Development and Validation of a Gene-Based Model for Outcome Prediction in Germ Cell Tumors Using a Combined Genomic and Expression Profiling Approach
Germ Cell Tumors (GCT) have a high cure rate, but we currently lack the ability to accurately identify the small subset of patients who will die from their disease. We used a combined genomic and expression profiling approach to identify genomic regions and underlying genes that are predictive of ou...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-12, Vol.10 (12), p.e0142846-e0142846 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0142846 |
---|---|
container_issue | 12 |
container_start_page | e0142846 |
container_title | PloS one |
container_volume | 10 |
creator | Korkola, James E Heck, Sandy Olshen, Adam B Feldman, Darren R Reuter, Victor E Houldsworth, Jane Bosl, George J Chaganti, R S K |
description | Germ Cell Tumors (GCT) have a high cure rate, but we currently lack the ability to accurately identify the small subset of patients who will die from their disease. We used a combined genomic and expression profiling approach to identify genomic regions and underlying genes that are predictive of outcome in GCT patients. We performed array-based comparative genomic hybridization (CGH) on 53 non-seminomatous GCTs (NSGCTs) treated with cisplatin based chemotherapy and defined altered genomic regions using Circular Binary Segmentation. We identified 14 regions associated with two year disease-free survival (2yDFS) and 16 regions associated with five year disease-specific survival (5yDSS). From corresponding expression data, we identified 101 probe sets that showed significant changes in expression. We built several models based on these differentially expressed genes, then tested them in an independent validation set of 54 NSGCTs. These predictive models correctly classified outcome in 64-79.6% of patients in the validation set, depending on the endpoint utilized. Survival analysis demonstrated a significant separation of patients with good versus poor predicted outcome when using a combined gene set model. Multivariate analysis using clinical risk classification with the combined gene model indicated that they were independent prognostic markers. This novel set of predictive genes from altered genomic regions is almost entirely independent of our previously identified set of predictive genes for patients with NSGCTs. These genes may aid in the identification of the small subset of patients who are at high risk of poor outcome. |
doi_str_mv | 10.1371/journal.pone.0142846 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1738477612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A436776260</galeid><doaj_id>oai_doaj_org_article_12cc09e6abed473e89953e6de7cf0eae</doaj_id><sourcerecordid>A436776260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c762t-e6b37e0fc418cf11595f1fdbc3e53ff2a1cdae283ba280d479271247fe3beac3</originalsourceid><addsrcrecordid>eNqNk9Fu0zAUhiMEYmPwBggsISG4aInt1ElukEoZo9JQJyi7tRznuHXlxMFOpvEiPC9Om00N2gXKRSLn-_9j_8cnil7ieIppij_sbOdqYaaNrWEa44RkCXsUneKckgkjMX189H0SPfN-F8czmjH2NDohjJGEEXoa_fkMN2BsU0HdIlGX6FoYXYpW2xpZhQS6gBomn4SHEn2zJRikrEOrrpW2AnTloNRyD-s6oK5CCzAGrbvKOo9-el1vgsfCVoWug0Mws5WW-0Lnt40D73vtlbNKm56dN42zQm6fR0-UMB5eDO-zaP3lfL34OrlcXSwX88uJTBlpJ8AKmkKsZIIzqTCe5TOFVVlICjOqFBFYlgJIRgtBsrhM0pykmCSpAlqAkPQsen2wbYz1fEjUc5zSLElThkkglgeitGLHG6cr4X5zKzTfL1i34cK1WhrgmEgZ58BEAaEShSzPZxRYCalUMQgIXh-Hal1RQSlD5E6Yken4T623fGNveMIYSxgOBu8GA2d_deBbXmkvQ-CiBtsd9p0Rgkm_7zf_oA-fbqA2IhxA18qGurI35fOEsgARFgdq-gAVnhJCM8P1C82DseD9SBCYFm7bjei858sf3_-fXV2P2bdH7BaEabfemq6_gH4MJgdQOuu9A3UfMo55Pz13afB-evgwPUH26rhB96K7caF_AXZGFv4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738477612</pqid></control><display><type>article</type><title>Development and Validation of a Gene-Based Model for Outcome Prediction in Germ Cell Tumors Using a Combined Genomic and Expression Profiling Approach</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Korkola, James E ; Heck, Sandy ; Olshen, Adam B ; Feldman, Darren R ; Reuter, Victor E ; Houldsworth, Jane ; Bosl, George J ; Chaganti, R S K</creator><contributor>Kerr, Candace</contributor><creatorcontrib>Korkola, James E ; Heck, Sandy ; Olshen, Adam B ; Feldman, Darren R ; Reuter, Victor E ; Houldsworth, Jane ; Bosl, George J ; Chaganti, R S K ; Kerr, Candace</creatorcontrib><description>Germ Cell Tumors (GCT) have a high cure rate, but we currently lack the ability to accurately identify the small subset of patients who will die from their disease. We used a combined genomic and expression profiling approach to identify genomic regions and underlying genes that are predictive of outcome in GCT patients. We performed