Modelling of Thyroid Peroxidase Reveals Insights into Its Enzyme Function and Autoantigenicity

Thyroid peroxidase (TPO) catalyses the biosynthesis of thyroid hormones and is a major autoantigen in Hashimoto's disease--the most common organ-specific autoimmune disease. Epitope mapping studies have shown that the autoimmune response to TPO is directed mainly at two surface regions on the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-12, Vol.10 (12), p.e0142615-e0142615
Hauptverfasser: Le, Sarah N, Porebski, Benjamin T, McCoey, Julia, Fodor, James, Riley, Blake, Godlewska, Marlena, Góra, Monika, Czarnocka, Barbara, Banga, J Paul, Hoke, David E, Kass, Itamar, Buckle, Ashley M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0142615
container_issue 12
container_start_page e0142615
container_title PloS one
container_volume 10
creator Le, Sarah N
Porebski, Benjamin T
McCoey, Julia
Fodor, James
Riley, Blake
Godlewska, Marlena
Góra, Monika
Czarnocka, Barbara
Banga, J Paul
Hoke, David E
Kass, Itamar
Buckle, Ashley M
description Thyroid peroxidase (TPO) catalyses the biosynthesis of thyroid hormones and is a major autoantigen in Hashimoto's disease--the most common organ-specific autoimmune disease. Epitope mapping studies have shown that the autoimmune response to TPO is directed mainly at two surface regions on the molecule: immunodominant regions A and B (IDR-A, and IDR-B). TPO has been a major target for structural studies for over 20 years; however, to date, the structure of TPO remains to be determined. We have used a molecular modelling approach to investigate plausible modes of TPO structure and dimer organisation. Sequence features of the C-terminus are consistent with a coiled-coil dimerization motif that most likely anchors the TPO dimer in the apical membrane of thyroid follicular cells. Two contrasting models of TPO were produced, differing in the orientation and exposure of their active sites relative to the membrane. Both models are equally plausible based upon the known enzymatic function of TPO. The "trans" model places IDR-B on the membrane-facing side of the myeloperoxidase (MPO)-like domain, potentially hindering access of autoantibodies, necessitating considerable conformational change, and perhaps even dissociation of the dimer into monomers. IDR-A spans MPO- and CCP-like domains and is relatively fragmented compared to IDR-B, therefore most likely requiring domain rearrangements in order to coalesce into one compact epitope. Less epitope fragmentation and higher solvent accessibility of the "cis" model favours it slightly over the "trans" model. Here, IDR-B clusters towards the surface of the MPO-like domain facing the thyroid follicular lumen preventing steric hindrance of autoantibodies. However, conformational rearrangements may still be necessary to allow full engagement with autoantibodies, with IDR-B on both models being close to the dimer interface. Taken together, the modelling highlights the need to consider the oligomeric state of TPO, its conformational properties, and its proximity to the membrane, when interpreting epitope-mapping data.
