Programmed Cell Death Progresses Differentially in Epidermal and Mesophyll Cells of Lily Petals

In the petals of some species of flowers, programmed cell death (PCD) begins earlier in mesophyll cells than in epidermal cells. However, PCD progression in each cell type has not been characterized in detail. We separately constructed a time course of biochemical signs and expression patterns of PC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-11, Vol.10 (11), p.e0143502-e0143502
Hauptverfasser: Mochizuki-Kawai, Hiroko, Niki, Tomoko, Shibuya, Kenichi, Ichimura, Kazuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0143502
container_issue 11
container_start_page e0143502
container_title PloS one
container_volume 10
creator Mochizuki-Kawai, Hiroko
Niki, Tomoko
Shibuya, Kenichi
Ichimura, Kazuo
description In the petals of some species of flowers, programmed cell death (PCD) begins earlier in mesophyll cells than in epidermal cells. However, PCD progression in each cell type has not been characterized in detail. We separately constructed a time course of biochemical signs and expression patterns of PCD-associated genes in epidermal and mesophyll cells in Lilium cv. Yelloween petals. Before visible signs of senescence could be observed, we found signs of PCD, including DNA degradation and decreased protein content in mesophyll cells only. In these cells, the total proteinase activity increased on the day after anthesis. Within 3 days after anthesis, the protein content decreased by 61.8%, and 22.8% of mesophyll cells was lost. A second peak of proteinase activity was observed on day 6, and the number of mesophyll cells decreased again from days 4 to 7. These biochemical and morphological results suggest that PCD progressed in steps during flower life in the mesophyll cells. PCD began in epidermal cells on day 5, in temporal synchrony with the time course of visible senescence. In the mesophyll cells, the KDEL-tailed cysteine proteinase (LoCYP) and S1/P1 nuclease (LoNUC) genes were upregulated before petal wilting, earlier than in epidermal cells. In contrast, relative to that in the mesophyll cells, the expression of the SAG12 cysteine proteinase homolog (LoSAG12) drastically increased in epidermal cells in the final stage of senescence. These results suggest that multiple PCD-associated genes differentially contribute to the time lag of PCD progression between epidermal and mesophyll cells of lily petals.
doi_str_mv 10.1371/journal.pone.0143502
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1736408128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A435601849</galeid><doaj_id>oai_doaj_org_article_1abdefed46344408bb746376bfa91721</doaj_id><sourcerecordid>A435601849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-ba1b94de0511897461f8f065e182be2537ced69469ebb5ead631648fc060d5623</originalsourceid><addsrcrecordid>eNqNk19v0zAUxSMEYmPwDRBEQkLw0GLHjuO8IE3dgEpFm_j3ajnxdevKiTs7mdZvj9tmU4P2gPLg6OZ3jn1PrpPkNUZTTAr8ae1630o73bgWpghTkqPsSXKKS5JNWIbI06P3k-RFCGuEcsIZe56cZIyhPKfFaSKuvVt62TSg0hlYm16A7FbpvgohQEgvjNbgoe2MtHabmja93BgFvpE2la1Kv0Nwm9U2Snf6kDqdLkwEr6GTNrxMnum4wKthPUt-f7n8Nfs2WVx9nc_OF5OalVk3qSSuSqoA5RjzsqAMa64RywHzrIIsJ0UNipWUlVBVOUjFCGaU6xoxpHKWkbPk7cF3Y10QQzZB4IIwijjOeCTmB0I5uRYbbxrpt8JJI_YF55dC-s7UFgSWlQINijJCaZRXVTwRKVilZYmLDEevz8NufRWTq2M6XtqR6fhLa1Zi6W4FZXnJOI0GHwYD7256CJ1oTKhjfrIF1-_PzSnHmOw6e_cP-nh3A7WUsQHTahf3rXem4jyOBkOY0zJS00eo-ChoTB0HSZtYHwk-jgSR6eCuW8o-BDH_-eP_2as_Y_b9EbsCabtVcLbvjGvDGKQHsPYuBA_6IWSMxO4e3KchdvdADPcgyt4c_6AH0f3gk7936QGk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1736408128</pqid></control><display><type>article</type><title>Programmed Cell Death Progresses Differentially in Epidermal and Mesophyll Cells of Lily Petals</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mochizuki-Kawai, Hiroko ; Niki, Tomoko ; Shibuya, Kenichi ; Ichimura, Kazuo</creator><contributor>Kalaitzis, Panagiotis</contributor><creatorcontrib>Mochizuki-Kawai, Hiroko ; Niki, Tomoko ; Shibuya, Kenichi ; Ichimura, Kazuo ; Kalaitzis, Panagiotis</creatorcontrib><description>In the petals of some species of flowers, programmed cell death (PCD) begins earlier in mesophyll cells than in epidermal cells. However, PCD progression in each cell type has not been characterized in detail. We separately constructed a time course