Learning of Chunking Sequences in Cognition and Behavior
We often learn and recall long sequences in smaller segments, such as a phone number 858 534 22 30 memorized as four segments. Behavioral experiments suggest that humans and some animals employ this strategy of breaking down cognitive or behavioral sequences into chunks in a wide variety of tasks, b...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2015-11, Vol.11 (11), p.e1004592-e1004592 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1004592 |
---|---|
container_issue | 11 |
container_start_page | e1004592 |
container_title | PLoS computational biology |
container_volume | 11 |
creator | Fonollosa, Jordi Neftci, Emre Rabinovich, Mikhail |
description | We often learn and recall long sequences in smaller segments, such as a phone number 858 534 22 30 memorized as four segments. Behavioral experiments suggest that humans and some animals employ this strategy of breaking down cognitive or behavioral sequences into chunks in a wide variety of tasks, but the dynamical principles of how this is achieved remains unknown. Here, we study the temporal dynamics of chunking for learning cognitive sequences in a chunking representation using a dynamical model of competing modes arranged to evoke hierarchical Winnerless Competition (WLC) dynamics. Sequential memory is represented as trajectories along a chain of metastable fixed points at each level of the hierarchy, and bistable Hebbian dynamics enables the learning of such trajectories in an unsupervised fashion. Using computer simulations, we demonstrate the learning of a chunking representation of sequences and their robust recall. During learning, the dynamics associates a set of modes to each information-carrying item in the sequence and encodes their relative order. During recall, hierarchical WLC guarantees the robustness of the sequence order when the sequence is not too long. The resulting patterns of activities share several features observed in behavioral experiments, such as the pauses between boundaries of chunks, their size and their duration. Failures in learning chunking sequences provide new insights into the dynamical causes of neurological disorders such as Parkinson's disease and Schizophrenia. |
doi_str_mv | 10.1371/journal.pcbi.1004592 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1749637424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A437059235</galeid><doaj_id>oai_doaj_org_article_f98b15b430fb4cc29b627ef4fdb5c5cd</doaj_id><sourcerecordid>A437059235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c713t-8c85070a6b6dd4b0f246528abe24cb25376c05cfd502fd51fe75ce604e0b18303</originalsourceid><addsrcrecordid>eNqVUl2P1CAUbYzGXVf_gdE-6sOMfLd9MVknfkwy0cTVZwL00mHswAjtRv-9dKc72Xk0BLjAuQfO5RTFS4yWmFb43S6M0at-eTDaLTFCjDfkUXGJOaeLivL68YP4oniW0g6hHDbiaXFBBK8ZReKyqDegone-K4MtV9vR_5riG_g9gjeQSufLVei8G1zwpfJt-QG26taF-Lx4YlWf4MU8XxU_P338sfqy2Hz7vF5dbxamwnRY1KbmqEJKaNG2TCNLmOCkVhoIM5pwWgmDuLEtRyQP2ELFDQjEAGlcU0SvitdH3kMfkpxFJ4kr1ghaMcIyYn1EtEHt5CG6vYp_ZVBO3m2E2EkVB2d6kLapNeY6S7eaGUMaLUgFltlWc8NNm7nez7eNeg-tAT9E1Z-Rnp94t5VduJWTqgbxTICPBCaNRkYwEI0a7hJPi6kTVBFJhMD1JODNfGkMue5pkHuXDPS98hDGSSsVDHPEJ-jyCO1UluO8DfkVJrcW9s4ED9bl_WtGK5TtQKf3vD1LyJgB_gydGlOS65vv_4H9eo5ls84YUopgTzXCSE7-vP8qOflTzv7Maa8e1veUdG9I-g8NvuEa</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1736415054</pqid></control><display><type>article</type><title>Learning of Chunking Sequences in Cognition and Behavior</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>Recercat</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Fonollosa, Jordi ; Neftci, Emre ; Rabinovich, Mikhail</creator><contributor>Sporns, Olaf</contributor><creatorcontrib>Fonollosa, Jordi ; Neftci, Emre ; Rabinovich, Mikhail ; Sporns, Olaf</creatorcontrib><description>We often learn and recall long sequences in smaller segments, such as a phone number 858 534 22 30 memorized as four segments. Behavioral experiments suggest that humans and some animals employ this strategy of breaking down cognitive or behavioral sequences into chunks in a wide variety of tasks, but the dynamical principles of how this is achieved remains unknown. Here, we study the temporal dynamics of chunking for learning cognitive sequences in a chunking representation using a dynamical model of competing modes arranged to evoke hierarchical Winnerless Competition (WLC) dynamics. Sequential memory is represented as trajectories along a chain of metastable fixed points at each level of the hierarchy, and bistable Hebbian dynamics enables the learning of such trajectories in an unsupervised fashion. Using computer simulations, we demonstrate the learning of a chunking representation of sequences and their robust recall. During learning, the dynamics associates a set of modes to each information-carrying item in the sequence and encodes their relative order. During recall, hierarchical WLC guarantees the robustness of the sequence order when the sequence is not too long. The resulting patterns of activities share several features observed in behavioral experiments, such as the pauses between boundaries of chunks, their size and their duration. Failures in learning chunking sequences provide new insights into the dynamical causes of neurological disorders such as Parkinson's disease and Schizophrenia.