doi_str_mv 10.1371/journal.pone.0142615
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1738477718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A436776299</galeid><doaj_id>oai_doaj_org_article_4b2bc99a9c1a4ce2b00e1f925ee7cc79</doaj_id><sourcerecordid>A436776299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c762t-d9a2b1fd61f3f60d9bfbaf359e62b433ab1487644879a07d5ac139db5cf568703</originalsourceid><addsrcrecordid>eNqNk-9v1CAYxxujcXP6HxhtYmL0xZ0FWihvTC7LppfMzMzpSwnlR49LD06gy86_Xup1y9XshSUpBD7fL_DwPFn2EhRzgAj4sHa9t7ybb51V8wKUEIPqUXYMKIIzDAv0-GB8lD0LYV0UFaoxfpodQYwhwhU-zn5-cVJ1nbFt7nR-vdp5Z2T-VXl3ayQPKr9SN4p3IV_aYNpVDLmx0eXLNDizv3cblZ_3VkTjbM6tzBd9dNxG0yprhIm759kTndTqxdifZN_Pz65PP88uLj8tTxcXM0EwjDNJOWyAlhhopHEhaaMbrlFFFYZNiRBvQFkTXKYf5QWRFRcAUdlUQle4JgU6yV7vfbedC2wMTWCAoLokhIA6Ecs9IR1fs603G-53zHHD_k443zLuoxGdYmUDG0EppwLwUijYFIUCmsJKKSIEocnr47hb32yUFMpGz7uJ6XTFmhVr3Q0rcfqqKhm8Gw28-9WrENnGBJHegVvl-v25awgxBQl98w_68O1GquXpAsZql_YVgylblAiTFGU6nHv-AJWaVBsjUh5pk-YngvcTQWKiuo0t70Ngy29X_89e_piybw_YVUqwuAqu64c8ClOw3IPCuxC80vdBBgUbyuAuGmwoAzaWQZK9Onyge9Fd3qM_HGkDkg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738477718</pqid></control><display><type>article</type><title>Modelling of Thyroid Peroxidase Reveals Insights into Its Enzyme Function and Autoantigenicity</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Le, Sarah N ; Porebski, Benjamin T ; McCoey, Julia ; Fodor, James ; Riley, Blake ; Godlewska, Marlena ; Góra, Monika ; Czarnocka, Barbara ; Banga, J Paul ; Hoke, David E ; Kass, Itamar ; Buckle, Ashley M</creator><contributor>Permyakov, Eugene A.</contributor><creatorcontrib>Le, Sarah N ; Porebski, Benjamin T ; McCoey, Julia ; Fodor, James ; Riley, Blake ; Godlewska, Marlena ; Góra, Monika ; Czarnocka, Barbara ; Banga, J Paul ; Hoke, David E ; Kass, Itamar ; Buckle, Ashley M ; Permyakov, Eugene A.</creatorcontrib><description>Thyroid peroxidase (TPO) catalyses the biosynthesis of thyroid hormones and is a major autoantigen in Hashimoto's disease--the most common organ-specific autoimmune disease. Epitope mapping studies have shown that the autoimmune response to TPO is directed mainly at two surface regions on the molecule: immunodominant regions A and B (IDR-A, and IDR-B). TPO has been a major target for structural studies for over 20 years; however, to date, the structure of TPO remains to be determined. We have used a molecular modelling approach to investigate plausible modes of TPO structure and dimer organisation. Sequence features of the C-terminus are consistent with a coiled-coil dimerization motif that most likely anchors the TPO dimer in the apical membrane of thyroid follicular cells. Two contrasting models of TPO were produced, differing in the orientation and exposure of their active sites relative to the membrane. Both models are equally plausible based upon the known enzymatic function of TPO. The "trans" model places IDR-B on the membrane-facing side of the myeloperoxidase (MPO)-like domain, potentially hindering access of autoantibodies, necessitating considerable conformational change, and perhaps even dissociation of the dimer into monomers. IDR-A spans MPO- and CCP-like domains and is relatively fragmented compared to IDR-B, therefore most likely requiring domain rearrangements in order to coalesce into one compact epitope. Less epitope fragmentation and higher solvent accessibility of the "cis" model favours it slightly over the "trans" model. Here, IDR-B clusters towards the surface of the MPO-like domain facing the thyroid follicular lumen preventing steric hindrance of autoantibodies. However, conformational rearrangements may still be necessary to allow full engagement with autoantibodies, with IDR-B on both models being close to the dimer interface. Taken together, the modelling highlights the need to consider the oligomeric state of TPO, its conformational properties, and its proximity to the membrane, when interpreting epitope-mapping data.