Improving Collective Estimations Using Resistance to Social Influence

Groups can make precise collective estimations in cases like the weight of an object or the number of items in a volume. However, in others tasks, for example those requiring memory or mental calculation, subjects often give estimations with large deviations from factual values. Allowing members of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2015-11, Vol.11 (11), p.e1004594-e1004594
Hauptverfasser: Madirolas, Gabriel, de Polavieja, Gonzalo G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1004594
container_issue 11
container_start_page e1004594
container_title PLoS computational biology
container_volume 11
creator Madirolas, Gabriel
de Polavieja, Gonzalo G
description Groups can make precise collective estimations in cases like the weight of an object or the number of items in a volume. However, in others tasks, for example those requiring memory or mental calculation, subjects often give estimations with large deviations from factual values. Allowing members of the group to communicate their estimations has the additional perverse effect of shifting individual estimations even closer to the biased collective estimation. Here we show that this negative effect of social interactions can be turned into a method to improve collective estimations. We first obtained a statistical model of how humans change their estimation when receiving the estimates made by other individuals. We confirmed using existing experimental data its prediction that individuals use the weighted geometric mean of private and social estimations. We then used this result and the fact that each individual uses a different value of the social weight to devise a method that extracts the subgroups resisting social influence. We found that these subgroups of individuals resisting social influence can make very large improvements in group estimations. This is in contrast to methods using the confidence that each individual declares, for which we find no improvement in group estimations. Also, our proposed method does not need to use historical data to weight individuals by performance. These results show the benefits of using the individual characteristics of the members in a group to better extract collective wisdom.
doi_str_mv 10.1371/journal.pcbi.1004594
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1749636969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A437059237</galeid><doaj_id>oai_doaj_org_article_14b2e428fa274e08be6aab8b750b6928</doaj_id><sourcerecordid>A437059237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c699t-cf1b611302ab324f09a5f101c80a5304b84626d12d6bc10e55d1a8ee1d8e20b53</originalsourceid><addsrcrecordid>eNqVkk1vEzEQhlcIRNvAP0CwEpdySPD3ri-VqihApAqklp4t2zsbHDnrsPZG8O_xkm3VSFywDx6Nn3lnPJ6ieIPRAtMKf9yGoe-0X-ytcQuMEOOSPSvOMed0XlFeP39inxUXMW4RyqYUL4szInjeWJ4Xq_Vu34eD6zblMngPNrkDlKuY3E4nF7pY3sfx8haii0l3FsoUyrtgnfblumv9ANn3qnjRah_h9XTOivtPq-_LL_Obb5_Xy-ubuRVSprltsREYU0S0oYS1SGreYoRtjTSniJmaCSIaTBphLEbAeYN1DYCbGggynM6Kd0fdvQ9RTR2ICldMCiqkkJlYH4km6K3a9_kZ_W8VtFN_HaHfKN0nZz0ozAwBRupWk4oBqg0IrU1tKo6MkKTOWldTtsHsoLHQpV77E9HTm879UJtwUEwwKhHNApeTQB9-DhCT2rlowXvdQRjGumnOT8c1K94f0Y3OpbmuDVnRjri6ZrRCXBJaZWrxDyrvBnbOhg5al_0nAR9OAjKT4Ffa6CFGtb67_Q_26ynLjqztQ4w9tI9dwUiN4_nwOWocTzWNZw57-7Sjj0EP80j_APGy4Co</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1734283333</pqid></control><display><type>article</type><title>Improving Collective Estimations Using Resistance to Social Influence</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Madirolas, Gabriel ; de Polavieja, Gonzalo G</creator><contributor>Faisal, Aldo A</contributor><creatorcontrib>Madirolas, Gabriel ; de Polavieja, Gonzalo G ; Faisal, Aldo A</creatorcontrib><description>Groups can make precise collective estimations in cases like the weight of an object or the number of items in a volume. However, in others tasks, for example those requiring memory or mental calculation, subjects often give estimations with large deviations from factual values. Allowing members of the group to communicate their estimations has the additional perverse effect of shifting individual estimations even closer to the biased collective estimation. Here we show that this negative effect of social interactions can be turned into a method to improve collective estimations. We first obtained a statistical model of how humans change their estimation when receiving the estimates made by other individuals. We confirmed using existing experimental data its prediction that individuals use