NDK Interacts with FtsZ and Converts GDP to GTP to Trigger FtsZ Polymerisation--A Novel Role for NDK

Nucleoside diphosphate kinase (NDK), conserved across bacteria to humans, synthesises NTP from NDP and ATP. The eukaryotic homologue, the NDPK, uses ATP to phosphorylate the tubulin-bound GDP to GTP for tubulin polymerisation. The bacterial cytokinetic protein FtsZ, which is the tubulin homologue, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-12, Vol.10 (12), p.e0143677-e0143677
Hauptverfasser: Mishra, Saurabh, Jakkala, Kishor, Srinivasan, Ramanujam, Arumugam, Muthu, Ranjeri, Raghavendra, Gupta, Prabuddha, Rajeswari, Haryadi, Ajitkumar, Parthasarathi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0143677
container_issue 12
container_start_page e0143677
container_title PloS one
container_volume 10
creator Mishra, Saurabh
Jakkala, Kishor
Srinivasan, Ramanujam
Arumugam, Muthu
Ranjeri, Raghavendra
Gupta, Prabuddha
Rajeswari, Haryadi
Ajitkumar, Parthasarathi
description Nucleoside diphosphate kinase (NDK), conserved across bacteria to humans, synthesises NTP from NDP and ATP. The eukaryotic homologue, the NDPK, uses ATP to phosphorylate the tubulin-bound GDP to GTP for tubulin polymerisation. The bacterial cytokinetic protein FtsZ, which is the tubulin homologue, also uses GTP for polymerisation. Therefore, we examined whether NDK can interact with FtsZ to convert FtsZ-bound GDP and/or free GDP to GTP to trigger FtsZ polymerisation. Recombinant and native NDK and FtsZ proteins of Mycobacterium smegmatis and Mycobacterium tuberculosis were used as the experimental samples. FtsZ polymersation was monitored using 90° light scattering and FtsZ polymer pelleting assays. The γ32P-GTP synthesised by NDK from GDP and γ32P-ATP was detected using thin layer chromatography and quantitated using phosphorimager. The FtsZ bound 32P-GTP was quantitated using phosphorimager, after UV-crosslinking, followed by SDS-PAGE. The NDK-FtsZ interaction was determined using Ni2+-NTA-pulldown assay and co-immunoprecipitation of the recombinant and native proteins in vitro and ex vivo, respectively. NDK triggered instantaneous polymerisation of GDP-precharged recombinant FtsZ in the presence of ATP, similar to the polymerisation of recombinant FtsZ (not GDP-precharged) upon the direct addition of GTP. Similarly, NDK triggered polymerisation of recombinant FtsZ (not GDP-precharged) in the presence of free GDP and ATP as well. Mutant NDK, partially deficient in GTP synthesis from ATP and GDP, triggered low level of polymerisation of MsFtsZ, but not of MtFtsZ. As characteristic of NDK's NTP substrate non-specificity, it used CTP, TTP, and UTP also to convert GDP to GTP, to trigger FtsZ polymerisation. The NDK of one mycobacterial species could trigger the polymerisation of the FtsZ of another mycobacterial species. Both the recombinant and the native NDK and FtsZ showed interaction with each other in vitro and ex vivo, alluding to the possibility of direct phosphorylation of FtsZ-bound GDP by NDK. Irrespective of the bacterial species, NDK interacts with FtsZ in vitro and ex vivo and, through the synthesis of GTP from FtsZ-bound GDP and/or free GDP, and ATP (CTP/TTP/UTP), triggers FtsZ polymerisation. The possible biological context of this novel activity of NDK is presented.