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0142615</identifier><identifier>PMID: 26623656</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Sequence ; Antigenic determinants ; Antigens ; Autoantibodies ; Autoantigens - chemistry ; Autoantigens - immunology ; Autoantigens - metabolism ; Biochemistry ; Biosynthesis ; C-Terminus ; Care and treatment ; Cell Membrane - enzymology ; Coalescing ; Crystal structure ; Cytotoxicity ; Dimerization ; Dissociation ; Endocrinology ; Enzyme Stability ; Epidermal growth factor ; Epitope mapping ; Extracellular Space - enzymology ; Health education ; Hormones ; Humans ; Immunoglobulins ; Iodide peroxidase ; Iodide Peroxidase - chemistry ; Iodide Peroxidase - immunology ; Iodide Peroxidase - metabolism ; Iron-Binding Proteins - chemistry ; Iron-Binding Proteins - immunology ; Iron-Binding Proteins - metabolism ; Mapping ; Modelling ; Molecular biology ; Molecular Dynamics Simulation ; Molecular modelling ; Molecular Sequence Data ; Molecular structure ; Monomers ; Mutagenesis ; Peroxidase ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Proteins ; Risk factors ; Steric hindrance ; Thermodynamics ; Thyroid ; Thyroid diseases ; Thyroid hormones ; Thyroxine</subject><ispartof>PloS one, 2015-12, Vol.10 (12), p.e0142615-e0142615</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Le et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Le et al 2015 Le et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c762t-d9a2b1fd61f3f60d9bfbaf359e62b433ab1487644879a07d5ac139db5cf568703</citedby><cites>FETCH-LOGICAL-c762t-d9a2b1fd61f3f60d9bfbaf359e62b433ab1487644879a07d5ac139db5cf568703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4666655/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4666655/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26623656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Permyakov, Eugene A.</contributor><creatorcontrib>Le, Sarah N</creatorcontrib><creatorcontrib>Porebski, Benjamin T</creatorcontrib><creatorcontrib>McCoey, Julia</creatorcontrib><creatorcontrib>Fodor, James</creatorcontrib><creatorcontrib>Riley, Blake</creatorcontrib><creatorcontrib>Godlewska, Marlena</creatorcontrib><creatorcontrib>Góra, Monika</creatorcontrib><creatorcontrib>Czarnocka, Barbara</creatorcontrib><creatorcontrib>Banga, J Paul</creatorcontrib><creatorcontrib>Hoke, David E</creatorcontrib><creatorcontrib>Kass, Itamar</creatorcontrib><creatorcontrib>Buckle, Ashley M</creatorcontrib><title>Modelling of Thyroid Peroxidase Reveals Insights into Its Enzyme Function and Autoantigenicity</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Thyroid peroxidase (TPO) catalyses the biosynthesis of thyroid hormones and is a major autoantigen in Hashimoto's disease--the most common organ-specific autoimmune disease. Epitope mapping studies have shown that the autoimmune response to TPO is directed mainly at two surface regions on the molecule: immunodominant regions A and B (IDR-A, and IDR-B). TPO has been a major target for structural studies for over 20 years; however, to date, the structure of TPO remains to be determined. We have used a molecular modelling approach to investigate plausible modes of TPO structure and dimer organisation. Sequence features of the C-terminus are consistent with a coiled-coil dimerization motif that most likely anchors the TPO dimer in the apical membrane of thyroid follicular cells. Two contrasting models of TPO were produced, differing in the orientation and exposure of their active sites relative to the membrane. Both models are equally plausible based upon the known enzymatic function of TPO. The "trans" model places IDR-B on the membrane-facing side of the myeloperoxidase (MPO)-like domain, potentially hindering access of