the weighted geometric mean of private and social estimations. We then used this result and the fact that each individual uses a different value of the social weight to devise a method that extracts the subgroups resisting social influence. We found that these subgroups of individuals resisting social influence can make very large improvements in group estimations. This is in contrast to methods using the confidence that each individual declares, for which we find no improvement in group estimations. Also, our proposed method does not need to use historical data to weight individuals by performance. These results show the benefits of using the individual characteristics of the members in a group to better extract collective wisdom.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1004594</identifier><identifier>PMID: 26565619</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Clinical trials ; Computational Biology ; Decision Making - physiology ; Economic models ; Experiments ; Geometric constructions ; Group Processes ; Humans ; Hypotheses ; Interpersonal Relations ; Methods ; Models, Statistical ; Probability distribution</subject><ispartof>PLoS computational biology, 2015-11, Vol.11 (11), p.e1004594-e1004594</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Madirolas, de Polavieja 2015 Madirolas, de Polavieja</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Madirolas G, de Polavieja GG (2015) Improving Collective Estimations Using Resistance to Social Influence. PLoS Comput Biol 11(11): e1004594. doi:10.1371/journal.pcbi.1004594</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c699t-cf1b611302ab324f09a5f101c80a5304b84626d12d6bc10e55d1a8ee1d8e20b53</citedby><cites>FETCH-LOGICAL-c699t-cf1b611302ab324f09a5f101c80a5304b84626d12d6bc10e55d1a8ee1d8e20b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643903/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643903/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26565619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Faisal, Aldo A</contributor><creatorcontrib>Madirolas, Gabriel</creatorcontrib><creatorcontrib>de Polavieja, Gonzalo G</creatorcontrib><title>Improving Collective Estimations Using Resistance to Social Influence</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Groups can make precise collective estimations in cases like the weight of an object or the number of items in a volume. However, in others tasks, for example those requiring memory or mental calculation, subjects often give estimations with large deviations from factual values. Allowing members of the group to communicate their estimations has the additional perverse effect of shifting individual estimations even closer to the biased collective estimation. Here we show that this negative effect of social interactions can be turned into a method to improve collective estimations. We first obtained a statistical model of how humans change their estimation when receiving the estimates made by other individuals. We confirmed using existing experimental data its prediction that individuals use the weighted geometric mean of private and social estimations. We then used this result and the fact that each individual uses a different value of the social weight to devise a method that extracts the subgroups resisting social influence. We found that these subgroups of individuals resisting social influence can make very large improvements in group estimations. This is in contrast to methods using the confidence that each individual declares, for which we find no improvement in group estimations. Also, our proposed method does not need to use historical data to weight individuals by performance. These results show the benefits of using the individual characteristics of the members in a group to better extract collective wisdom.</description><subject>Clinical trials</subject><subject>Computational Biology</subject><subject>Decision Making - physiology</subject><subject>Economic models</subject><subject>Experiments</subject><subject>Geometric constructions</subject><subject>Group Processes</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Interpersonal Relations</subject><subject>Methods</subject><subject>Models, Statistical</subject><subject>Probability