array-based comparative genomic hybridization (CGH) on 53 non-seminomatous GCTs (NSGCTs) treated with cisplatin based chemotherapy and defined altered genomic regions using Circular Binary Segmentation. We identified 14 regions associated with two year disease-free survival (2yDFS) and 16 regions associated with five year disease-specific survival (5yDSS). From corresponding expression data, we identified 101 probe sets that showed significant changes in expression. We built several models based on these differentially expressed genes, then tested them in an independent validation set of 54 NSGCTs. These predictive models correctly classified outcome in 64-79.6% of patients in the validation set, depending on the endpoint utilized. Survival analysis demonstrated a significant separation of patients with good versus poor predicted outcome when using a combined gene set model. Multivariate analysis using clinical risk classification with the combined gene model indicated that they were independent prognostic markers. This novel set of predictive genes from altered genomic regions is almost entirely independent of our previously identified set of predictive genes for patients with NSGCTs. These genes may aid in the identification of the small subset of patients who are at high risk of poor outcome.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0142846</identifier><identifier>PMID: 26624623</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology ; Cancer genetics ; Cancer therapies ; Care and treatment ; Cell adhesion & migration ; Chemotherapy ; Chromosomes ; Cisplatin ; Classification ; Clinical outcomes ; Collaboration ; Comparative analysis ; Comparative Genomic Hybridization ; Diagnosis ; Disease-Free Survival ; DNA Copy Number Variations ; Gene expression ; Gene Expression Profiling ; Genes ; Genetic aspects ; Genomics ; Germinoma ; Humans ; Hybridization ; Mathematical models ; Medical research ; Medicine ; Metastasis ; Models, Statistical ; Multivariate analysis ; Neoplasms, Germ Cell and Embryonal - diagnosis ; Neoplasms, Germ Cell and Embryonal - genetics ; Patient outcomes ; Patients ; Physiological aspects ; Prediction models ; Prostate cancer ; Risk analysis ; Segmentation ; Survival ; Survival analysis ; Tumors</subject><ispartof>PloS one, 2015-12, Vol.10 (12), p.e0142846-e0142846</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Korkola et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Korkola et al 2015 Korkola et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c762t-e6b37e0fc418cf11595f1fdbc3e53ff2a1cdae283ba280d479271247fe3beac3</citedby><cites>FETCH-LOGICAL-c762t-e6b37e0fc418cf11595f1fdbc3e53ff2a1cdae283ba280d479271247fe3beac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4666461/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4666461/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26624623$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kerr, Candace</contributor><creatorcontrib>Korkola, James E</creatorcontrib><creatorcontrib>Heck, Sandy</creatorcontrib><creatorcontrib>Olshen, Adam B</creatorcontrib><creatorcontrib>Feldman, Darren R</creatorcontrib><creatorcontrib>Reuter, Victor E</creatorcontrib><creatorcontrib>Houldsworth, Jane</creatorcontrib><creatorcontrib>Bosl, George J</creatorcontrib><creatorcontrib>Chaganti, R S K</creatorcontrib><title>Development and Validation of a Gene-Based Model for Outcome Prediction in Germ Cell Tumors Using a Combined Genomic and Expression Profiling Approach</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Germ Cell Tumors (GCT) have a high cure rate, but we currently lack the ability to accurately identify the small subset of patients who will die from their disease. We used a combined genomic and expression profiling approach to identify genomic regions and underlying genes that are predictive of outcome in GCT patients. We performed array-based comparative genomic hybridization (CGH) on 53 non-seminomatous GCTs (NSGCTs) treated with cisplatin based chemotherapy and defined altered genomic regions using Circular Binary Segmentation. We identified 14 regions associated with two year disease-free survival (2yDFS) and 16 regions associated with five year disease-specific survival (5yDSS). From corresponding expression data, we identified 101 probe sets that showed significant changes in expression. We built several models based on these differentially expressed genes, then tested them in an independent validation set of 54 NSGCTs. These predictive models correctly classified outcome in 64-79.6% of patients in the validation set, depending on the endpoint utilized. Survival analysis demonstrated a significant separation of patients with good versus poor predicted outcome when using a combined gene set model. Multivariate analysis using clinical risk classification with the combined gene model indicated that they were independent prognostic markers. This novel set of predictive genes from altered genomic regions is almost entirely independent of our previously identified set of predictive genes for patients with NSGCTs. These genes may aid in the identification of the small subset of patients who are at high risk of poor outcome.