autoantibodies, necessitating considerable conformational change, and perhaps even dissociation of the dimer into monomers. IDR-A spans MPO- and CCP-like domains and is relatively fragmented compared to IDR-B, therefore most likely requiring domain rearrangements in order to coalesce into one compact epitope. Less epitope fragmentation and higher solvent accessibility of the "cis" model favours it slightly over the "trans" model. Here, IDR-B clusters towards the surface of the MPO-like domain facing the thyroid follicular lumen preventing steric hindrance of autoantibodies. However, conformational rearrangements may still be necessary to allow full engagement with autoantibodies, with IDR-B on both models being close to the dimer interface. Taken together, the modelling highlights the need to consider the oligomeric state of TPO, its conformational properties, and its proximity to the membrane, when interpreting epitope-mapping data.</description><subject>Amino Acid Sequence</subject><subject>Antigenic determinants</subject><subject>Antigens</subject><subject>Autoantibodies</subject><subject>Autoantigens - chemistry</subject><subject>Autoantigens - immunology</subject><subject>Autoantigens - metabolism</subject><subject>Biochemistry</subject><subject>Biosynthesis</subject><subject>C-Terminus</subject><subject>Care and treatment</subject><subject>Cell Membrane - enzymology</subject><subject>Coalescing</subject><subject>Crystal structure</subject><subject>Cytotoxicity</subject><subject>Dimerization</subject><subject>Dissociation</subject><subject>Endocrinology</subject><subject>Enzyme Stability</subject><subject>Epidermal growth factor</subject><subject>Epitope mapping</subject><subject>Extracellular Space - enzymology</subject><subject>Health education</subject><subject>Hormones</subject><subject>Humans</subject><subject>Immunoglobulins</subject><subject>Iodide peroxidase</subject><subject>Iodide Peroxidase - chemistry</subject><subject>Iodide Peroxidase - immunology</subject><subject>Iodide Peroxidase - metabolism</subject><subject>Iron-Binding Proteins - chemistry</subject><subject>Iron-Binding Proteins - immunology</subject><subject>Iron-Binding Proteins - metabolism</subject><subject>Mapping</subject><subject>Modelling</subject><subject>Molecular biology</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular modelling</subject><subject>Molecular Sequence Data</subject><subject>Molecular structure</subject><subject>Monomers</subject><subject>Mutagenesis</subject><subject>Peroxidase</subject><subject>Protein Multimerization</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Risk factors</subject><subject>Steric hindrance</subject><subject>Thermodynamics</subject><subject>Thyroid</subject><subject>Thyroid diseases</subject><subject>Thyroid hormones</subject><subject>Thyroxine</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk-9v1CAYxxujcXP6HxhtYmL0xZ0FWihvTC7LppfMzMzpSwnlR49LD06gy86_Xup1y9XshSUpBD7fL_DwPFn2EhRzgAj4sHa9t7ybb51V8wKUEIPqUXYMKIIzDAv0-GB8lD0LYV0UFaoxfpodQYwhwhU-zn5-cVJ1nbFt7nR-vdp5Z2T-VXl3ayQPKr9SN4p3IV_aYNpVDLmx0eXLNDizv3cblZ_3VkTjbM6tzBd9dNxG0yprhIm759kTndTqxdifZN_Pz65PP88uLj8tTxcXM0EwjDNJOWyAlhhopHEhaaMbrlFFFYZNiRBvQFkTXKYf5QWRFRcAUdlUQle4JgU6yV7vfbedC2wMTWCAoLokhIA6Ecs9IR1fs603G-53zHHD_k443zLuoxGdYmUDG0EppwLwUijYFIUCmsJKKSIEocnr47hb32yUFMpGz7uJ6XTFmhVr3Q0rcfqqKhm8Gw28-9WrENnGBJHegVvl-v25awgxBQl98w_68O1GquXpAsZql_YVgylblAiTFGU6nHv-AJWaVBsjUh5pk-YngvcTQWKiuo0t70Ngy29X_89e_piybw_YVUqwuAqu64c8ClOw3IPCuxC80vdBBgUbyuAuGmwoAzaWQZK9Onyge9Fd3qM_HGkDkg</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Le, Sarah N</creator><creator>Porebski, Benjamin T</creator><creator>McCoey, Julia</creator><creator>Fodor, James</creator><creator>Riley, Blake</creator><creator>Godlewska, Marlena</creator><creator>Góra, Monika</creator><creator>Czarnocka, Barbara</creator><creator>Banga, J