distribution</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1vEzEQhlcIRNvAP0CwEpdySPD3ri-VqihApAqklp4t2zsbHDnrsPZG8O_xkm3VSFywDx6Nn3lnPJ6ieIPRAtMKf9yGoe-0X-ytcQuMEOOSPSvOMed0XlFeP39inxUXMW4RyqYUL4szInjeWJ4Xq_Vu34eD6zblMngPNrkDlKuY3E4nF7pY3sfx8haii0l3FsoUyrtgnfblumv9ANn3qnjRah_h9XTOivtPq-_LL_Obb5_Xy-ubuRVSprltsREYU0S0oYS1SGreYoRtjTSniJmaCSIaTBphLEbAeYN1DYCbGggynM6Kd0fdvQ9RTR2ICldMCiqkkJlYH4km6K3a9_kZ_W8VtFN_HaHfKN0nZz0ozAwBRupWk4oBqg0IrU1tKo6MkKTOWldTtsHsoLHQpV77E9HTm879UJtwUEwwKhHNApeTQB9-DhCT2rlowXvdQRjGumnOT8c1K94f0Y3OpbmuDVnRjri6ZrRCXBJaZWrxDyrvBnbOhg5al_0nAR9OAjKT4Ffa6CFGtb67_Q_26ynLjqztQ4w9tI9dwUiN4_nwOWocTzWNZw57-7Sjj0EP80j_APGy4Co</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Madirolas, Gabriel</creator><creator>de Polavieja, Gonzalo G</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151101</creationdate><title>Improving Collective Estimations Using Resistance to Social Influence</title><author>Madirolas, Gabriel ; de Polavieja, Gonzalo G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c699t-cf1b611302ab324f09a5f101c80a5304b84626d12d6bc10e55d1a8ee1d8e20b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Clinical trials</topic><topic>Computational Biology</topic><topic>Decision Making - physiology</topic><topic>Economic models</topic><topic>Experiments</topic><topic>Geometric constructions</topic><topic>Group Processes</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Interpersonal Relations</topic><topic>Methods</topic><topic>Models, Statistical</topic><topic>Probability distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madirolas, Gabriel</creatorcontrib><creatorcontrib>de Polavieja, Gonzalo G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madirolas, Gabriel</au><au>de Polavieja, Gonzalo G</au><au>Faisal, Aldo A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Collective Estimations Using Resistance to Social Influence</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>11</volume><issue>11</issue><spage>e1004594</spage><epage>e1004594</epage><pages>e1004594-e1004594</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Groups can make precise collective estimations in cases like the weight of an object or the number of items in a volume. However, in others tasks, for example those requiring memory or mental calculation, subjects often give estimations with large deviations from factual values. Allowing members of the group to communicate their estimations has the additional perverse effect of shifting individual estimations even closer to the biased collective estimation. Here we show that this negative effect of social interactions can be turned into a method to improve collective estimations. We first obtained a statistical model of how humans change their estimation when receiving the estimates made by other individuals. We confirmed using existing experimental data its prediction that individuals use the weighted geometric mean of private and social estimations. We then used this result and the fact that each individual uses a different value of the social weight to devise a method that extracts the subgroups resisting social influence. We found that these subgroups of individuals resisting social influence can make very large improvements in group estimations. This is in contrast to methods using the confidence that each individual declares, for which we find no improvement in group estimations. Also, our proposed method does not need to use historical data to weight individuals by performance. These results show the benefits of using the individual characteristics of the members in a group to better extract collective wisdom.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26565619</pmid><doi>10.1371/journal.pcbi.1004594</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2015-11, Vol.11 (11), p.e1004594-e1004594
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1749636969
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Clinical trials
Computational Biology
Decision Making - physiology
Economic models
Experiments
Geometric constructions
Group Processes
Humans
Hypotheses
Interpersonal Relations
Methods
Models, Statistical
Probability distribution
title Improving Collective Estimations Using Resistance to Social Influence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Collective%20Estimations%20Using%20Resistance%20to%20Social%20Influence&rft.jtitle=PLoS%20computational%20biology&rft.au=Madirolas,%20Gabriel&rft.date=2015-11-01&rft.volume=11&rft.issue=11&rft.spage=e1004594&rft.epage=e1004594&rft.pages=e1004594-e1004594&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1004594&rft_dat=%3Cgale_plos_%3EA437059237%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1734283333&rft_id=info:pmid/26565619&rft_galeid=A437059237&rft_doaj_id=oai_doaj_org_article_14b2e428fa274e08be6aab8b750b6928&rfr_iscdi=true