of biochemical signs and expression patterns of PCD-associated genes in epidermal and mesophyll cells in Lilium cv. Yelloween petals. Before visible signs of senescence could be observed, we found signs of PCD, including DNA degradation and decreased protein content in mesophyll cells only. In these cells, the total proteinase activity increased on the day after anthesis. Within 3 days after anthesis, the protein content decreased by 61.8%, and 22.8% of mesophyll cells was lost. A second peak of proteinase activity was observed on day 6, and the number of mesophyll cells decreased again from days 4 to 7. These biochemical and morphological results suggest that PCD progressed in steps during flower life in the mesophyll cells. PCD began in epidermal cells on day 5, in temporal synchrony with the time course of visible senescence. In the mesophyll cells, the KDEL-tailed cysteine proteinase (LoCYP) and S1/P1 nuclease (LoNUC) genes were upregulated before petal wilting, earlier than in epidermal cells. In contrast, relative to that in the mesophyll cells, the expression of the SAG12 cysteine proteinase homolog (LoSAG12) drastically increased in epidermal cells in the final stage of senescence. These results suggest that multiple PCD-associated genes differentially contribute to the time lag of PCD progression between epidermal and mesophyll cells of lily petals.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0143502</identifier><identifier>PMID: 26605547</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aging - genetics ; Alstroemeria ; Apoptosis ; Apoptosis - genetics ; Arabidopsis ; Biochemistry ; Cell death ; Cell Survival - genetics ; Cysteine ; Cysteine proteinase ; Deoxyribonucleic acid ; Dianthus caryophyllus ; DNA ; DNA Fragmentation ; Enzymes ; Flowers ; Flowers &amp; plants ; Flowers - genetics ; Gene expression ; Gene Expression Regulation, Plant ; Genes ; Hemerocallis ; Homology ; Ipomoea nil ; Lilium ; Lilium - genetics ; Lilium - metabolism ; Lilium longiflorum ; Mesophyll ; Mesophyll Cells - metabolism ; Nitrogen - metabolism ; Nuclease ; Peptide Hydrolases - metabolism ; Petals ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Proteinase ; Risk factors ; Seeds ; Senescence ; Time lag ; Wilting</subject><ispartof>PloS one, 2015-11, Vol.10 (11), p.e0143502-e0143502</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Mochizuki-Kawai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Mochizuki-Kawai et al 2015 Mochizuki-Kawai et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-ba1b94de0511897461f8f065e182be2537ced69469ebb5ead631648fc060d5623</citedby><cites>FETCH-LOGICAL-c692t-ba1b94de0511897461f8f065e182be2537ced69469ebb5ead631648fc060d5623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4659684/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4659684/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23871,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26605547$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kalaitzis, Panagiotis</contributor><creatorcontrib>Mochizuki-Kawai, Hiroko</creatorcontrib><creatorcontrib>Niki, Tomoko</creatorcontrib><creatorcontrib>Shibuya, Kenichi</creatorcontrib><creatorcontrib>Ichimura, Kazuo</creatorcontrib><title>Programmed Cell Death Progresses Differentially in Epidermal and Mesophyll Cells of Lily Petals</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In the petals of some species of flowers, programmed cell death (PCD) begins earlier in mesophyll cells than in epidermal cells. However, PCD progression in each cell type has not been characterized in detail. We separately constructed a time course of biochemical signs and expression patterns of PCD-associated genes in epidermal and mesophyll cells in Lilium cv. Yelloween petals. Before visible signs of senescence could be observed, we found signs of PCD, including DNA degradation and decreased protein content in mesophyll cells only. In these cells, the total proteinase activity increased on the day after anthesis. Within 3 days after anthesis, the protein content decreased by 61.8%, and 22.8% of mesophyll cells was lost. A second peak of proteinase activity was observed on day 6, and the number of mesophyll cells decreased again from days 4 to 7. These biochemical and morphological results