Paul</creator><creator>Hoke, David E</creator><creator>Kass, Itamar</creator><creator>Buckle, Ashley M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151201</creationdate><title>Modelling of Thyroid Peroxidase Reveals Insights into Its Enzyme Function and Autoantigenicity</title><author>Le, Sarah N ; Porebski, Benjamin T ; McCoey, Julia ; Fodor, James ; Riley, Blake ; Godlewska, Marlena ; Góra, Monika ; Czarnocka, Barbara ; Banga, J Paul ; Hoke, David E ; Kass, Itamar ; Buckle, Ashley M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c762t-d9a2b1fd61f3f60d9bfbaf359e62b433ab1487644879a07d5ac139db5cf568703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Sequence</topic><topic>Antigenic determinants</topic><topic>Antigens</topic><topic>Autoantibodies</topic><topic>Autoantigens - chemistry</topic><topic>Autoantigens - immunology</topic><topic>Autoantigens - metabolism</topic><topic>Biochemistry</topic><topic>Biosynthesis</topic><topic>C-Terminus</topic><topic>Care and treatment</topic><topic>Cell Membrane - enzymology</topic><topic>Coalescing</topic><topic>Crystal structure</topic><topic>Cytotoxicity</topic><topic>Dimerization</topic><topic>Dissociation</topic><topic>Endocrinology</topic><topic>Enzyme Stability</topic><topic>Epidermal growth factor</topic><topic>Epitope mapping</topic><topic>Extracellular Space - enzymology</topic><topic>Health education</topic><topic>Hormones</topic><topic>Humans</topic><topic>Immunoglobulins</topic><topic>Iodide peroxidase</topic><topic>Iodide Peroxidase - chemistry</topic><topic>Iodide Peroxidase - immunology</topic><topic>Iodide Peroxidase - metabolism</topic><topic>Iron-Binding Proteins - chemistry</topic><topic>Iron-Binding Proteins - immunology</topic><topic>Iron-Binding Proteins - metabolism</topic><topic>Mapping</topic><topic>Modelling</topic><topic>Molecular biology</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular modelling</topic><topic>Molecular Sequence Data</topic><topic>Molecular structure</topic><topic>Monomers</topic><topic>Mutagenesis</topic><topic>Peroxidase</topic><topic>Protein Multimerization</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Risk factors</topic><topic>Steric hindrance</topic><topic>Thermodynamics</topic><topic>Thyroid</topic><topic>Thyroid diseases</topic><topic>Thyroid hormones</topic><topic>Thyroxine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le, Sarah N</creatorcontrib><creatorcontrib>Porebski, Benjamin T</creatorcontrib><creatorcontrib>McCoey, Julia</creatorcontrib><creatorcontrib>Fodor, James</creatorcontrib><creatorcontrib>Riley, Blake</creatorcontrib><creatorcontrib>Godlewska, Marlena</creatorcontrib><creatorcontrib>Góra, Monika</creatorcontrib><creatorcontrib>Czarnocka, Barbara</creatorcontrib><creatorcontrib>Banga, J Paul</creatorcontrib><creatorcontrib>Hoke, David E</creatorcontrib><creatorcontrib>Kass, Itamar</creatorcontrib><creatorcontrib>Buckle, Ashley M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le, Sarah N</au><au>Porebski, Benjamin T</au><au>McCoey, Julia</au><au>Fodor, James</au><au>Riley, Blake</au><au>Godlewska, Marlena</au><au>Góra, Monika</au><au>Czarnocka, Barbara</au><au>Banga, J Paul</au><au>Hoke, David E</au><au>Kass, Itamar</au><au>Buckle, Ashley M</au><au>Permyakov, Eugene A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of Thyroid Peroxidase Reveals Insights into Its Enzyme Function and Autoantigenicity</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>10</volume><issue>12</issue><spage>e0142615</spage><epage>e0142615</epage><pages>e0142615-e0142615</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Thyroid peroxidase (TPO) catalyses the biosynthesis of thyroid hormones and is a major autoantigen in Hashimoto's disease--the most common organ-specific autoimmune disease. Epitope mapping studies have shown that the autoimmune response to TPO is directed mainly at two