Thickness Dependent Nanostructural, Morphological, Optical and Impedometric Analyses of Zinc Oxide-Gold Hybrids: Nanoparticle to Thin Film
The creation of an appropriate thin film is important for the development of novel sensing surfaces, which will ultimately enhance the properties and output of high-performance sensors. In this study, we have fabricated and characterized zinc oxide (ZnO) thin films on silicon substrates, which were...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-12, Vol.10 (12), p.e0144964-e0144964 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0144964 |
---|---|
container_issue | 12 |
container_start_page | e0144964 |
container_title | PloS one |
container_volume | 10 |
creator | Perumal, Veeradasan Hashim, Uda Gopinath, Subash C B Haarindraprasad, R Liu, Wei-Wen Poopalan, P Balakrishnan, S R Thivina, V Ruslinda, A R |
description | The creation of an appropriate thin film is important for the development of novel sensing surfaces, which will ultimately enhance the properties and output of high-performance sensors. In this study, we have fabricated and characterized zinc oxide (ZnO) thin films on silicon substrates, which were hybridized with gold nanoparticles (AuNPs) to obtain ZnO-Aux (x = 10, 20, 30, 40 and 50 nm) hybrid structures with different thicknesses. Nanoscale imaging by field emission scanning electron microscopy revealed increasing film uniformity and coverage with the Au deposition thickness. Transmission electron microscopy analysis indicated that the AuNPs exhibit an increasing average diameter (5-10 nm). The face center cubic Au were found to co-exist with wurtzite ZnO nanostructure. Atomic force microscopy observations revealed that as the Au content increased, the overall crystallite size increased, which was supported by X-ray diffraction measurements. The structural characterizations indicated that the Au on the ZnO crystal lattice exists without any impurities in a preferred orientation (002). When the ZnO thickness increased from 10 to 40 nm, transmittance and an optical bandgap value decreased. Interestingly, with 50 nm thickness, the band gap value was increased, which might be due to the Burstein-Moss effect. Photoluminescence studies revealed that the overall structural defect (green emission) improved significantly as the Au deposition increased. The impedance measurements shows a decreasing value of impedance arc with increasing Au thicknesses (0 to 40 nm). In contrast, the 50 nm AuNP impedance arc shows an increased value compared to lower sputtering thicknesses, which indicated the presence of larger sized AuNPs that form a continuous film, and its ohmic characteristics changed to rectifying characteristics. This improved hybrid thin film (ZnO/Au) is suitable for a wide range of sensing applications. |
doi_str_mv | 10.1371/journal.pone.0144964 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1751190789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A438263098</galeid><doaj_id>oai_doaj_org_article_fcbdc8a70ad440eab624a2b7f04ca576</doaj_id><sourcerecordid>A438263098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-4034f2d90c1b77825c5f195d0800b30d2e0a14e50c665edb4b6890aa9a3cd7433</originalsourceid><addsrcrecordid>eNqNk99u0zAUxiMEYmPwBggsISGQaLFjx0m4QKoG2yoNKsHgghvLsZ3WxbGD7aD1FXhq3DWbVrQLlAv_ye9855wvOVn2FMEpwiV6u3aDt9xMe2fVFCJCakruZYeoxvmE5hDfv7U_yB6FsIawwBWlD7ODnNKa0IIeZn8uVlr8tCoE8EH1ykplI_jMrQvRDyIOnps34JPz_coZt9Rie1z0cbsB3Eow73olXaei1wLMUj2boAJwLfihrQCLSy3V5NQZCc42jdcyvLsS77lPEkaB6EAqwIITbbrH2YOWm6CejOtR9u3k48Xx2eR8cTo_np1PBK3zOCEQkzaXNRSoKcsqL0TRorqQsIKwwVDmCnJEVAEFpYWSDWloVUPOa46FLAnGR9nznW5vXGCjjYGhskCohmVVJ2K-I6Tja9Z73XG_YY5rdnXh_JKNDbBWNFJUvIRcEgIVb2hOeN6ULSSCFyVNWu_HbEPTKSmSv8nTPdH9N1av2NL9ZoRWZVXCJPBqFPDu16BCZJ0OQhnDrXLDrm5a4oIUCX3xD3p3dyO15KkBbVuX8oqtKJsRXOUUw7pK1PQOKj1SdVqkf67V6X4v4PVeQGKiuoxLPoTA5l-__D-7-L7PvrzFrhQ3cRWcGaJ2NuyDZAcK70Lwqr0xGUG2HZlrN9h2ZNg4Mins2e0PdBN0PSP4L6rlEoY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751190789</pqid></control><display><type>article</type><title>Thickness