suggest that PCD progressed in steps during flower life in the mesophyll cells. PCD began in epidermal cells on day 5, in temporal synchrony with the time course of visible senescence. In the mesophyll cells, the KDEL-tailed cysteine proteinase (LoCYP) and S1/P1 nuclease (LoNUC) genes were upregulated before petal wilting, earlier than in epidermal cells. In contrast, relative to that in the mesophyll cells, the expression of the SAG12 cysteine proteinase homolog (LoSAG12) drastically increased in epidermal cells in the final stage of senescence. These results suggest that multiple PCD-associated genes differentially contribute to the time lag of PCD progression between epidermal and mesophyll cells of lily petals.</description><subject>Aging - genetics</subject><subject>Alstroemeria</subject><subject>Apoptosis</subject><subject>Apoptosis - genetics</subject><subject>Arabidopsis</subject><subject>Biochemistry</subject><subject>Cell death</subject><subject>Cell Survival - genetics</subject><subject>Cysteine</subject><subject>Cysteine proteinase</subject><subject>Deoxyribonucleic acid</subject><subject>Dianthus caryophyllus</subject><subject>DNA</subject><subject>DNA Fragmentation</subject><subject>Enzymes</subject><subject>Flowers</subject><subject>Flowers &amp; plants</subject><subject>Flowers - genetics</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Hemerocallis</subject><subject>Homology</subject><subject>Ipomoea nil</subject><subject>Lilium</subject><subject>Lilium - genetics</subject><subject>Lilium - metabolism</subject><subject>Lilium longiflorum</subject><subject>Mesophyll</subject><subject>Mesophyll Cells - metabolism</subject><subject>Nitrogen - metabolism</subject><subject>Nuclease</subject><subject>Peptide Hydrolases - metabolism</subject><subject>Petals</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Proteinase</subject><subject>Risk factors</subject><subject>Seeds</subject><subject>Senescence</subject><subject>Time lag</subject><subject>Wilting</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk19v0zAUxSMEYmPwDRBEQkLw0GLHjuO8IE3dgEpFm_j3ajnxdevKiTs7mdZvj9tmU4P2gPLg6OZ3jn1PrpPkNUZTTAr8ae1630o73bgWpghTkqPsSXKKS5JNWIbI06P3k-RFCGuEcsIZe56cZIyhPKfFaSKuvVt62TSg0hlYm16A7FbpvgohQEgvjNbgoe2MtHabmja93BgFvpE2la1Kv0Nwm9U2Snf6kDqdLkwEr6GTNrxMnum4wKthPUt-f7n8Nfs2WVx9nc_OF5OalVk3qSSuSqoA5RjzsqAMa64RywHzrIIsJ0UNipWUlVBVOUjFCGaU6xoxpHKWkbPk7cF3Y10QQzZB4IIwijjOeCTmB0I5uRYbbxrpt8JJI_YF55dC-s7UFgSWlQINijJCaZRXVTwRKVilZYmLDEevz8NufRWTq2M6XtqR6fhLa1Zi6W4FZXnJOI0GHwYD7256CJ1oTKhjfrIF1-_PzSnHmOw6e_cP-nh3A7WUsQHTahf3rXem4jyOBkOY0zJS00eo-ChoTB0HSZtYHwk-jgSR6eCuW8o-BDH_-eP_2as_Y_b9EbsCabtVcLbvjGvDGKQHsPYuBA_6IWSMxO4e3KchdvdADPcgyt4c_6AH0f3gk7936QGk</recordid><startdate>20151125</startdate><enddate>20151125</enddate><creator>Mochizuki-Kawai, Hiroko</creator><creator>Niki, Tomoko</creator><creator>Shibuya, Kenichi</creator><creator>Ichimura, Kazuo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151125</creationdate><title>Programmed Cell Death Progresses Differentially in Epidermal and Mesophyll Cells of Lily Petals</title><author>Mochizuki-Kawai, Hiroko ; Niki, Tomoko ; Shibuya, Kenichi ; Ichimura, Kazuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-ba1b94de0511897461f8f065e182be2537ced69469ebb5ead631648fc060d5623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aging - genetics</topic><topic>Alstroemeria</topic><topic>Apoptosis</topic><topic>Apoptosis - genetics</topic><topic>Arabidopsis</topic><topic>Biochemistry</topic><topic>Cell death</topic><topic>Cell Survival - genetics</topic><topic>Cysteine</topic><topic>Cysteine proteinase</topic><topic>Deoxyribonucleic acid</topic><topic>Dianthus caryophyllus</topic><topic>DNA</topic><topic>DNA Fragmentation</topic><topic>Enzymes</topic><topic>Flowers</topic><topic>Flowers &amp; plants</topic><topic>Flowers - genetics</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Hemerocallis</topic><topic>Homology</topic><topic>Ipomoea nil</topic><topic>Lilium</topic><topic>Lilium - genetics</topic><topic>Lilium - metabolism</topic><topic>Lilium longiflorum</topic><topic>Mesophyll</topic><topic>Mesophyll Cells - metabolism</topic><topic>Nitrogen - metabolism</topic><topic>Nuclease</topic><topic>Peptide Hydrolases - metabolism</topic><topic>Petals</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Proteinase</topic><topic>Risk factors</topic><topic>Seeds</topic><topic>Senescence</topic><topic>Time lag</topic><topic>Wilting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mochizuki-Kawai, Hiroko</creatorcontrib><creatorcontrib>Niki, Tomoko</creatorcontrib><creatorcontrib>Shibuya, Kenichi</creatorcontrib><creatorcontrib>Ichimura, Kazuo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mochizuki-Kawai, Hiroko</au><au>Niki, Tomoko</au><au>Shibuya, Kenichi</au><au>Ichimura, Kazuo</au><au>Kalaitzis, Panagiotis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Programmed Cell Death Progresses Differentially in Epidermal and Mesophyll Cells of Lily Petals</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-11-25</date><risdate>2015</risdate><volume>10</volume><issue>11</issue><spage>e0143502</spage><epage>e0143502</epage><pages>e0143502-e0143502</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In the petals of some species of flowers, programmed cell death (PCD) begins earlier in mesophyll cells than in epidermal cells. However, PCD progression in each cell type has not been characterized in detail. We separately constructed a time course of biochemical signs and expression patterns of PCD-associated genes in epidermal and mesophyll cells in Lilium cv. Yelloween petals. Before visible signs of senescence could be observed, we found signs of PCD, including DNA degradation and decreased protein content in mesophyll cells only. In these cells, the total proteinase activity increased on the day after anthesis. Within 3 days after anthesis, the protein content decreased by 61.8%, and 22.8% of mesophyll cells was lost. A second peak of proteinase activity was observed on day 6, and the number of mesophyll cells decreased again from days 4 to 7. These biochemical and morphological results suggest that PCD progressed in steps during flower life in the mesophyll cells. PCD began in epidermal cells on day 5, in temporal synchrony with the time course of visible senescence. In the mesophyll cells, the KDEL-tailed cysteine proteinase (LoCYP) and S1/P1 nuclease (LoNUC) genes were upregulated before petal wilting, earlier than in epidermal cells. In contrast, relative to that in the mesophyll cells, the expression of the SAG12 cysteine proteinase homolog (LoSAG12) drastically increased in epidermal cells in the final stage of senescence. These results suggest that multiple PCD-associated genes differentially contribute to the time lag of PCD progression between epidermal and mesophyll cells of lily petals.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26605547</pmid><doi>10.1371/journal.pone.0143502</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-11, Vol.10 (11), p.e0143502-e0143502
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1736408128
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Aging - genetics
Alstroemeria
Apoptosis
Apoptosis - genetics
Arabidopsis
Biochemistry
Cell death
Cell Survival - genetics
Cysteine
Cysteine proteinase
Deoxyribonucleic acid
Dianthus caryophyllus
DNA
DNA Fragmentation
Enzymes
Flowers
Flowers & plants
Flowers - genetics
Gene expression
Gene Expression Regulation, Plant
Genes
Hemerocallis
Homology
Ipomoea nil
Lilium
Lilium - genetics
Lilium - metabolism
Lilium longiflorum
Mesophyll
Mesophyll Cells - metabolism
Nitrogen - metabolism
Nuclease
Peptide Hydrolases - metabolism
Petals
Plant Proteins - genetics
Plant Proteins - metabolism
Proteinase
Risk factors
Seeds
Senescence
Time lag
Wilting
title Programmed Cell Death Progresses Differentially in Epidermal and Mesophyll Cells of Lily Petals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T09%3A00%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Programmed%20Cell%20Death%20Progresses%20Differentially%20in%20Epidermal%20and%20Mesophyll%20Cells%20of%20Lily%20Petals&rft.jtitle=PloS%20one&rft.au=Mochizuki-Kawai,%20Hiroko&rft.date=2015-11-25&rft.volume=10&rft.issue=11&rft.spage=e0143502&rft.epage=e0143502&rft.pages=e0143502-e0143502&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0143502&rft_dat=%3Cgale_plos_%3EA435601849%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1736408128&rft_id=info:pmid/26605547&rft_galeid=A435601849&rft_doaj_id=oai_doaj_org_article_1abdefed46344408bb746376bfa91721&rfr_iscdi=true