doi_str_mv 10.1371/journal.pone.0143677
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1749685585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A436776049</galeid><doaj_id>oai_doaj_org_article_38f1463f68c840e0b0ef6675a57fa6ab</doaj_id><sourcerecordid>A436776049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-ec00b36a953223d187377148afe7ab627d19a2b52c9cbe5c5fa75ddc7f1227113</originalsourceid><addsrcrecordid>eNqNk99v0zAQxyMEYmPwHyCIhITgIcU_Yjt5mVR1rFRM2zQKD7xYjuOkrtx42E5h_z1um00t2gPyg63z577nO98lyWsIRhAz-Glpe9cJM7q1nRoBmGPK2JPkGJYYZRQB_HTvfJS88H4JAMEFpc-TI0QpBiRHx0l9efY1nXVBOSGDT3_rsEjPg_-Ziq5OJ7ZbKxfN07PrNNh0Ot9uc6fbVrkdd23N3Uo57UXQtsuycXpp18qkN9aotLEujQFeJs8aYbx6Newnyffzz_PJl-ziajqbjC8ySUsUMiUBqDAVJcEI4RoWDDMG80I0iomKIlbDUqCKIFnKShFJGsFIXUvWQIQYhPgkebvTvTXW86FAnkOWl7QgpCCRmO2I2oolv3V6Jdwdt0LzrcG6lgsXtDSK46KBOcUNLWSRAwUqoBpKGRGENYKKKmqdDtH6aqVqqbrghDkQPbzp9IK3ds1zSgvA8ijwYRBw9levfOAr7aUyRnTK9tt3RxQBsMns3T_o49kNVCtiArprbIwrN6J8vO0PCvIyUqNHqLhqtdIydlOjo_3A4eOBQ2SC-hNa0XvPZ99u_p-9-nHIvt9jF0qYsPDW9JtG8odgvgOls9471TwUGQK-GYb7avDNMPBhGKLbm_0PenC67378F6XxAbQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1749685585</pqid></control><display><type>article</type><title>NDK Interacts with FtsZ and Converts GDP to GTP to Trigger FtsZ Polymerisation--A Novel Role for NDK</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Mishra, Saurabh ; Jakkala, Kishor ; Srinivasan, Ramanujam ; Arumugam, Muthu ; Ranjeri, Raghavendra ; Gupta, Prabuddha ; Rajeswari, Haryadi ; Ajitkumar, Parthasarathi</creator><contributor>Scheffers, Dirk-Jan</contributor><creatorcontrib>Mishra, Saurabh ; Jakkala, Kishor ; Srinivasan, Ramanujam ; Arumugam, Muthu ; Ranjeri, Raghavendra ; Gupta, Prabuddha ; Rajeswari, Haryadi ; Ajitkumar, Parthasarathi ; Scheffers, Dirk-Jan</creatorcontrib><description>Nucleoside diphosphate kinase (NDK), conserved across bacteria to humans, synthesises NTP from NDP and ATP. The eukaryotic homologue, the NDPK, uses ATP to phosphorylate the tubulin-bound GDP to GTP for tubulin polymerisation. The bacterial cytokinetic protein FtsZ, which is the tubulin homologue, also uses GTP for polymerisation. Therefore, we examined whether NDK can interact with FtsZ to convert FtsZ-bound GDP and/or free GDP to GTP to trigger FtsZ polymerisation. Recombinant and native NDK and FtsZ proteins of Mycobacterium smegmatis and Mycobacterium tuberculosis were used as the experimental samples. FtsZ polymersation was monitored using 90° light scattering and FtsZ polymer pelleting assays. The γ32P-GTP synthesised by NDK from GDP and γ32P-ATP was detected using thin layer chromatography and quantitated using phosphorimager. The FtsZ bound 32P-GTP was quantitated using phosphorimager, after UV-crosslinking, followed by SDS-PAGE. The NDK-FtsZ interaction was determined using Ni2+-NTA-pulldown assay and co-immunoprecipitation of the recombinant and native proteins in vitro and ex vivo, respectively. NDK triggered instantaneous polymerisation of GDP-precharged recombinant FtsZ in the presence of ATP, similar to the polymerisation of recombinant FtsZ (not GDP-precharged) upon the direct addition of GTP. Similarly, NDK triggered polymerisation of recombinant FtsZ (not GDP-precharged) in the presence of free GDP and ATP as well. Mutant NDK, partially deficient in GTP synthesis from ATP and GDP, triggered low level of polymerisation of MsFtsZ, but not of MtFtsZ. As characteristic of NDK's NTP substrate non-specificity, it used CTP, TTP, and UTP also to convert GDP to GTP, to trigger FtsZ polymerisation. The NDK of one mycobacterial species could trigger the polymerisation of the FtsZ of another mycobacterial species. Both the recombinant and the native NDK and FtsZ showed interaction with each other in vitro and ex vivo, alluding to the possibility of direct phosphorylation of FtsZ-bound GDP by NDK. Irrespective of the bacterial species, NDK interacts with FtsZ in vitro and ex vivo and, through the synthesis of GTP from FtsZ-bound GDP and/or free GDP, and ATP (CTP/TTP/UTP), triggers FtsZ polymerisation. The possible biological context of this novel activity of NDK is presented.