Dependent Nanostructural, Morphological, Optical and Impedometric Analyses of Zinc Oxide-Gold Hybrids: Nanoparticle to Thin Film</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Perumal, Veeradasan ; Hashim, Uda ; Gopinath, Subash C B ; Haarindraprasad, R ; Liu, Wei-Wen ; Poopalan, P ; Balakrishnan, S R ; Thivina, V ; Ruslinda, A R</creator><contributor>Mishra, Yogendra Kumar</contributor><creatorcontrib>Perumal, Veeradasan ; Hashim, Uda ; Gopinath, Subash C B ; Haarindraprasad, R ; Liu, Wei-Wen ; Poopalan, P ; Balakrishnan, S R ; Thivina, V ; Ruslinda, A R ; Mishra, Yogendra Kumar</creatorcontrib><description>The creation of an appropriate thin film is important for the development of novel sensing surfaces, which will ultimately enhance the properties and output of high-performance sensors. In this study, we have fabricated and characterized zinc oxide (ZnO) thin films on silicon substrates, which were hybridized with gold nanoparticles (AuNPs) to obtain ZnO-Aux (x = 10, 20, 30, 40 and 50 nm) hybrid structures with different thicknesses. Nanoscale imaging by field emission scanning electron microscopy revealed increasing film uniformity and coverage with the Au deposition thickness. Transmission electron microscopy analysis indicated that the AuNPs exhibit an increasing average diameter (5-10 nm). The face center cubic Au were found to co-exist with wurtzite ZnO nanostructure. Atomic force microscopy observations revealed that as the Au content increased, the overall crystallite size increased, which was supported by X-ray diffraction measurements. The structural characterizations indicated that the Au on the ZnO crystal lattice exists without any impurities in a preferred orientation (002). When the ZnO thickness increased from 10 to 40 nm, transmittance and an optical bandgap value decreased. Interestingly, with 50 nm thickness, the band gap value was increased, which might be due to the Burstein-Moss effect. Photoluminescence studies revealed that the overall structural defect (green emission) improved significantly as the Au deposition increased. The impedance measurements shows a decreasing value of impedance arc with increasing Au thicknesses (0 to 40 nm). In contrast, the 50 nm AuNP impedance arc shows an increased value compared to lower sputtering thicknesses, which indicated the presence of larger sized AuNPs that form a continuous film, and its ohmic characteristics changed to rectifying characteristics. This improved hybrid thin film (ZnO/Au) is suitable for a wide range of sensing applications.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0144964</identifier><identifier>PMID: 26694656</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Atomic force microscopy ; Biosensors ; Cobalt ; Crystal lattices ; Crystal structure ; Defects ; Deposition ; Electron microscopy ; Emission analysis ; Emissions ; Engineering ; Field emission microscopy ; Gold ; Gold - chemistry ; Grain size ; Hybrid structures ; Hybridization ; Hybrids ; Impedance ; Impurities ; Metal Nanoparticles - chemistry ; Microscopy, Atomic Force ; Microscopy, Electron, Transmission ; Nanocomposites ; Nanoparticles ; Ohmic ; Optical properties ; Particle Size ; Photoluminescence ; Photons ; Photovoltaic cells ; Preferred orientation ; Properties ; Scanning electron microscopy ; Silicon substrates ; Substrates ; Thickness ; Thin films ; Transmission electron microscopy ; Wurtzite ; X-ray diffraction ; Zinc ; Zinc oxide ; Zinc Oxide - chemistry ; Zinc oxides</subject><ispartof>PloS one, 2015-12, Vol.10 (12), p.e0144964-e0144964</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Perumal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Perumal et al 2015 Perumal