Influence of Chirality of Crizotinib on Its MTH1 Protein Inhibitory Activity: Insight from Molecular Dynamics Simulations and Binding Free Energy Calculations
As a promising target for the treatment of lung cancer, the MutT Homolog 1 (MTH1) protein can be inhibited by crizotinib. A recent work shows that the inhibitory potency of (S)-crizotinib against MTH1 is about 20 times over that of (R)-crizotinib. But the detailed molecular mechanism remains unclear...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-12, Vol.10 (12), p.e0145219-e0145219 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0145219 |
---|---|
container_issue | 12 |
container_start_page | e0145219 |
container_title | PloS one |
container_volume | 10 |
creator | Niu, Yuzhen Pan, Dabo Shi, Danfeng Bai, Qifeng Liu, Huanxiang Yao, Xiaojun |
description | As a promising target for the treatment of lung cancer, the MutT Homolog 1 (MTH1) protein can be inhibited by crizotinib. A recent work shows that the inhibitory potency of (S)-crizotinib against MTH1 is about 20 times over that of (R)-crizotinib. But the detailed molecular mechanism remains unclear. In this study, molecular dynamics (MD) simulations and free energy calculations were used to elucidate the mechanism about the effect of chirality of crizotinib on the inhibitory activity against MTH1. The binding free energy of (S)-crizotinib predicted by the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and Adaptive biasing force (ABF) methodologies is much lower than that of (R)-crizotinib, which is consistent with the experimental data. The analysis of the individual energy terms suggests that the van der Waals interactions are important for distinguishing the binding of (S)-crizotinib and (R)-crizotinib. The binding free energy decomposition analysis illustrated that residues Tyr7, Phe27, Phe72 and Trp117 were important for the selective binding of (S)-crizotinib to MTH1. The adaptive biasing force (ABF) method was further employed to elucidate the unbinding process of (S)-crizotinib and (R)-crizotinib from the binding pocket of MTH1. ABF simulation results suggest that the reaction coordinates of the (S)-crizotinib from the binding pocket is different from (R)-crizotinib. The results from our study can reveal the details about the effect of chirality on the inhibition activity of crizotinib to MTH1 and provide valuable information for the design of more potent inhibitors. |
doi_str_mv | 10.1371/journal.pone.0145219 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1749963174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A437755477</galeid><doaj_id>oai_doaj_org_article_01116b6a0c334b09bb18db25eeecc2b3</doaj_id><sourcerecordid>A437755477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-94f3e6f415b278014ff90fb44e1b8bf659f6cc56b4f4252d48ef00c4888802be3</originalsourceid><addsrcrecordid>eNqNk99u0zAYxSMEYjB4AwSWkBBctNjxnyRcII2ysUqbhtjg1rIdO_Xk2sN2JsrD8Ky4WzetaBckF06-_M5xfOyvql4gOEW4Qe_Pwxi9cNOL4PUUIkJr1D2onqAO1xNWQ_zwzvNO9TSlcwgpbhl7XO3UjDVNS-GT6s_cGzdqrzQIBswWNgpn8-rqJdrfIVtvJQgezHMCx2eHCHyNIWtbCn5hpc0hrsCeyvayqD6UYrLDIgMTwxIcB6fV6EQEn1deLK1K4NQuSyHb4BMQvgefrO-tH8BB1Brsex2HFZgJp26gZ9UjI1zSzzfjbvX9YP9sdjg5Ovkyn-0dTVRD2zzpiMGaGYKorJu2hGFMB40kRCPZSsNoZ5hSlEliSE3rnrTaQKhIWy5YS413q1fXvhcuJL6JNnHUkK5juAyFmF8TfRDn_CLapYgrHoTlV4UQBy5itsppDhFCTDIBFcZEwk5K1PayplprpWqJi9fHzWyjXOpeaZ9L7Fum21-8XfAhXHLCWgybuhi83RjE8HPUKfOlTUo7J7wO4_q_KSSYQkwL-vof9P7VbahBlAVYb0KZV61N-R7BTUMpaZpCTe-hyt3rsrvlHBpb6luCd1uCwmT9Kw9iTInPT7_9P3vyY5t9c4ddaOHyIgU3Xp2ZbZBcgyqGlKI2tyEjyNdtdJMGX7cR37RRkb28u0G3opu-wX8BhtQZqg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1749963174</pqid></control><display><type>article</type><title>Influence of Chirality of Crizotinib on Its MTH1 