Learning of Chunking Sequences in Cognition and Behavior

We often learn and recall long sequences in smaller segments, such as a phone number 858 534 22 30 memorized as four segments. Behavioral experiments suggest that humans and some animals employ this strategy of breaking down cognitive or behavioral sequences into chunks in a wide variety of tasks, b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2015-11, Vol.11 (11), p.e1004592-e1004592
Hauptverfasser: Fonollosa, Jordi, Neftci, Emre, Rabinovich, Mikhail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1004592
container_issue 11
container_start_page e1004592
container_title PLoS computational biology
container_volume 11
creator Fonollosa, Jordi
Neftci, Emre
Rabinovich, Mikhail
description We often learn and recall long sequences in smaller segments, such as a phone number 858 534 22 30 memorized as four segments. Behavioral experiments suggest that humans and some animals employ this strategy of breaking down cognitive or behavioral sequences into chunks in a wide variety of tasks, but the dynamical principles of how this is achieved remains unknown. Here, we study the temporal dynamics of chunking for learning cognitive sequences in a chunking representation using a dynamical model of competing modes arranged to evoke hierarchical Winnerless Competition (WLC) dynamics. Sequential memory is represented as trajectories along a chain of metastable fixed points at each level of the hierarchy, and bistable Hebbian dynamics enables the learning of such trajectories in an unsupervised fashion. Using computer simulations, we demonstrate the learning of a chunking representation of sequences and their robust recall. During learning, the dynamics associates a set of modes to each information-carrying item in the sequence and encodes their relative order. During recall, hierarchical WLC guarantees the robustness of the sequence order when the sequence is not too long. The resulting patterns of activities share several features observed in behavioral experiments, such as the pauses between boundaries of chunks, their size and their duration. Failures in learning chunking sequences provide new insights into the dynamical causes of neurological disorders such as Parkinson's disease and Schizophrenia.
doi_str_mv 10.1371/journal.pcbi.1004592
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1749637424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A437059235</galeid><doaj_id>oai_doaj_org_article_f98b15b430fb4cc29b627ef4fdb5c5cd</doaj_id><sourcerecordid>A437059235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c713t-8c85070a6b6dd4b0f246528abe24cb25376c05cfd502fd51fe75ce604e0b18303</originalsourceid><addsrcrecordid>eNqVUl2P1CAUbYzGXVf_gdE-6sOMfLd9MVknfkwy0cTVZwL00mHswAjtRv-9dKc72Xk0BLjAuQfO5RTFS4yWmFb43S6M0at-eTDaLTFCjDfkUXGJOaeLivL68YP4oniW0g6hHDbiaXFBBK8ZReKyqDegone-K4MtV9vR_5riG_g9gjeQSufLVei8G1zwpfJt-QG26taF-Lx4YlWf4MU8XxU_P338sfqy2Hz7vF5dbxamwnRY1KbmqEJKaNG2TCNLmOCkVhoIM5pwWgmDuLEtRyQP2ELFDQjEAGlcU0SvitdH3kMfkpxFJ4kr1ghaMcIyYn1EtEHt5CG6vYp_ZVBO3m2E2EkVB2d6kLapNeY6S7eaGUMaLUgFltlWc8NNm7nez7eNeg-tAT9E1Z-Rnp94t5VduJWTqgbxTICPBCaNRkYwEI0a7hJPi6kTVBFJhMD1JODNfGkMue5pkHuXDPS98hDGSSsVDHPEJ-jyCO1UluO8DfkVJrcW9s4ED9bl_WtGK5TtQKf3vD1LyJgB_gydGlOS65vv_4H9eo5ls84YUopgTzXCSE7-vP8qOflTzv7Maa8e1veUdG9I-g8NvuEa</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1736415054</pqid></control><display><type>article</type><title>Learning of Chunking Sequences in Cognition and Behavior</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>Recercat</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Fonollosa, Jordi ; Neftci, Emre ; Rabinovich, Mikhail</creator><contributor>Sporns, Olaf</contributor><creatorcontrib>Fonollosa, Jordi ; Neftci, Emre ; Rabinovich, Mikhail ; Sporns, Olaf</creatorcontrib><description>We often learn and recall long sequences in smaller segments, such as a phone number 858 534 22 30 memorized as four segments. Behavioral experiments suggest that humans and some animals employ this strategy of breaking down cognitive or behavioral sequences into chunks in a wide variety of tasks, but the dynamical principles of how this is achieved remains unknown. Here, we study the temporal dynamics of chunking for learning cognitive sequences in a chunking representation using a dynamical model of competing modes arranged to evoke hierarchical Winnerless Competition (WLC) dynamics. Sequential memory is represented as trajectories along a chain of metastable fixed points at each level of the hierarchy, and bistable Hebbian dynamics enables the learning of such trajectories in an unsupervised fashion. Using computer simulations, we demonstrate the learning of a chunking representation of sequences and their robust recall. During learning, the dynamics associates a set of modes to each information-carrying item in the sequence and encodes their relative order. During recall, hierarchical WLC guarantees the robustness of the sequence order when the sequence is not too long. The resulting patterns of activities share several features observed in behavioral experiments, such as the pauses between boundaries of chunks, their size and their duration. Failures in learning chunking sequences provide new insights into the dynamical causes of neurological disorders such as Parkinson's disease and Schizophrenia.