et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-4034f2d90c1b77825c5f195d0800b30d2e0a14e50c665edb4b6890aa9a3cd7433</citedby><cites>FETCH-LOGICAL-c692t-4034f2d90c1b77825c5f195d0800b30d2e0a14e50c665edb4b6890aa9a3cd7433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687870/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687870/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2101,2927,23865,27923,27924,53790,53792,79471,79472</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26694656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mishra, Yogendra Kumar</contributor><creatorcontrib>Perumal, Veeradasan</creatorcontrib><creatorcontrib>Hashim, Uda</creatorcontrib><creatorcontrib>Gopinath, Subash C B</creatorcontrib><creatorcontrib>Haarindraprasad, R</creatorcontrib><creatorcontrib>Liu, Wei-Wen</creatorcontrib><creatorcontrib>Poopalan, P</creatorcontrib><creatorcontrib>Balakrishnan, S R</creatorcontrib><creatorcontrib>Thivina, V</creatorcontrib><creatorcontrib>Ruslinda, A R</creatorcontrib><title>Thickness Dependent Nanostructural, Morphological, Optical and Impedometric Analyses of Zinc Oxide-Gold Hybrids: Nanoparticle to Thin Film</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The creation of an appropriate thin film is important for the development of novel sensing surfaces, which will ultimately enhance the properties and output of high-performance sensors. In this study, we have fabricated and characterized zinc oxide (ZnO) thin films on silicon substrates, which were hybridized with gold nanoparticles (AuNPs) to obtain ZnO-Aux (x = 10, 20, 30, 40 and 50 nm) hybrid structures with different thicknesses. Nanoscale imaging by field emission scanning electron microscopy revealed increasing film uniformity and coverage with the Au deposition thickness. Transmission electron microscopy analysis indicated that the AuNPs exhibit an increasing average diameter (5-10 nm). The face center cubic Au were found to co-exist with wurtzite ZnO nanostructure. Atomic force microscopy observations revealed that as the Au content increased, the overall crystallite size increased, which was supported by X-ray diffraction measurements. The structural characterizations indicated that the Au on the ZnO crystal lattice exists without any impurities in a preferred orientation (002). When the ZnO thickness increased from 10 to 40 nm, transmittance and an optical bandgap value decreased. Interestingly, with 50 nm thickness, the band gap value was increased, which might be due to the Burstein-Moss effect. Photoluminescence studies revealed that the overall structural defect (green emission) improved significantly as the Au deposition increased. The impedance measurements shows a decreasing value of impedance arc with increasing Au thicknesses (0 to 40 nm). In contrast, the 50 nm AuNP impedance arc shows an increased value compared to lower sputtering thicknesses, which indicated the presence of larger sized AuNPs that form a continuous film, and its ohmic characteristics changed to rectifying characteristics. This improved hybrid thin film (ZnO/Au) is suitable for a wide range of sensing applications.</description><subject>Atomic force microscopy</subject><subject>Biosensors</subject><subject>Cobalt</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Defects</subject><subject>Deposition</subject><subject>Electron microscopy</subject><subject>Emission analysis</subject><subject>Emissions</subject><subject>Engineering</subject><subject>Field emission microscopy</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Grain size</subject><subject>Hybrid structures</subject><subject>Hybridization</subject><subject>Hybrids</subject><subject>Impedance</subject><subject>Impurities</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Ohmic</subject><subject>Optical properties</subject><subject>Particle Size</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Photovoltaic cells</subject><subject>Preferred orientation</subject><subject>Properties</subject><subject>Scanning electron microscopy</subject><subject>Silicon substrates</subject><subject>Substrates</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Transmission