Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi
Phytopathogenic ascomycete fungi possess huge effector repertoires that are dominated by hundreds of sequence-unrelated small secreted proteins. The molecular function of these effectors and the evolutionary mechanisms that generate this tremendous number of singleton genes are largely unknown. To g...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2015-10, Vol.11 (10), p.e1005228-e1005228 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1005228 |
---|---|
container_issue | 10 |
container_start_page | e1005228 |
container_title | PLoS pathogens |
container_volume | 11 |
creator | de Guillen, Karine Ortiz-Vallejo, Diana Gracy, Jérome Fournier, Elisabeth Kroj, Thomas Padilla, André |
description | Phytopathogenic ascomycete fungi possess huge effector repertoires that are dominated by hundreds of sequence-unrelated small secreted proteins. The molecular function of these effectors and the evolutionary mechanisms that generate this tremendous number of singleton genes are largely unknown. To get a deeper understanding of fungal effectors, we determined by NMR spectroscopy the 3-dimensional structures of the Magnaporthe oryzae effectors AVR1-CO39 and AVR-Pia. Despite a lack of sequence similarity, both proteins have very similar 6 β-sandwich structures that are stabilized in both cases by a disulfide bridge between 2 conserved cysteins located in similar positions of the proteins. Structural similarity searches revealed that AvrPiz-t, another effector from M. oryzae, and ToxB, an effector of the wheat tan spot pathogen Pyrenophora tritici-repentis have the same structures suggesting the existence of a family of sequence-unrelated but structurally conserved fungal effectors that we named MAX-effectors (Magnaporthe Avrs and ToxB like). Structure-informed pattern searches strengthened this hypothesis by identifying MAX-effector candidates in a broad range of ascomycete phytopathogens. Strong expansion of the MAX-effector family was detected in M. oryzae and M. grisea where they seem to be particularly important since they account for 5-10% of the effector repertoire and 50% of the cloned avirulence effectors. Expression analysis indicated that the majority of M. oryzae MAX-effectors are expressed specifically during early infection suggesting important functions during biotrophic host colonization. We hypothesize that the scenario observed for MAX-effectors can serve as a paradigm for ascomycete effector diversity and that the enormous number of sequence-unrelated ascomycete effectors may in fact belong to a restricted set of structurally conserved effector families. |
doi_str_mv | 10.1371/journal.ppat.1005228 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1733657950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A434689191</galeid><doaj_id>oai_doaj_org_article_c8a92c60cecf439e84e207741966a6f2</doaj_id><sourcerecordid>A434689191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c733t-5037ac5acf4338e51091d2bf74c856fdf333e591b59c0666e0a3b9d73d61f5203</originalsourceid><addsrcrecordid>eNqVkk2P0zAQhiMEYpeFf4AgEhf20OLvJBekqmxppQoQy54t1xmnXqVxsZ2K_nsc2q62iAvKwfHM875jjyfLXmM0xrTAH-5d7zvVjrdbFccYIU5I-SS7xJzTUUEL9vTR_0X2IoR7hBimWDzPLojgSCCELrPtbfS9jr2HfJLc9sGG_K7Tbgc-5Cqf22bd7vNPdthDvupjfhKoNiWmrgvgd1DnN8aAjs7nM7WxKWO7_Nt6H1063do10Fmdz_qusS-zZ0a1AV4d16vsbnbzYzofLb9-Xkwny5EuKI0jjmihNFfaMEpL4BhVuCYrUzBdcmFqQykFXuEVrzQSQgBSdFXVBa0FNpwgepW9PfhuWxfksVlB4uQueFHxgVgciNqpe7n1dqP8Xjpl5Z-A841UPlrdgtSlqogWSMNwngpKBgQVBcOVEEoYkrw-Hqv1qw3UGrqYGnRmep7p7Fo2bieZIIyQweD6YLD-SzafLOUQQ0RQRgTa4cS-Pxbz7mcPIcqNDRraVnXg-uGOpCRckEIk9N0BbVS6hu2MS9X1gMsJo0yUFa4Gw_E_qPTVsLHadWBsip8Jrs8EiYnwKzaqD0Eubr__B_vlnGUHVnsXggfz0AqM5DD1p4eUw9TL49Qn2ZvH3X8Qncac_gaa7f3Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728256276</pqid></control><display><type>article</type><title>Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><creator>de Guillen, Karine ; Ortiz-Vallejo, Diana ; Gracy, Jérome ; Fournier, Elisabeth ; Kroj, Thomas ; Padilla, André</creator><creatorcontrib>de Guillen, Karine ; Ortiz-Vallejo, Diana ; Gracy, Jérome ; Fournier, Elisabeth ; Kroj, Thomas ; Padilla, André</creatorcontrib><description>Phytopathogenic ascomycete fungi possess huge effector repertoires that are dominated by hundreds of sequence-unrelated small secreted proteins. The molecular function of these effectors