Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi

Phytopathogenic ascomycete fungi possess huge effector repertoires that are dominated by hundreds of sequence-unrelated small secreted proteins. The molecular function of these effectors and the evolutionary mechanisms that generate this tremendous number of singleton genes are largely unknown. To g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2015-10, Vol.11 (10), p.e1005228-e1005228
Hauptverfasser: de Guillen, Karine, Ortiz-Vallejo, Diana, Gracy, Jérome, Fournier, Elisabeth, Kroj, Thomas, Padilla, André
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1005228
container_issue 10
container_start_page e1005228
container_title PLoS pathogens
container_volume 11
creator de Guillen, Karine
Ortiz-Vallejo, Diana
Gracy, Jérome
Fournier, Elisabeth
Kroj, Thomas
Padilla, André
description Phytopathogenic ascomycete fungi possess huge effector repertoires that are dominated by hundreds of sequence-unrelated small secreted proteins. The molecular function of these effectors and the evolutionary mechanisms that generate this tremendous number of singleton genes are largely unknown. To get a deeper understanding of fungal effectors, we determined by NMR spectroscopy the 3-dimensional structures of the Magnaporthe oryzae effectors AVR1-CO39 and AVR-Pia. Despite a lack of sequence similarity, both proteins have very similar 6 β-sandwich structures that are stabilized in both cases by a disulfide bridge between 2 conserved cysteins located in similar positions of the proteins. Structural similarity searches revealed that AvrPiz-t, another effector from M. oryzae, and ToxB, an effector of the wheat tan spot pathogen Pyrenophora tritici-repentis have the same structures suggesting the existence of a family of sequence-unrelated but structurally conserved fungal effectors that we named MAX-effectors (Magnaporthe Avrs and ToxB like). Structure-informed pattern searches strengthened this hypothesis by identifying MAX-effector candidates in a broad range of ascomycete phytopathogens. Strong expansion of the MAX-effector family was detected in M. oryzae and M. grisea where they seem to be particularly important since they account for 5-10% of the effector repertoire and 50% of the cloned avirulence effectors. Expression analysis indicated that the majority of M. oryzae MAX-effectors are expressed specifically during early infection suggesting important functions during biotrophic host colonization. We hypothesize that the scenario observed for MAX-effectors can serve as a paradigm for ascomycete effector diversity and that the enormous number of sequence-unrelated ascomycete effectors may in fact belong to a restricted set of structurally conserved effector families.
doi_str_mv 10.1371/journal.ppat.1005228
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1733657950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A434689191</galeid><doaj_id>oai_doaj_org_article_c8a92c60cecf439e84e207741966a6f2</doaj_id><sourcerecordid>A434689191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c733t-5037ac5acf4338e51091d2bf74c856fdf333e591b59c0666e0a3b9d73d61f5203</originalsourceid><addsrcrecordid>eNqVkk2P0zAQhiMEYpeFf4AgEhf20OLvJBekqmxppQoQy54t1xmnXqVxsZ2K_nsc2q62iAvKwfHM875jjyfLXmM0xrTAH-5d7zvVjrdbFccYIU5I-SS7xJzTUUEL9vTR_0X2IoR7hBimWDzPLojgSCCELrPtbfS9jr2HfJLc9sGG_K7Tbgc-5Cqf22bd7vNPdthDvupjfhKoNiWmrgvgd1DnN8aAjs7nM7WxKWO7_Nt6H1063do10Fmdz_qusS-zZ0a1AV4d16vsbnbzYzofLb9-Xkwny5EuKI0jjmihNFfaMEpL4BhVuCYrUzBdcmFqQykFXuEVrzQSQgBSdFXVBa0FNpwgepW9PfhuWxfksVlB4uQueFHxgVgciNqpe7n1dqP8Xjpl5Z-A841UPlrdgtSlqogWSMNwngpKBgQVBcOVEEoYkrw-Hqv1qw3UGrqYGnRmep7p7Fo2bieZIIyQweD6YLD-SzafLOUQQ0RQRgTa4cS-Pxbz7mcPIcqNDRraVnXg-uGOpCRckEIk9N0BbVS6hu2MS9X1gMsJo0yUFa4Gw_E_qPTVsLHadWBsip8Jrs8EiYnwKzaqD0Eubr__B_vlnGUHVnsXggfz0AqM5DD1p4eUw9TL49Qn2ZvH3X8Qncac_gaa7f3Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728256276</pqid></control><display><type>article</type><title>Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><creator>de Guillen, Karine ; Ortiz-Vallejo, Diana ; Gracy, Jérome ; Fournier, Elisabeth ; Kroj, Thomas ; Padilla, André</creator><creatorcontrib>de Guillen, Karine ; Ortiz-Vallejo, Diana ; Gracy, Jérome ; Fournier, Elisabeth ; Kroj, Thomas ; Padilla, André</creatorcontrib><description>Phytopathogenic ascomycete fungi possess huge effector repertoires that are dominated by hundreds of sequence-unrelated small secreted proteins. The molecular function of these effectors and the evolutionary mechanisms that generate this tremendous number of singleton genes are largely unknown. To get a deeper understanding of fungal effectors, we determined by NMR spectroscopy the 3-dimensional structures of the Magnaporthe oryzae effectors AVR1-CO39 and AVR-Pia. Despite a lack of sequence similarity, both proteins have very similar 6 β-sandwich structures that are stabilized in both cases by a disulfide bridge between 2 conserved cysteins located in similar positions of the proteins. Structural similarity searches revealed that AvrPiz-t, another effector from M. oryzae, and ToxB, an effector of the wheat tan spot pathogen Pyrenophora tritici-repentis have the same structures suggesting the existence of a family of sequence-unrelated but structurally conserved fungal effectors that we named MAX-effectors (Magnaporthe Avrs and ToxB like). Structure-informed pattern searches strengthened this hypothesis by identifying MAX-effector candidates in a broad range of ascomycete phytopathogens. Strong expansion of the MAX-effector family was detected in M. oryzae and M. grisea where they seem to be particularly important since they account for 5-10% of the effector repertoire and 50% of the cloned avirulence effectors. Expression analysis indicated that the majority of M. oryzae MAX-effectors are expressed specifically during early infection suggesting important functions during biotrophic host colonization. We hypothesize that the scenario observed for MAX-effectors can serve as a paradigm for ascomycete effector diversity and that the enormous number of sequence-unrelated ascomycete effectors may in fact belong to a restricted set of structurally conserved effector families.