Protein Inhibitory Activity: Insight from Molecular Dynamics Simulations and Binding Free Energy Calculations</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Niu, Yuzhen ; Pan, Dabo ; Shi, Danfeng ; Bai, Qifeng ; Liu, Huanxiang ; Yao, Xiaojun</creator><contributor>Salahub, Dennis</contributor><creatorcontrib>Niu, Yuzhen ; Pan, Dabo ; Shi, Danfeng ; Bai, Qifeng ; Liu, Huanxiang ; Yao, Xiaojun ; Salahub, Dennis</creatorcontrib><description>As a promising target for the treatment of lung cancer, the MutT Homolog 1 (MTH1) protein can be inhibited by crizotinib. A recent work shows that the inhibitory potency of (S)-crizotinib against MTH1 is about 20 times over that of (R)-crizotinib. But the detailed molecular mechanism remains unclear. In this study, molecular dynamics (MD) simulations and free energy calculations were used to elucidate the mechanism about the effect of chirality of crizotinib on the inhibitory activity against MTH1. The binding free energy of (S)-crizotinib predicted by the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and Adaptive biasing force (ABF) methodologies is much lower than that of (R)-crizotinib, which is consistent with the experimental data. The analysis of the individual energy terms suggests that the van der Waals interactions are important for distinguishing the binding of (S)-crizotinib and (R)-crizotinib. The binding free energy decomposition analysis illustrated that residues Tyr7, Phe27, Phe72 and Trp117 were important for the selective binding of (S)-crizotinib to MTH1. The adaptive biasing force (ABF) method was further employed to elucidate the unbinding process of (S)-crizotinib and (R)-crizotinib from the binding pocket of MTH1. ABF simulation results suggest that the reaction coordinates of the (S)-crizotinib from the binding pocket is different from (R)-crizotinib. The results from our study can reveal the details about the effect of chirality on the inhibition activity of crizotinib to MTH1 and provide valuable information for the design of more potent inhibitors.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0145219</identifier><identifier>PMID: 26677850</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Binding energy ; Binding Sites ; Care and treatment ; Chemical properties ; Chirality ; Crizotinib ; Data processing ; Deoxyribonucleic acid ; Diagnosis ; DNA ; DNA damage ; DNA Repair Enzymes - antagonists & inhibitors ; DNA Repair Enzymes - metabolism ; Dosage and administration ; Energy ; Energy Metabolism ; Free energy ; Genetic aspects ; Homology ; Humans ; Inhibitor drugs ; Kinases ; Laboratories ; Ligands ; Lung cancer ; Lung diseases ; Mathematical analysis ; Mechanics ; Methods ; Models, Theoretical ; Molecular dynamics ; Molecular Dynamics Simulation ; MTH1 protein ; Organic chemistry ; Phosphoric Monoester Hydrolases - antagonists & inhibitors ; Phosphoric Monoester Hydrolases - metabolism ; Protein Binding ; Proteins ; Pyrazoles - chemistry ; Pyrazoles - metabolism ; Pyrazoles - pharmacology ; Pyridines - chemistry ; Pyridines - metabolism ; Pyridines - pharmacology ; Selective binding ; Senescence ; Simulation ; Stereoisomerism</subject><ispartof>PloS one, 2015-12, Vol.10 (12), p.e0145219-e0145219</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Niu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Niu et al 2015 