and the evolutionary mechanisms that generate this tremendous number of singleton genes are largely unknown. To get a deeper understanding of fungal effectors, we determined by NMR spectroscopy the 3-dimensional structures of the Magnaporthe oryzae effectors AVR1-CO39 and AVR-Pia. Despite a lack of sequence similarity, both proteins have very similar 6 β-sandwich structures that are stabilized in both cases by a disulfide bridge between 2 conserved cysteins located in similar positions of the proteins. Structural similarity searches revealed that AvrPiz-t, another effector from M. oryzae, and ToxB, an effector of the wheat tan spot pathogen Pyrenophora tritici-repentis have the same structures suggesting the existence of a family of sequence-unrelated but structurally conserved fungal effectors that we named MAX-effectors (Magnaporthe Avrs and ToxB like). Structure-informed pattern searches strengthened this hypothesis by identifying MAX-effector candidates in a broad range of ascomycete phytopathogens. Strong expansion of the MAX-effector family was detected in M. oryzae and M. grisea where they seem to be particularly important since they account for 5-10% of the effector repertoire and 50% of the cloned avirulence effectors. Expression analysis indicated that the majority of M. oryzae MAX-effectors are expressed specifically during early infection suggesting important functions during biotrophic host colonization. We hypothesize that the scenario observed for MAX-effectors can serve as a paradigm for ascomycete effector diversity and that the enormous number of sequence-unrelated ascomycete effectors may in fact belong to a restricted set of structurally conserved effector families.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1005228</identifier><identifier>PMID: 26506000</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Sequence ; Analysis ; Ascomycota - chemistry ; Ascomycota - pathogenicity ; Cloning ; Fungal Proteins - chemistry ; Fungi ; Fungi, Phytopathogenic ; Genomes ; Health aspects ; Hypotheses ; Immune response ; Infections ; Life Sciences ; Magnetic Resonance Spectroscopy ; Molecular Sequence Data ; Nuclear magnetic resonance spectroscopy ; Pathogens ; Physiological aspects ; Phytopathology and phytopharmacy ; Protein Structure, Secondary ; Proteins ; Vegetal Biology</subject><ispartof>PLoS pathogens, 2015-10, Vol.11 (10), p.e1005228-e1005228</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2015 de Guillen et al 2015 de Guillen et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: de Guillen K, Ortiz-Vallejo D, Gracy J, Fournier E, Kroj T, Padilla A (2015) Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi. PLoS Pathog 11(10): e1005228. doi:10.1371/journal.ppat.1005228</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c733t-5037ac5acf4338e51091d2bf74c856fdf333e591b59c0666e0a3b9d73d61f5203</citedby><cites>FETCH-LOGICAL-c733t-5037ac5acf4338e51091d2bf74c856fdf333e591b59c0666e0a3b9d73d61f5203</cites><orcidid>0000-0002-3752-1788 ; 0000-0002-5037-2115 ; 0000-0001-6120-5788 ; 0000-0001-9702-4612 ; 0000-0001-6959-1855 ; 0000-0002-9778-0327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4624222/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4624222/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26506000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02634260$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>de Guillen, Karine</creatorcontrib><creatorcontrib>Ortiz-Vallejo, Diana</creatorcontrib><creatorcontrib>Gracy, Jérome</creatorcontrib><creatorcontrib>Fournier, Elisabeth</creatorcontrib><creatorcontrib>Kroj, Thomas</creatorcontrib><creatorcontrib>Padilla, André</creatorcontrib><title>Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Phytopathogenic ascomycete fungi possess huge effector repertoires that are dominated by hundreds of sequence-unrelated small secreted proteins. The molecular function of these effectors and the evolutionary mechanisms that generate this tremendous number of singleton genes are largely unknown. To get a deeper understanding of fungal effectors, we determined by NMR spectroscopy the 3-dimensional structures of the Magnaporthe oryzae effectors AVR1-CO39 and AVR-Pia. Despite a lack of sequence similarity, both proteins have very similar 6 β-sandwich structures that are stabilized in both cases by a disulfide bridge between 