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1004592</identifier><identifier>PMID: 26584306</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Animal behavior ; Aprenentatge ; Behavior ; Cognició ; Cognition ; Cognition &amp; reasoning ; Cognition - physiology ; Competition ; Computational Biology ; Computational linguistics ; Computer Simulation ; Conducta (Psicologia) ; Experiments ; Human behavior ; Humans ; Language processing ; Learning ; Learning - physiology ; Memory ; Mental Recall - physiology ; Models, Neurological ; Natural language interfaces ; Studies</subject><ispartof>PLoS computational biology, 2015-11, Vol.11 (11), p.e1004592-e1004592</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>cc-by (c) Fonollosa Magrinyà, Jordi et al., 2015 info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by/3.0/es"&gt;http://creativecommons.org/licenses/by/3.0/es&lt;/a&gt;</rights><rights>2015 Fonollosa et al 2015 Fonollosa et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Fonollosa J, Neftci E, Rabinovich M (2015) Learning of Chunking Sequences in Cognition and Behavior. PLoS Comput Biol 11(11): e1004592. doi:10.1371/journal.pcbi.1004592</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c713t-8c85070a6b6dd4b0f246528abe24cb25376c05cfd502fd51fe75ce604e0b18303</citedby><cites>FETCH-LOGICAL-c713t-8c85070a6b6dd4b0f246528abe24cb25376c05cfd502fd51fe75ce604e0b18303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4652905/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4652905/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,26974,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26584306$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sporns, Olaf</contributor><creatorcontrib>Fonollosa, Jordi</creatorcontrib><creatorcontrib>Neftci, Emre</creatorcontrib><creatorcontrib>Rabinovich, Mikhail</creatorcontrib><title>Learning of Chunking Sequences in Cognition and Behavior</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>We often learn and recall long sequences in smaller segments, such as a phone number 858 534 22 30 memorized as four segments. Behavioral experiments suggest that humans and some animals employ this strategy of breaking down cognitive or behavioral sequences into chunks in a wide variety of tasks, but the dynamical principles of how this is achieved remains unknown. Here, we study the temporal dynamics of chunking for learning cognitive sequences in a chunking representation using a dynamical model of competing modes arranged to evoke hierarchical Winnerless Competition (WLC) dynamics. Sequential memory is represented as trajectories along a chain of metastable fixed points at each level of the hierarchy, and bistable Hebbian dynamics enables the learning of such trajectories in an unsupervised fashion. Using computer simulations, we demonstrate the learning of a chunking representation of sequences and their robust recall. During learning, the dynamics associates a set of modes to each information-carrying item in the sequence and encodes their relative order. During recall, hierarchical WLC guarantees the robustness of the sequence order when the sequence is not too long. The resulting patterns of activities share several features observed in behavioral experiments, such as the pauses between boundaries of chunks, their size and their duration. Failures in learning chunking sequences provide new insights into the dynamical causes of neurological disorders such as Parkinson's disease and Schizophrenia.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Animal behavior</subject><subject>Aprenentatge</subject><subject>Behavior</subject><subject>Cognició</subject><subject>Cognition</subject><subject>Cognition &amp; reasoning</subject><subject>Cognition - physiology</subject><subject>Competition</subject><subject>Computational Biology</subject><subject>Computational linguistics</subject><subject>Computer Simulation</subject><subject>Conducta (Psicologia)</subject><subject>Experiments</subject><subject>Human behavior</subject><subject>Humans</subject><subject>Language processing</subject><subject>Learning</subject><subject>Learning - physiology</subject><subject>Memory</subject><subject>Mental Recall - physiology</subject><subject>Models, Neurological</subject><subject>Natural language interfaces</subject><subject>Studies</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>XX2</sourceid><sourceid>DOA</sourceid><recordid>eNqVUl2P1CAUbYzGXVf_gdE-6sOMfLd9MVknfkwy0cTVZwL00mHswAjtRv-9dKc72Xk0BLjAuQfO5RTFS4yWmFb43S6M0at-eTDaLTFCjDfkUXGJOaeLivL68YP4oniW0g6hHDbiaXFBBK8ZReKyqDegone-K4MtV9vR_5riG_g9gjeQSufLVei8G1zwpfJt-QG26taF-Lx4YlWf4MU8XxU_P338sfqy2Hz7vF5dbxamwnRY1KbmqEJKaNG2TCNLmOCkVhoIM5pwWgmDuLEtRyQP2ELFDQjEAGlcU0SvitdH3kMfkpxFJ4kr1ghaMcIyYn1EtEHt5CG6vYp_ZVBO3m2E2EkVB2d6kLapNeY6S7eaGUMaLUgFltlWc8NNm7nez7eNeg-tAT9E1Z-Rnp94t5VduJWTqgbxTICPBCaNRkYwEI0a7hJPi6kTVBFJhMD1JODNfGkMue5pkHuXDPS98hDGSSsVDHPEJ-jyCO1UluO8DfkVJrcW9s4ED9bl_WtGK5TtQKf3vD1LyJgB_gydGlOS65vv_4H9eo5ls84YUopgTzXCSE7-vP8qOflTzv7Maa8e1veUdG9I-g8NvuEa</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Fonollosa, Jordi</creator><creator>Neftci, Emre</creator><creator>Rabinovich, Mikhail</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>XX2</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151101</creationdate><title>Learning