electron microscopy</subject><subject>Wurtzite</subject><subject>X-ray diffraction</subject><subject>Zinc</subject><subject>Zinc oxide</subject><subject>Zinc Oxide - chemistry</subject><subject>Zinc oxides</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99u0zAUxiMEYmPwBggsISGQaLFjx0m4QKoG2yoNKsHgghvLsZ3WxbGD7aD1FXhq3DWbVrQLlAv_ye9855wvOVn2FMEpwiV6u3aDt9xMe2fVFCJCakruZYeoxvmE5hDfv7U_yB6FsIawwBWlD7ODnNKa0IIeZn8uVlr8tCoE8EH1ykplI_jMrQvRDyIOnps34JPz_coZt9Rie1z0cbsB3Eow73olXaei1wLMUj2boAJwLfihrQCLSy3V5NQZCc42jdcyvLsS77lPEkaB6EAqwIITbbrH2YOWm6CejOtR9u3k48Xx2eR8cTo_np1PBK3zOCEQkzaXNRSoKcsqL0TRorqQsIKwwVDmCnJEVAEFpYWSDWloVUPOa46FLAnGR9nznW5vXGCjjYGhskCohmVVJ2K-I6Tja9Z73XG_YY5rdnXh_JKNDbBWNFJUvIRcEgIVb2hOeN6ULSSCFyVNWu_HbEPTKSmSv8nTPdH9N1av2NL9ZoRWZVXCJPBqFPDu16BCZJ0OQhnDrXLDrm5a4oIUCX3xD3p3dyO15KkBbVuX8oqtKJsRXOUUw7pK1PQOKj1SdVqkf67V6X4v4PVeQGKiuoxLPoTA5l-__D-7-L7PvrzFrhQ3cRWcGaJ2NuyDZAcK70Lwqr0xGUG2HZlrN9h2ZNg4Mins2e0PdBN0PSP4L6rlEoY</recordid><startdate>20151222</startdate><enddate>20151222</enddate><creator>Perumal, Veeradasan</creator><creator>Hashim, Uda</creator><creator>Gopinath, Subash C B</creator><creator>Haarindraprasad, R</creator><creator>Liu, Wei-Wen</creator><creator>Poopalan, P</creator><creator>Balakrishnan, S R</creator><creator>Thivina, V</creator><creator>Ruslinda, A R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151222</creationdate><title>Thickness Dependent Nanostructural, Morphological, Optical and Impedometric Analyses of Zinc Oxide-Gold Hybrids: Nanoparticle to Thin Film</title><author>Perumal, Veeradasan ; Hashim, Uda ; Gopinath, Subash C B ; Haarindraprasad, R ; Liu, Wei-Wen ; Poopalan, P ; Balakrishnan, S R ; Thivina, V ; Ruslinda, A R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-4034f2d90c1b77825c5f195d0800b30d2e0a14e50c665edb4b6890aa9a3cd7433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atomic force microscopy</topic><topic>Biosensors</topic><topic>Cobalt</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Defects</topic><topic>Deposition</topic><topic>Electron microscopy</topic><topic>Emission analysis</topic><topic>Emissions</topic><topic>Engineering</topic><topic>Field emission microscopy</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Grain size</topic><topic>Hybrid structures</topic><topic>Hybridization</topic><topic>Hybrids</topic><topic>Impedance</topic><topic>Impurities</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Ohmic</topic><topic>Optical properties</topic><topic>Particle Size</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Photovoltaic cells</topic><topic>Preferred orientation</topic><topic>Properties</topic><topic>Scanning electron microscopy</topic><topic>Silicon substrates</topic><topic>Substrates</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Transmission electron microscopy</topic><topic>Wurtzite</topic><topic>X-ray diffraction</topic><topic>Zinc</topic><topic>Zinc oxide</topic><topic>Zinc Oxide - chemistry</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perumal, Veeradasan</creatorcontrib><creatorcontrib>Hashim, Uda</creatorcontrib><creatorcontrib>Gopinath, Subash C B</creatorcontrib><creatorcontrib>Haarindraprasad, R</creatorcontrib><creatorcontrib>Liu, Wei-Wen</creatorcontrib><creatorcontrib>Poopalan, P</creatorcontrib><creatorcontrib>Balakrishnan, S R</creatorcontrib><creatorcontrib>Thivina, V</creatorcontrib><creatorcontrib>Ruslinda, A R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perumal, Veeradasan</au><au>Hashim, Uda</au><au>Gopinath, Subash C B</au><au>Haarindraprasad, R</au><au>Liu, Wei-Wen</au><au>Poopalan, P</au><au>Balakrishnan, S R</au><au>Thivina, V</au><au>Ruslinda, A R</au><au>Mishra, Yogendra Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thickness Dependent Nanostructural, Morphological, Optical and Impedometric Analyses of Zinc Oxide-Gold Hybrids: Nanoparticle to Thin