surface regions on the molecule: immunodominant regions A and B (IDR-A, and IDR-B). TPO has been a major target for structural studies for over 20 years; however, to date, the structure of TPO remains to be determined. We have used a molecular modelling approach to investigate plausible modes of TPO structure and dimer organisation. Sequence features of the C-terminus are consistent with a coiled-coil dimerization motif that most likely anchors the TPO dimer in the apical membrane of thyroid follicular cells. Two contrasting models of TPO were produced, differing in the orientation and exposure of their active sites relative to the membrane. Both models are equally plausible based upon the known enzymatic function of TPO. The "trans" model places IDR-B on the membrane-facing side of the myeloperoxidase (MPO)-like domain, potentially hindering access of autoantibodies, necessitating considerable conformational change, and perhaps even dissociation of the dimer into monomers. IDR-A spans MPO- and CCP-like domains and is relatively fragmented compared to IDR-B, therefore most likely requiring domain rearrangements in order to coalesce into one compact epitope. Less epitope fragmentation and higher solvent accessibility of the "cis" model favours it slightly over the "trans" model. Here, IDR-B clusters towards the surface of the MPO-like domain facing the thyroid follicular lumen preventing steric hindrance of autoantibodies. However, conformational rearrangements may still be necessary to allow full engagement with autoantibodies, with IDR-B on both models being close to the dimer interface. Taken together, the modelling highlights the need to consider the oligomeric state of TPO, its conformational properties, and its proximity to the membrane, when interpreting epitope-mapping data.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26623656</pmid><doi>10.1371/journal.pone.0142615</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-12, Vol.10 (12), p.e0142615-e0142615
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1738477718
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Antigenic determinants
Antigens
Autoantibodies
Autoantigens - chemistry
Autoantigens - immunology
Autoantigens - metabolism
Biochemistry
Biosynthesis
C-Terminus
Care and treatment
Cell Membrane - enzymology
Coalescing
Crystal structure
Cytotoxicity
Dimerization
Dissociation
Endocrinology
Enzyme Stability
Epidermal growth factor
Epitope mapping
Extracellular Space - enzymology
Health education
Hormones
Humans
Immunoglobulins
Iodide peroxidase
Iodide Peroxidase - chemistry
Iodide Peroxidase - immunology
Iodide Peroxidase - metabolism
Iron-Binding Proteins - chemistry
Iron-Binding Proteins - immunology
Iron-Binding Proteins - metabolism
Mapping
Modelling
Molecular biology
Molecular Dynamics Simulation
Molecular modelling
Molecular Sequence Data
Molecular structure
Monomers
Mutagenesis
Peroxidase
Protein Multimerization
Protein Structure, Quaternary
Protein Structure, Tertiary
Proteins
Risk factors
Steric hindrance
Thermodynamics
Thyroid
Thyroid diseases
Thyroid hormones
Thyroxine
title Modelling of Thyroid Peroxidase Reveals Insights into Its Enzyme Function and Autoantigenicity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A15%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20Thyroid%20Peroxidase%20Reveals%20Insights%20into%20Its%20Enzyme%20Function%20and%20Autoantigenicity&rft.jtitle=PloS%20one&rft.au=Le,%20Sarah%20N&rft.date=2015-12-01&rft.volume=10&rft.issue=12&rft.spage=e0142615&rft.epage=e0142615&rft.pages=e0142615-e0142615&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0142615&rft_dat=%3Cgale_plos_%3EA436776299%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1738477718&rft_id=info:pmid/26623656&rft_galeid=A436776299&rft_doaj_id=oai_doaj_org_article_4b2bc99a9c1a4ce2b00e1f925ee7cc79&rfr_iscdi=true