</description><subject>Biology</subject><subject>Cancer genetics</subject><subject>Cancer therapies</subject><subject>Care and treatment</subject><subject>Cell adhesion & migration</subject><subject>Chemotherapy</subject><subject>Chromosomes</subject><subject>Cisplatin</subject><subject>Classification</subject><subject>Clinical outcomes</subject><subject>Collaboration</subject><subject>Comparative analysis</subject><subject>Comparative Genomic Hybridization</subject><subject>Diagnosis</subject><subject>Disease-Free Survival</subject><subject>DNA Copy Number Variations</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genomics</subject><subject>Germinoma</subject><subject>Humans</subject><subject>Hybridization</subject><subject>Mathematical models</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Metastasis</subject><subject>Models, Statistical</subject><subject>Multivariate analysis</subject><subject>Neoplasms, Germ Cell and Embryonal - diagnosis</subject><subject>Neoplasms, Germ Cell and Embryonal - genetics</subject><subject>Patient outcomes</subject><subject>Patients</subject><subject>Physiological aspects</subject><subject>Prediction models</subject><subject>Prostate cancer</subject><subject>Risk analysis</subject><subject>Segmentation</subject><subject>Survival</subject><subject>Survival analysis</subject><subject>Tumors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9Fu0zAUhiMEYmPwBggsISG4aInt1ElukEoZo9JQJyi7tRznuHXlxMFOpvEiPC9Om00N2gXKRSLn-_9j_8cnil7ieIppij_sbOdqYaaNrWEa44RkCXsUneKckgkjMX189H0SPfN-F8czmjH2NDohjJGEEXoa_fkMN2BsU0HdIlGX6FoYXYpW2xpZhQS6gBomn4SHEn2zJRikrEOrrpW2AnTloNRyD-s6oK5CCzAGrbvKOo9-el1vgsfCVoWug0Mws5WW-0Lnt40D73vtlbNKm56dN42zQm6fR0-UMB5eDO-zaP3lfL34OrlcXSwX88uJTBlpJ8AKmkKsZIIzqTCe5TOFVVlICjOqFBFYlgJIRgtBsrhM0pykmCSpAlqAkPQsen2wbYz1fEjUc5zSLElThkkglgeitGLHG6cr4X5zKzTfL1i34cK1WhrgmEgZ58BEAaEShSzPZxRYCalUMQgIXh-Hal1RQSlD5E6Yken4T623fGNveMIYSxgOBu8GA2d_deBbXmkvQ-CiBtsd9p0Rgkm_7zf_oA-fbqA2IhxA18qGurI35fOEsgARFgdq-gAVnhJCM8P1C82DseD9SBCYFm7bjei858sf3_-fXV2P2bdH7BaEabfemq6_gH4MJgdQOuu9A3UfMo55Pz13afB-evgwPUH26rhB96K7caF_AXZGFv4</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Korkola, James E</creator><creator>Heck, Sandy</creator><creator>Olshen, Adam B</creator><creator>Feldman, Darren R</creator><creator>Reuter, Victor E</creator><creator>Houldsworth, Jane</creator><creator>Bosl, George J</creator><creator>Chaganti, R S K</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151201</creationdate><title>Development and Validation of a Gene-Based Model for Outcome Prediction in Germ Cell Tumors Using a Combined Genomic and Expression Profiling Approach</title><author>Korkola, James E ; Heck, Sandy ; Olshen, Adam B ; Feldman, Darren R ; Reuter, Victor E ; Houldsworth, Jane ; Bosl, George J ; Chaganti, R S K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c762t-e6b37e0fc418cf11595f1fdbc3e53ff2a1cdae283ba280d479271247fe3beac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biology</topic><topic>Cancer genetics</topic><topic>Cancer therapies</topic><topic>Care and treatment</topic><topic>Cell adhesion & migration</topic><topic>Chemotherapy</topic><topic>Chromosomes</topic><topic>Cisplatin</topic><topic>Classification</topic><topic>Clinical outcomes</topic><topic>Collaboration</topic><topic>Comparative analysis</topic><topic>Comparative Genomic Hybridization</topic><topic>Diagnosis</topic><topic>Disease-Free Survival</topic><topic>DNA Copy Number Variations</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genomics</topic><topic>Germinoma</topic><topic>Humans</topic><topic>Hybridization</topic><topic>Mathematical models</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Metastasis</topic><topic>Models, Statistical</topic><topic>Multivariate analysis</topic><topic>Neoplasms, Germ Cell and Embryonal - diagnosis</topic><topic>Neoplasms, Germ Cell and Embryonal - genetics</topic><topic>Patient outcomes</topic><topic>Patients</topic><topic>Physiological aspects</topic><topic>Prediction models</topic><topic>Prostate cancer</topic><topic>Risk analysis</topic><topic>Segmentation</topic><topic>Survival</topic><topic>Survival analysis</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korkola, James