Film</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-12-22</date><risdate>2015</risdate><volume>10</volume><issue>12</issue><spage>e0144964</spage><epage>e0144964</epage><pages>e0144964-e0144964</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The creation of an appropriate thin film is important for the development of novel sensing surfaces, which will ultimately enhance the properties and output of high-performance sensors. In this study, we have fabricated and characterized zinc oxide (ZnO) thin films on silicon substrates, which were hybridized with gold nanoparticles (AuNPs) to obtain ZnO-Aux (x = 10, 20, 30, 40 and 50 nm) hybrid structures with different thicknesses. Nanoscale imaging by field emission scanning electron microscopy revealed increasing film uniformity and coverage with the Au deposition thickness. Transmission electron microscopy analysis indicated that the AuNPs exhibit an increasing average diameter (5-10 nm). The face center cubic Au were found to co-exist with wurtzite ZnO nanostructure. Atomic force microscopy observations revealed that as the Au content increased, the overall crystallite size increased, which was supported by X-ray diffraction measurements. The structural characterizations indicated that the Au on the ZnO crystal lattice exists without any impurities in a preferred orientation (002). When the ZnO thickness increased from 10 to 40 nm, transmittance and an optical bandgap value decreased. Interestingly, with 50 nm thickness, the band gap value was increased, which might be due to the Burstein-Moss effect. Photoluminescence studies revealed that the overall structural defect (green emission) improved significantly as the Au deposition increased. The impedance measurements shows a decreasing value of impedance arc with increasing Au thicknesses (0 to 40 nm). In contrast, the 50 nm AuNP impedance arc shows an increased value compared to lower sputtering thicknesses, which indicated the presence of larger sized AuNPs that form a continuous film, and its ohmic characteristics changed to rectifying characteristics. This improved hybrid thin film (ZnO/Au) is suitable for a wide range of sensing applications.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26694656</pmid><doi>10.1371/journal.pone.0144964</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-12, Vol.10 (12), p.e0144964-e0144964 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1751190789 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Atomic force microscopy Biosensors Cobalt Crystal lattices Crystal structure Defects Deposition Electron microscopy Emission analysis Emissions Engineering Field emission microscopy Gold Gold - chemistry Grain size Hybrid structures Hybridization Hybrids Impedance Impurities Metal Nanoparticles - chemistry Microscopy, Atomic Force Microscopy, Electron, Transmission Nanocomposites Nanoparticles Ohmic Optical properties Particle Size Photoluminescence Photons Photovoltaic cells Preferred orientation Properties Scanning electron microscopy Silicon substrates Substrates Thickness Thin films Transmission electron microscopy Wurtzite X-ray diffraction Zinc Zinc oxide Zinc Oxide - chemistry Zinc oxides |
title | Thickness Dependent Nanostructural, Morphological, Optical and Impedometric Analyses of Zinc Oxide-Gold Hybrids: Nanoparticle to Thin Film |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A56%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thickness%20Dependent%20Nanostructural,%20Morphological,%20Optical%20and%20Impedometric%20Analyses%20of%20Zinc%20Oxide-Gold%20Hybrids:%20Nanoparticle%20to%20Thin%20Film&rft.jtitle=PloS%20one&rft.au=Perumal,%20Veeradasan&rft.date=2015-12-22&rft.volume=10&rft.issue=12&rft.spage=e0144964&rft.epage=e0144964&rft.pages=e0144964-e0144964&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0144964&rft_dat=%3Cgale_plos_%3EA438263098%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1751190789&rft_id=info:pmid/26694656&rft_galeid=A438263098&rft_doaj_id=oai_doaj_org_article_fcbdc8a70ad440eab624a2b7f04ca576&rfr_iscdi=true |