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1004592</identifier><identifier>PMID: 26584306</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Animal behavior ; Aprenentatge ; Behavior ; Cognició ; Cognition ; Cognition & reasoning ; Cognition - physiology ; Competition ; Computational Biology ; Computational linguistics ; Computer Simulation ; Conducta (Psicologia) ; Experiments ; Human behavior ; Humans ; Language processing ; Learning ; Learning - physiology ; Memory ; Mental Recall - physiology ; Models, Neurological ; Natural language interfaces ; Studies</subject><ispartof>PLoS computational biology, 2015-11, Vol.11 (11), p.e1004592-e1004592</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>cc-by (c) Fonollosa Magrinyà, Jordi et al., 2015 info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by/3.0/es">http://creativecommons.org/licenses/by/3.0/es</a></rights><rights>2015 Fonollosa et al 2015 Fonollosa et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Fonollosa J, Neftci E, Rabinovich M (2015) Learning of Chunking Sequences in Cognition and Behavior. PLoS Comput Biol 11(11): e1004592. doi:10.1371/journal.pcbi.1004592</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c713t-8c85070a6b6dd4b0f246528abe24cb25376c05cfd502fd51fe75ce604e0b18303</citedby><cites>FETCH-LOGICAL-c713t-8c85070a6b6dd4b0f246528abe24cb25376c05cfd502fd51fe75ce604e0b18303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4652905/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4652905/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,26974,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26584306$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sporns, Olaf</contributor><creatorcontrib>Fonollosa, Jordi</creatorcontrib><creatorcontrib>Neftci, Emre</creatorcontrib><creatorcontrib>Rabinovich, Mikhail</creatorcontrib><title>Learning of Chunking Sequences in Cognition and Behavior</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>We often learn and recall long sequences in smaller segments, such as a phone number 858 534 22 30 memorized as four segments. Behavioral experiments suggest that humans and some animals employ this strategy of breaking down cognitive or behavioral sequences into chunks in a wide variety of tasks, but the dynamical principles of how this is achieved remains unknown. Here, we study the temporal dynamics of chunking for learning cognitive sequences in a chunking representation using a dynamical model of competing modes arranged to evoke hierarchical Winnerless Competition (WLC) dynamics. Sequential memory is represented as trajectories along a chain of metastable fixed points at each level of the hierarchy, and bistable Hebbian dynamics enables the learning of such trajectories in an unsupervised fashion. Using computer simulations, we demonstrate the learning of a chunking representation of sequences and their robust recall. During learning, the dynamics associates a set of modes to each information-carrying item in the sequence and encodes their relative order. During recall, hierarchical WLC guarantees the robustness of the sequence order when the sequence is not too long. The resulting patterns of activities share several features observed in behavioral experiments, such as the pauses between boundaries of chunks, their size and their duration. Failures in learning chunking sequences provide new insights into the dynamical causes of neurological disorders such as Parkinson's disease and Schizophrenia.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Animal behavior</subject><subject>Aprenentatge</subject><subject>Behavior</subject><subject>Cognició</subject><subject>Cognition</subject><subject>Cognition & reasoning</subject><subject>Cognition - physiology</subject><subject>Competition</subject><subject>Computational Biology</subject><subject>Computational linguistics</subject><subject>Computer Simulation</subject><subject>Conducta (Psicologia)</subject><subject>Experiments</subject><subject>Human behavior</subject><subject>Humans</subject><subject>Language processing</subject><subject>Learning</subject><subject>Learning - physiology</subject><subject>Memory</subject><subject>Mental Recall - physiology</subject><subject>Models, Neurological</subject><subject>Natural language interfaces</subject><subject>Studies</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>XX2</sourceid><sourceid>DOA</sourceid><recordid>eNqVUl2P1CAUbYzGXVf_gdE-6sOMfLd9MVknfkwy0cTVZwL00mHswAjtRv-9dKc72Xk0BLjAuQfO5RTFS4yWmFb43S6M0at-eTDaLTFCjDfkUXGJOaeLivL68YP4oniW0g6hHDbiaXFBBK8ZReKyqDegone-K4MtV9vR_5riG_g9gjeQSufLVei8G1zwpfJt-QG26taF-Lx4YlWf4MU8XxU_P338sfqy2Hz7vF5dbxamwnRY1KbmqEJKaNG2TCNLmOCkVhoIM5pwWgmDuLEtRyQP2ELFDQjEAGlcU0SvitdH3kMfkpxFJ4kr1ghaMcIyYn1EtEHt5CG6vYp_ZVBO3m2E2EkVB2d6kLapNeY6S7eaGUMaLUgFltlWc8NNm7nez7eNeg-tAT9E1Z-Rnp94t5VduJWTqgbxTICPBCaNRkYwEI0a7hJPi6kTVBFJhMD1JODNfGkMue5pkHuXDPS98hDGSSsVDHPEJ-jyCO1UluO8DfkVJrcW9s4ED9bl_WtGK5TtQKf3vD1LyJgB_gydGlOS65vv_4H9eo5ls84YUopgTzXCSE7-vP8qOflTzv7Maa8e1veUdG9I-g8NvuEa</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Fonollosa, Jordi</creator><creator>Neftci, Emre</creator><creator>Rabinovich, Mikhail</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>XX2</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151101</creationdate><title>Learning