E</creatorcontrib><creatorcontrib>Heck, Sandy</creatorcontrib><creatorcontrib>Olshen, Adam B</creatorcontrib><creatorcontrib>Feldman, Darren R</creatorcontrib><creatorcontrib>Reuter, Victor E</creatorcontrib><creatorcontrib>Houldsworth, Jane</creatorcontrib><creatorcontrib>Bosl, George J</creatorcontrib><creatorcontrib>Chaganti, R S K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korkola, James E</au><au>Heck, Sandy</au><au>Olshen, Adam B</au><au>Feldman, Darren R</au><au>Reuter, Victor E</au><au>Houldsworth, Jane</au><au>Bosl, George J</au><au>Chaganti, R S K</au><au>Kerr, Candace</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Validation of a Gene-Based Model for Outcome Prediction in Germ Cell Tumors Using a Combined Genomic and Expression Profiling Approach</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>10</volume><issue>12</issue><spage>e0142846</spage><epage>e0142846</epage><pages>e0142846-e0142846</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Germ Cell Tumors (GCT) have a high cure rate, but we currently lack the ability to accurately identify the small subset of patients who will die from their disease. We used a combined genomic and expression profiling approach to identify genomic regions and underlying genes that are predictive of outcome in GCT patients. We performed array-based comparative genomic hybridization (CGH) on 53 non-seminomatous GCTs (NSGCTs) treated with cisplatin based chemotherapy and defined altered genomic regions using Circular Binary Segmentation. We identified 14 regions associated with two year disease-free survival (2yDFS) and 16 regions associated with five year disease-specific survival (5yDSS). From corresponding expression data, we identified 101 probe sets that showed significant changes in expression. We built several models based on these differentially expressed genes, then tested them in an independent validation set of 54 NSGCTs. These predictive models correctly classified outcome in 64-79.6% of patients in the validation set, depending on the endpoint utilized. Survival analysis demonstrated a significant separation of patients with good versus poor predicted outcome when using a combined gene set model. Multivariate analysis using clinical risk classification with the combined gene model indicated that they were independent prognostic markers. This novel set of predictive genes from altered genomic regions is almost entirely independent of our previously identified set of predictive genes for patients with NSGCTs. These genes may aid in the identification of the small subset of patients who are at high risk of poor outcome.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26624623</pmid><doi>10.1371/journal.pone.0142846</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-12, Vol.10 (12), p.e0142846-e0142846 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1738477612 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; Full-Text Journals in Chemistry (Open access); DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library |
subjects | Biology Cancer genetics Cancer therapies Care and treatment Cell adhesion & migration Chemotherapy Chromosomes Cisplatin Classification Clinical outcomes Collaboration Comparative analysis Comparative Genomic Hybridization Diagnosis Disease-Free Survival DNA Copy Number Variations Gene expression Gene Expression Profiling Genes Genetic aspects Genomics Germinoma Humans Hybridization Mathematical models Medical research Medicine Metastasis Models, Statistical Multivariate analysis Neoplasms, Germ Cell and Embryonal - diagnosis Neoplasms, Germ Cell and Embryonal - genetics Patient outcomes Patients Physiological aspects Prediction models Prostate cancer Risk analysis Segmentation Survival Survival analysis Tumors |
title | Development and Validation of a Gene-Based Model for Outcome Prediction in Germ Cell Tumors Using a Combined Genomic and Expression Profiling Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A48%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Validation%20of%20a%20Gene-Based%20Model%20for%20Outcome%20Prediction%20in%20Germ%20Cell%20Tumors%20Using%20a%20Combined%20Genomic%20and%20Expression%20Profiling%20Approach&rft.jtitle=PloS%20one&rft.au=Korkola,%20James%20E&rft.date=2015-12-01&rft.volume=10&rft.issue=12&rft.spage=e0142846&rft.epage=e0142846&rft.pages=e0142846-e0142846&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0142846&rft_dat=%3Cgale_plos_%3EA436776260%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1738477612&rft_id=info:pmid/26624623&rft_galeid=A436776260&rft_doaj_id=oai_doaj_org_article_12cc09e6abed473e89953e6de7cf0eae&rfr_iscdi=true |