Niu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-94f3e6f415b278014ff90fb44e1b8bf659f6cc56b4f4252d48ef00c4888802be3</citedby><cites>FETCH-LOGICAL-c758t-94f3e6f415b278014ff90fb44e1b8bf659f6cc56b4f4252d48ef00c4888802be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4683072/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4683072/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26677850$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Salahub, Dennis</contributor><creatorcontrib>Niu, Yuzhen</creatorcontrib><creatorcontrib>Pan, Dabo</creatorcontrib><creatorcontrib>Shi, Danfeng</creatorcontrib><creatorcontrib>Bai, Qifeng</creatorcontrib><creatorcontrib>Liu, Huanxiang</creatorcontrib><creatorcontrib>Yao, Xiaojun</creatorcontrib><title>Influence of Chirality of Crizotinib on Its MTH1 Protein Inhibitory Activity: Insight from Molecular Dynamics Simulations and Binding Free Energy Calculations</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>As a promising target for the treatment of lung cancer, the MutT Homolog 1 (MTH1) protein can be inhibited by crizotinib. A recent work shows that the inhibitory potency of (S)-crizotinib against MTH1 is about 20 times over that of (R)-crizotinib. But the detailed molecular mechanism remains unclear. In this study, molecular dynamics (MD) simulations and free energy calculations were used to elucidate the mechanism about the effect of chirality of crizotinib on the inhibitory activity against MTH1. The binding free energy of (S)-crizotinib predicted by the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and Adaptive biasing force (ABF) methodologies is much lower than that of (R)-crizotinib, which is consistent with the experimental data. The analysis of the individual energy terms suggests that the van der Waals interactions are important for distinguishing the binding of (S)-crizotinib and (R)-crizotinib. The binding free energy decomposition analysis illustrated that residues Tyr7, Phe27, Phe72 and Trp117 were important for the selective binding of (S)-crizotinib to MTH1. The adaptive biasing force (ABF) method was further employed to elucidate the unbinding process of (S)-crizotinib and (R)-crizotinib from the binding pocket of MTH1. ABF simulation results suggest that the reaction coordinates of the (S)-crizotinib from the binding pocket is different from (R)-crizotinib. The results from our study can reveal the details about the effect of chirality on the inhibition activity of crizotinib to MTH1 and provide valuable information for the design of more potent inhibitors.</description><subject>Analysis</subject><subject>Binding energy</subject><subject>Binding Sites</subject><subject>Care and treatment</subject><subject>Chemical properties</subject><subject>Chirality</subject><subject>Crizotinib</subject><subject>Data processing</subject><subject>Deoxyribonucleic acid</subject><subject>Diagnosis</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA Repair Enzymes - antagonists & inhibitors</subject><subject>DNA Repair Enzymes - metabolism</subject><subject>Dosage and administration</subject><subject>Energy</subject><subject>Energy Metabolism</subject><subject>Free energy</subject><subject>Genetic aspects</subject><subject>Homology</subject><subject>Humans</subject><subject>Inhibitor drugs</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Ligands</subject><subject>Lung cancer</subject><subject>Lung diseases</subject><subject>Mathematical analysis</subject><subject>Mechanics</subject><subject>Methods</subject><subject>Models, Theoretical</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>MTH1 protein</subject><subject>Organic chemistry</subject><subject>Phosphoric Monoester Hydrolases - antagonists & inhibitors</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Pyrazoles - chemistry</subject><subject>Pyrazoles - metabolism</subject><subject>Pyrazoles - pharmacology</subject><subject>Pyridines - chemistry</subject><subject>Pyridines - metabolism</subject><subject>Pyridines - pharmacology</subject><subject>Selective