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0143677</identifier><identifier>PMID: 26630542</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Addition polymerization ; Adenosine Triphosphate - metabolism ; ATP ; Bacillus subtilis ; Bacteria ; Bacterial proteins ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Biology ; Cell cycle ; Cell division ; Chemical synthesis ; Chromatography ; Crosslinking ; Cytokines ; Cytoskeletal Proteins - chemistry ; Cytoskeletal Proteins - genetics ; Cytoskeletal Proteins - metabolism ; E coli ; Escherichia coli ; Gel electrophoresis ; Guanosine Diphosphate - metabolism ; Guanosine triphosphate ; Guanosine Triphosphate - biosynthesis ; Homology ; Immunoprecipitation ; Light scattering ; Low level ; Microscopy, Electron, Transmission ; Morphology ; Mutation ; Mycobacterium smegmatis ; Mycobacterium smegmatis - genetics ; Mycobacterium smegmatis - metabolism ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - genetics ; Mycobacterium tuberculosis - metabolism ; Nucleoside-diphosphate kinase ; Nucleoside-Diphosphate Kinase - genetics ; Nucleoside-Diphosphate Kinase - metabolism ; Pelleting ; Phosphorylation ; Polymerization ; Polymers ; Protein Structure, Quaternary ; Proteins ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Science ; Sodium lauryl sulfate ; Species ; Substrates ; Thin layer chromatography ; Tuberculosis ; Tubulin</subject><ispartof>PloS one, 2015-12, Vol.10 (12), p.e0143677-e0143677</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Mishra et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Mishra et al 2015 Mishra et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-ec00b36a953223d187377148afe7ab627d19a2b52c9cbe5c5fa75ddc7f1227113</citedby><cites>FETCH-LOGICAL-c692t-ec00b36a953223d187377148afe7ab627d19a2b52c9cbe5c5fa75ddc7f1227113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668074/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668074/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26630542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Scheffers, Dirk-Jan</contributor><creatorcontrib>Mishra, Saurabh</creatorcontrib><creatorcontrib>Jakkala, Kishor</creatorcontrib><creatorcontrib>Srinivasan, Ramanujam</creatorcontrib><creatorcontrib>Arumugam, Muthu</creatorcontrib><creatorcontrib>Ranjeri, Raghavendra</creatorcontrib><creatorcontrib>Gupta, Prabuddha</creatorcontrib><creatorcontrib>Rajeswari, Haryadi</creatorcontrib><creatorcontrib>Ajitkumar, Parthasarathi</creatorcontrib><title>NDK Interacts with FtsZ and Converts GDP to GTP to Trigger FtsZ Polymerisation--A Novel Role for NDK</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Nucleoside diphosphate kinase (NDK), conserved across bacteria to humans, synthesises NTP from NDP and ATP. The eukaryotic homologue, the NDPK, uses ATP to phosphorylate the tubulin-bound GDP to GTP for tubulin polymerisation. The bacterial cytokinetic protein FtsZ, which is the tubulin homologue, also uses GTP for polymerisation. Therefore, we examined whether NDK can interact with FtsZ to convert FtsZ-bound GDP and/or free GDP to GTP to trigger FtsZ polymerisation. Recombinant and native NDK and FtsZ proteins of Mycobacterium smegmatis and Mycobacterium tuberculosis were used as the experimental samples. FtsZ polymersation was monitored using 90° light scattering and FtsZ polymer pelleting assays. The γ32P-GTP synthesised by NDK from GDP and γ32P-ATP was detected using thin layer chromatography and quantitated using phosphorimager. The FtsZ bound 32P-GTP was quantitated using phosphorimager, after UV-crosslinking, followed by SDS-PAGE. The NDK-FtsZ interaction was determined using Ni2+-NTA-pulldown assay and co-immunoprecipitation of the recombinant and native proteins in vitro and ex vivo, respectively. NDK triggered instantaneous polymerisation of GDP-precharged recombinant FtsZ in the presence