of Chunking Sequences in Cognition and Behavior</title><author>Fonollosa, Jordi ; Neftci, Emre ; Rabinovich, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c713t-8c85070a6b6dd4b0f246528abe24cb25376c05cfd502fd51fe75ce604e0b18303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Animal behavior</topic><topic>Aprenentatge</topic><topic>Behavior</topic><topic>Cognició</topic><topic>Cognition</topic><topic>Cognition & reasoning</topic><topic>Cognition - physiology</topic><topic>Competition</topic><topic>Computational Biology</topic><topic>Computational linguistics</topic><topic>Computer Simulation</topic><topic>Conducta (Psicologia)</topic><topic>Experiments</topic><topic>Human behavior</topic><topic>Humans</topic><topic>Language processing</topic><topic>Learning</topic><topic>Learning - physiology</topic><topic>Memory</topic><topic>Mental Recall - physiology</topic><topic>Models, Neurological</topic><topic>Natural language interfaces</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fonollosa, Jordi</creatorcontrib><creatorcontrib>Neftci, Emre</creatorcontrib><creatorcontrib>Rabinovich, Mikhail</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fonollosa, Jordi</au><au>Neftci, Emre</au><au>Rabinovich, Mikhail</au><au>Sporns, Olaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning of Chunking Sequences in Cognition and Behavior</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>11</volume><issue>11</issue><spage>e1004592</spage><epage>e1004592</epage><pages>e1004592-e1004592</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>We often learn and recall long sequences in smaller segments, such as a phone number 858 534 22 30 memorized as four segments. Behavioral experiments suggest that humans and some animals employ this strategy of breaking down cognitive or behavioral sequences into chunks in a wide variety of tasks, but the dynamical principles of how this is achieved remains unknown. Here, we study the temporal dynamics of chunking for learning cognitive sequences in a chunking representation using a dynamical model of competing modes arranged to evoke hierarchical Winnerless Competition (WLC) dynamics. Sequential memory is represented as trajectories along a chain of metastable fixed points at each level of the hierarchy, and bistable Hebbian dynamics enables the learning of such trajectories in an unsupervised fashion. Using computer simulations, we demonstrate the learning of a chunking representation of sequences and their robust recall. During learning, the dynamics associates a set of modes to each information-carrying item in the sequence and encodes their relative order. During recall, hierarchical WLC guarantees the robustness of the sequence order when the sequence is not too long. The resulting patterns of activities share several features observed in behavioral experiments, such as the pauses between boundaries of chunks, their size and their duration. Failures in learning chunking sequences provide new insights into the dynamical causes of neurological disorders such as Parkinson's disease and Schizophrenia.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26584306</pmid><doi>10.1371/journal.pcbi.1004592</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2015-11, Vol.11 (11), p.e1004592-e1004592 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1749637424 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; Recercat; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Algorithms Analysis Animal behavior Aprenentatge Behavior Cognició Cognition Cognition & reasoning Cognition - physiology Competition Computational Biology Computational linguistics Computer Simulation Conducta (Psicologia) Experiments Human behavior Humans Language processing Learning Learning - physiology Memory Mental Recall - physiology Models, Neurological Natural language interfaces Studies |
title | Learning of Chunking Sequences in Cognition and Behavior |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A01%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20of%20Chunking%20Sequences%20in%20Cognition%20and%20Behavior&rft.jtitle=PLoS%20computational%20biology&rft.au=Fonollosa,%20Jordi&rft.date=2015-11-01&rft.volume=11&rft.issue=11&rft.spage=e1004592&rft.epage=e1004592&rft.pages=e1004592-e1004592&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1004592&rft_dat=%3Cgale_plos_%3EA437059235%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1736415054&rft_id=info:pmid/26584306&rft_galeid=A437059235&rft_doaj_id=oai_doaj_org_article_f98b15b430fb4cc29b627ef4fdb5c5cd&rfr_iscdi=true |