2 conserved cysteins located in similar positions of the proteins. Structural similarity searches revealed that AvrPiz-t, another effector from M. oryzae, and ToxB, an effector of the wheat tan spot pathogen Pyrenophora tritici-repentis have the same structures suggesting the existence of a family of sequence-unrelated but structurally conserved fungal effectors that we named MAX-effectors (Magnaporthe Avrs and ToxB like). Structure-informed pattern searches strengthened this hypothesis by identifying MAX-effector candidates in a broad range of ascomycete phytopathogens. Strong expansion of the MAX-effector family was detected in M. oryzae and M. grisea where they seem to be particularly important since they account for 5-10% of the effector repertoire and 50% of the cloned avirulence effectors. Expression analysis indicated that the majority of M. oryzae MAX-effectors are expressed specifically during early infection suggesting important functions during biotrophic host colonization. We hypothesize that the scenario observed for MAX-effectors can serve as a paradigm for ascomycete effector diversity and that the enormous number of sequence-unrelated ascomycete effectors may in fact belong to a restricted set of structurally conserved effector families.</description><subject>Amino Acid Sequence</subject><subject>Analysis</subject><subject>Ascomycota - chemistry</subject><subject>Ascomycota - pathogenicity</subject><subject>Cloning</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungi</subject><subject>Fungi, Phytopathogenic</subject><subject>Genomes</subject><subject>Health aspects</subject><subject>Hypotheses</subject><subject>Immune response</subject><subject>Infections</subject><subject>Life Sciences</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Molecular Sequence Data</subject><subject>Nuclear magnetic resonance spectroscopy</subject><subject>Pathogens</subject><subject>Physiological aspects</subject><subject>Phytopathology and phytopharmacy</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Vegetal Biology</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk2P0zAQhiMEYpeFf4AgEhf20OLvJBekqmxppQoQy54t1xmnXqVxsZ2K_nsc2q62iAvKwfHM875jjyfLXmM0xrTAH-5d7zvVjrdbFccYIU5I-SS7xJzTUUEL9vTR_0X2IoR7hBimWDzPLojgSCCELrPtbfS9jr2HfJLc9sGG_K7Tbgc-5Cqf22bd7vNPdthDvupjfhKoNiWmrgvgd1DnN8aAjs7nM7WxKWO7_Nt6H1063do10Fmdz_qusS-zZ0a1AV4d16vsbnbzYzofLb9-Xkwny5EuKI0jjmihNFfaMEpL4BhVuCYrUzBdcmFqQykFXuEVrzQSQgBSdFXVBa0FNpwgepW9PfhuWxfksVlB4uQueFHxgVgciNqpe7n1dqP8Xjpl5Z-A841UPlrdgtSlqogWSMNwngpKBgQVBcOVEEoYkrw-Hqv1qw3UGrqYGnRmep7p7Fo2bieZIIyQweD6YLD-SzafLOUQQ0RQRgTa4cS-Pxbz7mcPIcqNDRraVnXg-uGOpCRckEIk9N0BbVS6hu2MS9X1gMsJo0yUFa4Gw_E_qPTVsLHadWBsip8Jrs8EiYnwKzaqD0Eubr__B_vlnGUHVnsXggfz0AqM5DD1p4eUw9TL49Qn2ZvH3X8Qncac_gaa7f3Y</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>de Guillen, Karine</creator><creator>Ortiz-Vallejo, Diana</creator><creator>Gracy, Jérome</creator><creator>Fournier, Elisabeth</creator><creator>Kroj, Thomas</creator><creator>Padilla, André</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3752-1788</orcidid><orcidid>https://orcid.org/0000-0002-5037-2115</orcidid><orcidid>https://orcid.org/0000-0001-6120-5788</orcidid><orcidid>https://orcid.org/0000-0001-9702-4612</orcidid><orcidid>https://orcid.org/0000-0001-6959-1855</orcidid><orcidid>https://orcid.org/0000-0002-9778-0327</orcidid></search><sort><creationdate>20151001</creationdate><title>Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi</title><author>de Guillen, Karine ; Ortiz-Vallejo, Diana ; Gracy, Jérome ; Fournier, Elisabeth ; Kroj, Thomas ; Padilla, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c733t-5037ac5acf4338e51091d2bf74c856fdf333e591b59c0666e0a3b9d73d61f5203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Sequence</topic><topic>Analysis</topic><topic>Ascomycota - chemistry</topic><topic>Ascomycota - pathogenicity</topic><topic>Cloning</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungi</topic><topic>Fungi, Phytopathogenic</topic><topic>Genomes</topic><topic>Health aspects</topic><topic>Hypotheses</topic><topic>Immune response</topic><topic>Infections</topic><topic>Life Sciences</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Molecular Sequence Data</topic><topic>Nuclear magnetic resonance spectroscopy</topic><topic>Pathogens</topic><topic>Physiological aspects</topic><topic>Phytopathology and