binding</subject><subject>Senescence</subject><subject>Simulation</subject><subject>Stereoisomerism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99u0zAYxSMEYjB4AwSWkBBctNjxnyRcII2ysUqbhtjg1rIdO_Xk2sN2JsrD8Ky4WzetaBckF06-_M5xfOyvql4gOEW4Qe_Pwxi9cNOL4PUUIkJr1D2onqAO1xNWQ_zwzvNO9TSlcwgpbhl7XO3UjDVNS-GT6s_cGzdqrzQIBswWNgpn8-rqJdrfIVtvJQgezHMCx2eHCHyNIWtbCn5hpc0hrsCeyvayqD6UYrLDIgMTwxIcB6fV6EQEn1deLK1K4NQuSyHb4BMQvgefrO-tH8BB1Brsex2HFZgJp26gZ9UjI1zSzzfjbvX9YP9sdjg5Ovkyn-0dTVRD2zzpiMGaGYKorJu2hGFMB40kRCPZSsNoZ5hSlEliSE3rnrTaQKhIWy5YS413q1fXvhcuJL6JNnHUkK5juAyFmF8TfRDn_CLapYgrHoTlV4UQBy5itsppDhFCTDIBFcZEwk5K1PayplprpWqJi9fHzWyjXOpeaZ9L7Fum21-8XfAhXHLCWgybuhi83RjE8HPUKfOlTUo7J7wO4_q_KSSYQkwL-vof9P7VbahBlAVYb0KZV61N-R7BTUMpaZpCTe-hyt3rsrvlHBpb6luCd1uCwmT9Kw9iTInPT7_9P3vyY5t9c4ddaOHyIgU3Xp2ZbZBcgyqGlKI2tyEjyNdtdJMGX7cR37RRkb28u0G3opu-wX8BhtQZqg</recordid><startdate>20151217</startdate><enddate>20151217</enddate><creator>Niu, Yuzhen</creator><creator>Pan, Dabo</creator><creator>Shi, Danfeng</creator><creator>Bai, Qifeng</creator><creator>Liu, Huanxiang</creator><creator>Yao, Xiaojun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151217</creationdate><title>Influence of Chirality of Crizotinib on Its MTH1 Protein Inhibitory Activity: Insight from Molecular Dynamics Simulations and Binding Free Energy Calculations</title><author>Niu, Yuzhen ; Pan, Dabo ; Shi, Danfeng ; Bai, Qifeng ; Liu, Huanxiang ; Yao, Xiaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-94f3e6f415b278014ff90fb44e1b8bf659f6cc56b4f4252d48ef00c4888802be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Binding energy</topic><topic>Binding Sites</topic><topic>Care and treatment</topic><topic>Chemical properties</topic><topic>Chirality</topic><topic>Crizotinib</topic><topic>Data processing</topic><topic>Deoxyribonucleic acid</topic><topic>Diagnosis</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA Repair Enzymes - antagonists & inhibitors</topic><topic>DNA Repair Enzymes - metabolism</topic><topic>Dosage and administration</topic><topic>Energy</topic><topic>Energy Metabolism</topic><topic>Free energy</topic><topic>Genetic aspects</topic><topic>Homology</topic><topic>Humans</topic><topic>Inhibitor drugs</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Ligands</topic><topic>Lung cancer</topic><topic>Lung diseases</topic><topic>Mathematical analysis</topic><topic>Mechanics</topic><topic>Methods</topic><topic>Models, Theoretical</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>MTH1 protein</topic><topic>Organic chemistry</topic><topic>Phosphoric Monoester Hydrolases - antagonists & inhibitors</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Pyrazoles - chemistry</topic><topic>Pyrazoles - metabolism</topic><topic>Pyrazoles - pharmacology</topic><topic>Pyridines - chemistry</topic><topic>Pyridines - metabolism</topic><topic>Pyridines - pharmacology</topic><topic>Selective binding</topic><topic>Senescence</topic><topic>Simulation</topic><topic>Stereoisomerism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Yuzhen</creatorcontrib><creatorcontrib>Pan, Dabo</creatorcontrib><creatorcontrib>Shi, Danfeng</creatorcontrib><creatorcontrib>Bai, Qifeng</creatorcontrib><creatorcontrib>Liu, Huanxiang</creatorcontrib><creatorcontrib>Yao, Xiaojun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Yuzhen</au><au>Pan, Dabo</au><au>Shi, Danfeng</au><au>Bai, Qifeng</au><au>Liu, Huanxiang</au><au>Yao, Xiaojun</au><au>Salahub, Dennis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Chirality of Crizotinib on Its MTH1 Protein Inhibitory Activity: Insight from Molecular Dynamics Simulations and Binding Free Energy Calculations</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-12-17</date><risdate>2015</risdate><volume>10</volume><issue>12</issue><spage>e0145219</spage><epage>e0145219</epage><pages>e0145219-e0145219</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>As