of ATP, similar to the polymerisation of recombinant FtsZ (not GDP-precharged) upon the direct addition of GTP. Similarly, NDK triggered polymerisation of recombinant FtsZ (not GDP-precharged) in the presence of free GDP and ATP as well. Mutant NDK, partially deficient in GTP synthesis from ATP and GDP, triggered low level of polymerisation of MsFtsZ, but not of MtFtsZ. As characteristic of NDK's NTP substrate non-specificity, it used CTP, TTP, and UTP also to convert GDP to GTP, to trigger FtsZ polymerisation. The NDK of one mycobacterial species could trigger the polymerisation of the FtsZ of another mycobacterial species. Both the recombinant and the native NDK and FtsZ showed interaction with each other in vitro and ex vivo, alluding to the possibility of direct phosphorylation of FtsZ-bound GDP by NDK. Irrespective of the bacterial species, NDK interacts with FtsZ in vitro and ex vivo and, through the synthesis of GTP from FtsZ-bound GDP and/or free GDP, and ATP (CTP/TTP/UTP), triggers FtsZ polymerisation. The possible biological context of this novel activity of NDK is presented.</description><subject>Addition polymerization</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>ATP</subject><subject>Bacillus subtilis</subject><subject>Bacteria</subject><subject>Bacterial proteins</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Biology</subject><subject>Cell cycle</subject><subject>Cell division</subject><subject>Chemical synthesis</subject><subject>Chromatography</subject><subject>Crosslinking</subject><subject>Cytokines</subject><subject>Cytoskeletal Proteins - chemistry</subject><subject>Cytoskeletal Proteins - genetics</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Gel electrophoresis</subject><subject>Guanosine Diphosphate - metabolism</subject><subject>Guanosine triphosphate</subject><subject>Guanosine Triphosphate - biosynthesis</subject><subject>Homology</subject><subject>Immunoprecipitation</subject><subject>Light scattering</subject><subject>Low level</subject><subject>Microscopy, Electron, Transmission</subject><subject>Morphology</subject><subject>Mutation</subject><subject>Mycobacterium smegmatis</subject><subject>Mycobacterium smegmatis - genetics</subject><subject>Mycobacterium smegmatis - metabolism</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - genetics</subject><subject>Mycobacterium tuberculosis - metabolism</subject><subject>Nucleoside-diphosphate kinase</subject><subject>Nucleoside-Diphosphate Kinase - genetics</subject><subject>Nucleoside-Diphosphate Kinase - metabolism</subject><subject>Pelleting</subject><subject>Phosphorylation</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Protein Structure, Quaternary</subject><subject>Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Science</subject><subject>Sodium lauryl sulfate</subject><subject>Species</subject><subject>Substrates</subject><subject>Thin layer chromatography</subject><subject>Tuberculosis</subject><subject>Tubulin</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99v0zAQxyMEYmPwHyCIhITgIcU_Yjt5mVR1rFRM2zQKD7xYjuOkrtx42E5h_z1um00t2gPyg63z577nO98lyWsIRhAz-Glpe9cJM7q1nRoBmGPK2JPkGJYYZRQB_HTvfJS88H4JAMEFpc-TI0QpBiRHx0l9efY1nXVBOSGDT3_rsEjPg_-Ziq5OJ7ZbKxfN07PrNNh0Ot9uc6fbVrkdd23N3Uo57UXQtsuycXpp18qkN9aotLEujQFeJs8aYbx6Newnyffzz_PJl-ziajqbjC8ySUsUMiUBqDAVJcEI4RoWDDMG80I0iomKIlbDUqCKIFnKShFJGsFIXUvWQIQYhPgkebvTvTXW86FAnkOWl7QgpCCRmO2I2oolv3V6Jdwdt0LzrcG6lgsXtDSK46KBOcUNLWSRAwUqoBpKGRGENYKKKmqdDtH6aqVqqbrghDkQPbzp9IK3ds1zSgvA8ijwYRBw9levfOAr7aUyRnTK9tt3RxQBsMns3T_o49kNVCtiArprbIwrN6J8vO0PCvIyUqNHqLhqtdIydlOjo_3A4eOBQ2SC-hNa0XvPZ99u_p-9-nHIvt9jF0qYsPDW9JtG8odgvgOls9471TwUGQK-GYb7avDNMPBhGKLbm_0PenC67378F6XxAbQ</recordid><startdate>20151202</startdate><enddate>20151202</enddate><creator>Mishra, Saurabh</creator><creator>Jakkala, Kishor</creator><creator>Srinivasan, Ramanujam</creator><creator>Arumugam, Muthu</creator><creator>Ranjeri, Raghavendra</creator><creator>Gupta, Prabuddha</creator><creator>Rajeswari, Haryadi</creator><creator>Ajitkumar, Parthasarathi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151202</creationdate><title>NDK