phytopharmacy</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Guillen, Karine</creatorcontrib><creatorcontrib>Ortiz-Vallejo, Diana</creatorcontrib><creatorcontrib>Gracy, Jérome</creatorcontrib><creatorcontrib>Fournier, Elisabeth</creatorcontrib><creatorcontrib>Kroj, Thomas</creatorcontrib><creatorcontrib>Padilla, André</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Guillen, Karine</au><au>Ortiz-Vallejo, Diana</au><au>Gracy, Jérome</au><au>Fournier, Elisabeth</au><au>Kroj, Thomas</au><au>Padilla, André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>11</volume><issue>10</issue><spage>e1005228</spage><epage>e1005228</epage><pages>e1005228-e1005228</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Phytopathogenic ascomycete fungi possess huge effector repertoires that are dominated by hundreds of sequence-unrelated small secreted proteins. The molecular function of these effectors and the evolutionary mechanisms that generate this tremendous number of singleton genes are largely unknown. To get a deeper understanding of fungal effectors, we determined by NMR spectroscopy the 3-dimensional structures of the Magnaporthe oryzae effectors AVR1-CO39 and AVR-Pia. Despite a lack of sequence similarity, both proteins have very similar 6 β-sandwich structures that are stabilized in both cases by a disulfide bridge between 2 conserved cysteins located in similar positions of the proteins. Structural similarity searches revealed that AvrPiz-t, another effector from M. oryzae, and ToxB, an effector of the wheat tan spot pathogen Pyrenophora tritici-repentis have the same structures suggesting the existence of a family of sequence-unrelated but structurally conserved fungal effectors that we named MAX-effectors (Magnaporthe Avrs and ToxB like). Structure-informed pattern searches strengthened this hypothesis by identifying MAX-effector candidates in a broad range of ascomycete phytopathogens. Strong expansion of the MAX-effector family was detected in M. oryzae and M. grisea where they seem to be particularly important since they account for 5-10% of the effector repertoire and 50% of the cloned avirulence effectors. Expression analysis indicated that the majority of M. oryzae MAX-effectors are expressed specifically during early infection suggesting important functions during biotrophic host colonization. We hypothesize that the scenario observed for MAX-effectors can serve as a paradigm for ascomycete effector diversity and that the enormous number of sequence-unrelated ascomycete effectors may in fact belong to a restricted set of structurally conserved effector families.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26506000</pmid><doi>10.1371/journal.ppat.1005228</doi><orcidid>https://orcid.org/0000-0002-3752-1788</orcidid><orcidid>https://orcid.org/0000-0002-5037-2115</orcidid><orcidid>https://orcid.org/0000-0001-6120-5788</orcidid><orcidid>https://orcid.org/0000-0001-9702-4612</orcidid><orcidid>https://orcid.org/0000-0001-6959-1855</orcidid><orcidid>https://orcid.org/0000-0002-9778-0327</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2015-10, Vol.11 (10), p.e1005228-e1005228 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_1733657950 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Public Library of Science (PLoS) |
subjects | Amino Acid Sequence Analysis Ascomycota - chemistry Ascomycota - pathogenicity Cloning Fungal Proteins - chemistry Fungi Fungi, Phytopathogenic Genomes Health aspects Hypotheses Immune response Infections Life Sciences Magnetic Resonance Spectroscopy Molecular Sequence Data Nuclear magnetic resonance spectroscopy Pathogens Physiological aspects Phytopathology and phytopharmacy Protein Structure, Secondary Proteins Vegetal Biology |
title | Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20Analysis%20Uncovers%20a%20Highly%20Diverse%20but%20Structurally%20Conserved%20Effector%20Family%20in%20Phytopathogenic%20Fungi&rft.jtitle=PLoS%20pathogens&rft.au=de%20Guillen,%20Karine&rft.date=2015-10-01&rft.volume=11&rft.issue=10&rft.spage=e1005228&rft.epage=e1005228&rft.pages=e1005228-e1005228&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1005228&rft_dat=%3Cgale_plos_%3EA434689191%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1728256276&rft_id=info:pmid/26506000&rft_galeid=A434689191&rft_doaj_id=oai_doaj_org_article_c8a92c60cecf439e84e207741966a6f2&rfr_iscdi=true |