a promising target for the treatment of lung cancer, the MutT Homolog 1 (MTH1) protein can be inhibited by crizotinib. A recent work shows that the inhibitory potency of (S)-crizotinib against MTH1 is about 20 times over that of (R)-crizotinib. But the detailed molecular mechanism remains unclear. In this study, molecular dynamics (MD) simulations and free energy calculations were used to elucidate the mechanism about the effect of chirality of crizotinib on the inhibitory activity against MTH1. The binding free energy of (S)-crizotinib predicted by the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and Adaptive biasing force (ABF) methodologies is much lower than that of (R)-crizotinib, which is consistent with the experimental data. The analysis of the individual energy terms suggests that the van der Waals interactions are important for distinguishing the binding of (S)-crizotinib and (R)-crizotinib. The binding free energy decomposition analysis illustrated that residues Tyr7, Phe27, Phe72 and Trp117 were important for the selective binding of (S)-crizotinib to MTH1. The adaptive biasing force (ABF) method was further employed to elucidate the unbinding process of (S)-crizotinib and (R)-crizotinib from the binding pocket of MTH1. ABF simulation results suggest that the reaction coordinates of the (S)-crizotinib from the binding pocket is different from (R)-crizotinib. The results from our study can reveal the details about the effect of chirality on the inhibition activity of crizotinib to MTH1 and provide valuable information for the design of more potent inhibitors.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26677850</pmid><doi>10.1371/journal.pone.0145219</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-12, Vol.10 (12), p.e0145219-e0145219 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1749963174 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Analysis Binding energy Binding Sites Care and treatment Chemical properties Chirality Crizotinib Data processing Deoxyribonucleic acid Diagnosis DNA DNA damage DNA Repair Enzymes - antagonists & inhibitors DNA Repair Enzymes - metabolism Dosage and administration Energy Energy Metabolism Free energy Genetic aspects Homology Humans Inhibitor drugs Kinases Laboratories Ligands Lung cancer Lung diseases Mathematical analysis Mechanics Methods Models, Theoretical Molecular dynamics Molecular Dynamics Simulation MTH1 protein Organic chemistry Phosphoric Monoester Hydrolases - antagonists & inhibitors Phosphoric Monoester Hydrolases - metabolism Protein Binding Proteins Pyrazoles - chemistry Pyrazoles - metabolism Pyrazoles - pharmacology Pyridines - chemistry Pyridines - metabolism Pyridines - pharmacology Selective binding Senescence Simulation Stereoisomerism |
title | Influence of Chirality of Crizotinib on Its MTH1 Protein Inhibitory Activity: Insight from Molecular Dynamics Simulations and Binding Free Energy Calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Chirality%20of%20Crizotinib%20on%20Its%20MTH1%20Protein%20Inhibitory%20Activity:%20Insight%20from%20Molecular%20Dynamics%20Simulations%20and%20Binding%20Free%20Energy%20Calculations&rft.jtitle=PloS%20one&rft.au=Niu,%20Yuzhen&rft.date=2015-12-17&rft.volume=10&rft.issue=12&rft.spage=e0145219&rft.epage=e0145219&rft.pages=e0145219-e0145219&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0145219&rft_dat=%3Cgale_plos_%3EA437755477%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1749963174&rft_id=info:pmid/26677850&rft_galeid=A437755477&rft_doaj_id=oai_doaj_org_article_01116b6a0c334b09bb18db25eeecc2b3&rfr_iscdi=true |