of Chunking Sequences in Cognition and Behavior</title><author>Fonollosa, Jordi ; Neftci, Emre ; Rabinovich, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c713t-8c85070a6b6dd4b0f246528abe24cb25376c05cfd502fd51fe75ce604e0b18303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Animal behavior</topic><topic>Aprenentatge</topic><topic>Behavior</topic><topic>Cognició</topic><topic>Cognition</topic><topic>Cognition &amp; reasoning</topic><topic>Cognition - physiology</topic><topic>Competition</topic><topic>Computational Biology</topic><topic>Computational linguistics</topic><topic>Computer Simulation</topic><topic>Conducta (Psicologia)</topic><topic>Experiments</topic><topic>Human behavior</topic><topic>Humans</topic><topic>Language processing</topic><topic>Learning</topic><topic>Learning - physiology</topic><topic>Memory</topic><topic>Mental Recall - physiology</topic><topic>Models, Neurological</topic><topic>Natural language interfaces</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fonollosa, Jordi</creatorcontrib><creatorcontrib>Neftci, Emre</creatorcontrib><creatorcontrib>Rabinovich, Mikhail</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fonollosa, Jordi</au><au>Neftci, Emre</au><au>Rabinovich, Mikhail</au><au>Sporns, Olaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning of Chunking Sequences in Cognition and Behavior</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>11</volume><issue>11</issue><spage>e1004592</spage><epage>e1004592</epage><pages>e1004592-e1004592</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>We often learn and recall long sequences in smaller segments, such as a phone number 858 534 22 30 memorized as four segments. Behavioral experiments suggest that humans and some animals employ this strategy of breaking down cognitive or behavioral sequences into chunks in a wide variety of tasks, but the dynamical principles of how this is achieved remains unknown. Here, we study the temporal dynamics of chunking for learning cognitive sequences in a chunking representation using a dynamical model of competing modes arranged to evoke hierarchical Winnerless Competition (WLC) dynamics. Sequential memory is represented as trajectories along a chain of metastable fixed points at each level of the hierarchy, and bistable Hebbian dynamics enables the learning of such trajectories in an unsupervised fashion. Using computer simulations, we demonstrate the learning of a chunking representation of sequences and their robust recall. During learning, the dynamics associates a set of modes to each information-carrying item in the sequence and encodes their relative order. During recall, hierarchical WLC guarantees the robustness of the sequence order when the sequence is not too long. The resulting patterns of activities share several features observed in behavioral experiments, such as the pauses between boundaries of chunks, their size and their duration. Failures in learning chunking sequences provide new insights into the dynamical causes of neurological disorders such as Parkinson's disease and Schizophrenia.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26584306</pmid><doi>10.1371/journal.pcbi.1004592</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2015-11, Vol.11 (11), p.e1004592-e1004592
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1749637424
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; Recercat; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Algorithms
Analysis
Animal behavior
Aprenentatge
Behavior
Cognició
Cognition
Cognition & reasoning
Cognition - physiology
Competition
Computational Biology
Computational linguistics
Computer Simulation
Conducta (Psicologia)
Experiments
Human behavior
Humans
Language processing
Learning
Learning - physiology
Memory
Mental Recall - physiology
Models, Neurological
Natural language interfaces
Studies
title Learning of Chunking Sequences in Cognition and Behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A01%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20of%20Chunking%20Sequences%20in%20Cognition%20and%20Behavior&rft.jtitle=PLoS%20computational%20biology&rft.au=Fonollosa,%20Jordi&rft.date=2015-11-01&rft.volume=11&rft.issue=11&rft.spage=e1004592&rft.epage=e1004592&rft.pages=e1004592-e1004592&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1004592&rft_dat=%3Cgale_plos_%3EA437059235%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1736415054&rft_id=info:pmid/26584306&rft_galeid=A437059235&rft_doaj_id=oai_doaj_org_article_f98b15b430fb4cc29b627ef4fdb5c5cd&rfr_iscdi=true