935-e0147935</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Rechner, Berger. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Rechner, Berger 2016 Rechner, Berger</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-f26570c44a7c20ba98c40c3d591903bfc3b04d0c89710f349b4fba317fb4e043</citedby><cites>FETCH-LOGICAL-c692t-f26570c44a7c20ba98c40c3d591903bfc3b04d0c89710f349b4fba317fb4e043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732767/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732767/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2101,2927,23865,27923,27924,53790,53792,79471,79472</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26824442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kestler, Hans A</contributor><creatorcontrib>Rechner, Steffen</creatorcontrib><creatorcontrib>Berger, Annabell</creatorcontrib><title>Marathon: An Open Source Software Library for the Analysis of Markov-Chain Monte Carlo Algorithms</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We present the software library marathon, which is designed to support the analysis of sampling algorithms that are based on the Markov-Chain Monte Carlo principle. The main application of this library is the computation of properties of so-called state graphs, which represent the structure of Markov chains. We demonstrate applications and the usefulness of marathon by investigating the quality of several bounding methods on four well-known Markov chains for sampling perfect matchings and bipartite graphs. In a set of experiments, we compute the total mixing time and several of its bounds for a large number of input instances. We find that the upper bound gained by the famous canonical path method is often several magnitudes larger than the total mixing time and deteriorates with growing input size. In contrast, the spectral bound is found to be a precise approximation of the total mixing time.</description><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Computer and Information Sciences</subject><subject>Computer programs</subject><subject>Computer science</subject><subject>Computer simulation</subject><subject>Freeware</subject><subject>Graphs</subject><subject>Libraries</subject><subject>Libraries, Digital</subject><subject>Marathons</subject><subject>Markov analysis</subject><subject>Markov Chains</subject><subject>Markov processes</subject><subject>Methods</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Open source software</subject><subject>Physical Sciences</subject><subject>Probability distribution</subject><subject>Problems</subject><subject>Research and Analysis Methods</subject><subject>Sampling</subject><subject>Software</subject><subject>Technology application</subject><subject>Upper bounds</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12LEzEUhgdR3LX6D0QHBNGL1nzNZOKFUIofhS4Fd_E2JJmkk5pOajKzuv_edDu7dGQvJBcJyfO-J-ckJ8teQjCDmMIPW9-HVrjZ3rd6BiChDBePsnPIMJqWCODHJ-uz7FmMWwAKXJXl0-wMlRUihKDzTFyIILrGtx_zeZuv97rNL5Ox0mky3W8RdL6yMohwkxsf8q7RiRPuJtqYe5Mn9U9_PV00wrb5hW87nS9EcD6fu40Ptmt28Xn2xAgX9YthnmRXXz5fLb5NV-uvy8V8NVUlQ93UoLKgQBEiqEJAClYpAhSuCwYZwNIoLAGpgaoYhcBgwiQxUmBIjSQaEDzJXh9t985HPhQnckhLiAiGFUrE8kjUXmz5Pthdyop7Yfnthg8bLkJnldOcSaw1VQILRgliskJFVcsCFKyWmqSwk-zTEK2XO10r3XZBuJHp-KS1Dd_4a04oRrSkyeDdYBD8r17Hju9sVNo50Wrf394bAVRiXCT0zT_ow9kN1EakBGxrfIqrDqZ8TgikDJKqTNTsASqNWu-sSj_J2LQ_ErwfCdThjf90G9HHyJeX3_-fXf8Ys29P2EYL1zXRu76zvo1jkBxBFXyMQZv7IkPAD41wVw1-aAQ-NEKSvTp9oHvR3c_HfwEiUQIg</recordid><startdate>20160129</startdate><enddate>20160129</enddate><creator>Rechner, Steffen</creator><creator>Berger, Annabell</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160129</creationdate><title>Marathon: An Open Source Software Library for the Analysis of Markov-Chain Monte Carlo Algorithms</title><author>Rechner, Steffen ; Berger, Annabell</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-f26570c44a7c20ba98c40c3d591903bfc3b04d0c89710f349b4fba317fb4e043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Computer and Information Sciences</topic><topic>Computer programs</topic><topic>Computer science</topic><topic>Computer simulation</topic><topic>Freeware</topic><topic>Graphs</topic><topic>Libraries</topic><topic>Libraries, Digital</topic><topic>Marathons</topic><topic>Markov analysis</topic><topic>Markov Chains</topic><topic>Markov processes</topic><topic>Methods</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Open source software</topic><topic>Physical Sciences</topic><topic>Probability distribution</topic><topic>Problems</topic><topic>Research and Analysis Methods</topic><topic>Sampling</topic><topic>Software</topic><topic>Technology application</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rechner, Steffen</creatorcontrib><creatorcontrib>Berger, Annabell</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rechner, Steffen</au><au>Berger, Annabell</au><au>Kestler, Hans A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marathon: An Open Source Software Library for the Analysis of Markov-Chain Monte Carlo Algorithms</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-01-29</date><risdate>2016</risdate><volume>11</volume><issue>1</issue><spage>e0147935</spage><epage>e0147935</epage><pages>e0147935-e0147935</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We present the software library marathon, which is designed to support the analysis of sampling algorithms that are based on the Markov-Chain Monte Carlo principle. The main application of this library is the computation of properties of so-called state graphs, which represent the structure of Markov chains. We demonstrate applications and the usefulness of marathon by investigating the quality of several bounding methods on four well-known Markov chains for sampling perfect matchings and bipartite graphs. In a set of experiments, we compute the total mixing time and several of its bounds for a large number of input instances. We find that the upper bound gained by the famous canonical path method is often several magnitudes larger than the total mixing time and deteriorates with growing input size. In contrast, the spectral bound is found to be a precise approximation of the total mixing time.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26824442</pmid><doi>10.1371/journal.pone.0147935</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-01, Vol.11 (1), p.e0147935-e0147935 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1761243182 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Applied mathematics Computer and Information Sciences Computer programs Computer science Computer simulation Freeware Graphs Libraries Libraries, Digital Marathons Markov analysis Markov Chains Markov processes Methods Monte Carlo Method Monte Carlo methods Monte Carlo simulation Open source software Physical Sciences Probability distribution Problems Research and Analysis Methods Sampling Software Technology application Upper bounds |
title | Marathon: An Open Source Software Library for the Analysis of Markov-Chain Monte Carlo Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A45%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marathon:%20An%20Open%20Source%20Software%20Library%20for%20the%20Analysis%20of%20Markov-Chain%20Monte%20Carlo%20Algorithms&rft.jtitle=PloS%20one&rft.au=Rechner,%20Steffen&rft.date=2016-01-29&rft.volume=11&rft.issue=1&rft.spage=e0147935&rft.epage=e0147935&rft.pages=e0147935-e0147935&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0147935&rft_dat=%3Cgale_plos_%3EA441791486%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1761243182&rft_id=info:pmid/26824442&rft_galeid=A441791486&rft_doaj_id=oai_doaj_org_article_9b3ee7ca3a97429b8258db5059dbe4ba&rfr_iscdi=true |