Interacts with FtsZ and Converts GDP to GTP to Trigger FtsZ Polymerisation--A Novel Role for NDK</title><author>Mishra, Saurabh ; Jakkala, Kishor ; Srinivasan, Ramanujam ; Arumugam, Muthu ; Ranjeri, Raghavendra ; Gupta, Prabuddha ; Rajeswari, Haryadi ; Ajitkumar, Parthasarathi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-ec00b36a953223d187377148afe7ab627d19a2b52c9cbe5c5fa75ddc7f1227113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Addition polymerization</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>ATP</topic><topic>Bacillus subtilis</topic><topic>Bacteria</topic><topic>Bacterial proteins</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Biology</topic><topic>Cell cycle</topic><topic>Cell division</topic><topic>Chemical synthesis</topic><topic>Chromatography</topic><topic>Crosslinking</topic><topic>Cytokines</topic><topic>Cytoskeletal Proteins - chemistry</topic><topic>Cytoskeletal Proteins - genetics</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Gel electrophoresis</topic><topic>Guanosine Diphosphate - metabolism</topic><topic>Guanosine triphosphate</topic><topic>Guanosine Triphosphate - biosynthesis</topic><topic>Homology</topic><topic>Immunoprecipitation</topic><topic>Light scattering</topic><topic>Low level</topic><topic>Microscopy, Electron, Transmission</topic><topic>Morphology</topic><topic>Mutation</topic><topic>Mycobacterium smegmatis</topic><topic>Mycobacterium smegmatis - genetics</topic><topic>Mycobacterium smegmatis - metabolism</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - genetics</topic><topic>Mycobacterium tuberculosis - metabolism</topic><topic>Nucleoside-diphosphate kinase</topic><topic>Nucleoside-Diphosphate Kinase - genetics</topic><topic>Nucleoside-Diphosphate Kinase - metabolism</topic><topic>Pelleting</topic><topic>Phosphorylation</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Protein Structure, Quaternary</topic><topic>Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Science</topic><topic>Sodium lauryl sulfate</topic><topic>Species</topic><topic>Substrates</topic><topic>Thin layer chromatography</topic><topic>Tuberculosis</topic><topic>Tubulin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, Saurabh</creatorcontrib><creatorcontrib>Jakkala, Kishor</creatorcontrib><creatorcontrib>Srinivasan, Ramanujam</creatorcontrib><creatorcontrib>Arumugam, Muthu</creatorcontrib><creatorcontrib>Ranjeri, Raghavendra</creatorcontrib><creatorcontrib>Gupta, Prabuddha</creatorcontrib><creatorcontrib>Rajeswari, Haryadi</creatorcontrib><creatorcontrib>Ajitkumar, Parthasarathi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishra, Saurabh</au><au>Jakkala, Kishor</au><au>Srinivasan, Ramanujam</au><au>Arumugam, Muthu</au><au>Ranjeri, Raghavendra</au><au>Gupta, Prabuddha</au><au>Rajeswari, Haryadi</au><au>Ajitkumar, Parthasarathi</au><au>Scheffers, Dirk-Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NDK Interacts with FtsZ and Converts GDP to GTP to Trigger FtsZ Polymerisation--A Novel Role for NDK</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-12-02</date><risdate>2015</risdate><volume>10</volume><issue>12</issue><spage>e0143677</spage><epage>e0143677</epage><pages>e0143677-e0143677</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Nucleoside diphosphate kinase (NDK), conserved across bacteria to humans, synthesises NTP from NDP and ATP. The eukaryotic homologue, the NDPK, uses ATP to phosphorylate the tubulin-bound GDP to GTP for tubulin polymerisation. The bacterial cytokinetic protein FtsZ, which is the tubulin homologue, also uses GTP for polymerisation. Therefore, we examined whether NDK can interact with FtsZ to convert FtsZ-bound GDP and/or free GDP to GTP to trigger FtsZ polymerisation. Recombinant and native NDK and FtsZ proteins of Mycobacterium smegmatis and Mycobacterium tuberculosis were used as the experimental samples. FtsZ polymersation was monitored using 90° light scattering and FtsZ polymer pelleting assays. The γ32P-GTP synthesised by NDK from GDP and γ32P-ATP was detected using thin layer chromatography and quantitated using phosphorimager. The FtsZ bound 32P-GTP was quantitated using phosphorimager, after UV-crosslinking, followed by SDS-PAGE. The NDK-FtsZ interaction was determined using Ni2+-NTA-pulldown assay and co-immunoprecipitation of the recombinant and native proteins in vitro and ex vivo, respectively. NDK triggered instantaneous polymerisation of GDP-precharged recombinant FtsZ in the presence of ATP, similar to the polymerisation of recombinant FtsZ (not GDP-precharged) upon the direct addition of GTP. Similarly, NDK triggered polymerisation of recombinant FtsZ (not GDP-precharged) in the presence of free GDP and ATP as well. Mutant NDK, partially deficient in GTP synthesis from ATP and GDP, triggered low level of polymerisation of MsFtsZ, but not of MtFtsZ. As characteristic of NDK's NTP substrate non-specificity, it used CTP, TTP, and UTP also to convert GDP to GTP, to trigger FtsZ polymerisation. The NDK of one mycobacterial species could trigger the polymerisation of the FtsZ of another mycobacterial species. Both the recombinant and the native NDK and FtsZ showed interaction with each other in vitro and ex vivo, alluding to the possibility of direct phosphorylation of FtsZ-bound GDP by NDK. Irrespective of the bacterial species, NDK interacts with FtsZ in vitro and ex vivo and, through the synthesis of GTP from FtsZ-bound GDP and/or free GDP, and ATP (CTP/TTP/UTP), triggers FtsZ polymerisation. The possible biological context of this novel activity of NDK is presented.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26630542</pmid><doi>10.1371/journal.pone.0143677</doi><tpages>e0143677</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-12, Vol.10 (12), p.e0143677-e0143677
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1749685585
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Addition polymerization
Adenosine Triphosphate - metabolism
ATP
Bacillus subtilis
Bacteria
Bacterial proteins
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacteriology
Biology
Cell cycle
Cell division
Chemical synthesis
Chromatography
Crosslinking
Cytokines
Cytoskeletal Proteins - chemistry
Cytoskeletal Proteins - genetics
Cytoskeletal Proteins - metabolism
E coli
Escherichia coli
Gel electrophoresis
Guanosine Diphosphate - metabolism
Guanosine triphosphate
Guanosine Triphosphate - biosynthesis
Homology
Immunoprecipitation
Light scattering
Low level
Microscopy, Electron, Transmission
Morphology
Mutation
Mycobacterium smegmatis
Mycobacterium smegmatis - genetics
Mycobacterium smegmatis - metabolism
Mycobacterium tuberculosis
Mycobacterium tuberculosis - genetics
Mycobacterium tuberculosis - metabolism
Nucleoside-diphosphate kinase
Nucleoside-Diphosphate Kinase - genetics
Nucleoside-Diphosphate Kinase - metabolism
Pelleting
Phosphorylation
Polymerization
Polymers
Protein Structure, Quaternary
Proteins
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Science
Sodium lauryl sulfate
Species
Substrates
Thin layer chromatography
Tuberculosis
Tubulin
title NDK Interacts with FtsZ and Converts GDP to GTP to Trigger FtsZ Polymerisation--A Novel Role for NDK
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A07%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NDK%20Interacts%20with%20FtsZ%20and%20Converts%20GDP%20to%20GTP%20to%20Trigger%20FtsZ%20Polymerisation--A%20Novel%20Role%20for%20NDK&rft.jtitle=PloS%20one&rft.au=Mishra,%20Saurabh&rft.date=2015-12-02&rft.volume=10&rft.issue=12&rft.spage=e0143677&rft.epage=e0143677&rft.pages=e0143677-e0143677&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0143677&rft_dat=%3Cgale_plos_%3EA436776049%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1749685585&rft_id=info:pmid/26630542&rft_galeid=A436776049&rft_doaj_id=oai_doaj_org_article_38f1463f68c840e0b0ef6675a57fa6ab&rfr_iscdi=true