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1005228</identifier><identifier>PMID: 26506000</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Sequence ; Analysis ; Ascomycota - chemistry ; Ascomycota - pathogenicity ; Cloning ; Fungal Proteins - chemistry ; Fungi ; Fungi, Phytopathogenic ; Genomes ; Health aspects ; Hypotheses ; Immune response ; Infections ; Life Sciences ; Magnetic Resonance Spectroscopy ; Molecular Sequence Data ; Nuclear magnetic resonance spectroscopy ; Pathogens ; Physiological aspects ; Phytopathology and phytopharmacy ; Protein Structure, Secondary ; Proteins ; Vegetal Biology</subject><ispartof>PLoS pathogens, 2015-10, Vol.11 (10), p.e1005228-e1005228</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2015 de Guillen et al 2015 de Guillen et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: de Guillen K, Ortiz-Vallejo D, Gracy J, Fournier E, Kroj T, Padilla A (2015) Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi. PLoS Pathog 11(10): e1005228. doi:10.1371/journal.ppat.1005228</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c733t-5037ac5acf4338e51091d2bf74c856fdf333e591b59c0666e0a3b9d73d61f5203</citedby><cites>FETCH-LOGICAL-c733t-5037ac5acf4338e51091d2bf74c856fdf333e591b59c0666e0a3b9d73d61f5203</cites><orcidid>0000-0002-3752-1788 ; 0000-0002-5037-2115 ; 0000-0001-6120-5788 ; 0000-0001-9702-4612 ; 0000-0001-6959-1855 ; 0000-0002-9778-0327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4624222/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4624222/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26506000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02634260$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>de Guillen, Karine</creatorcontrib><creatorcontrib>Ortiz-Vallejo, Diana</creatorcontrib><creatorcontrib>Gracy, Jérome</creatorcontrib><creatorcontrib>Fournier, Elisabeth</creatorcontrib><creatorcontrib>Kroj, Thomas</creatorcontrib><creatorcontrib>Padilla, André</creatorcontrib><title>Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Phytopathogenic ascomycete fungi possess huge effector repertoires that are dominated by hundreds of sequence-unrelated small secreted proteins. The molecular function of these effectors and the evolutionary mechanisms that generate this tremendous number of singleton genes are largely unknown. To get a deeper understanding of fungal effectors, we determined by NMR spectroscopy the 3-dimensional structures of the Magnaporthe oryzae effectors AVR1-CO39 and AVR-Pia. Despite a lack of sequence similarity, both proteins have very similar 6 β-sandwich structures that are stabilized in both cases by a disulfide bridge between 2 conserved cysteins located in similar positions of the proteins. Structural similarity searches revealed that AvrPiz-t, another effector from M. oryzae, and ToxB, an effector of the wheat tan spot pathogen Pyrenophora tritici-repentis have the same structures suggesting the existence of a family of sequence-unrelated but structurally conserved fungal effectors that we named MAX-effectors (Magnaporthe Avrs and ToxB like). Structure-informed pattern searches strengthened this hypothesis by identifying MAX-effector candidates in a broad range of ascomycete phytopathogens. Strong expansion of the MAX-effector family was detected in M. oryzae and M. grisea where they seem to be particularly important since they account for 5-10% of the effector repertoire and 50% of the cloned avirulence effectors. Expression analysis indicated that the majority of M. oryzae MAX-effectors are expressed specifically during early infection suggesting important functions during biotrophic host colonization. We hypothesize that the scenario observed for MAX-effectors can serve as a paradigm for ascomycete effector diversity and that the enormous number of sequence-unrelated ascomycete effectors may in fact belong to a restricted set of structurally conserved effector families.</description><subject>Amino Acid Sequence</subject><subject>Analysis</subject><subject>Ascomycota - chemistry</subject><subject>Ascomycota - pathogenicity</subject><subject>Cloning</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungi</subject><subject>Fungi, Phytopathogenic</subject><subject>Genomes</subject><subject>Health aspects</subject><subject>Hypotheses</subject><subject>Immune response</subject><subject>Infections</subject><subject>Life Sciences</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Molecular Sequence Data</subject><subject>Nuclear magnetic resonance spectroscopy</subject><subject>Pathogens</subject><subject>Physiological aspects</subject><subject>Phytopathology and phytopharmacy</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Vegetal Biology</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk2P0zAQhiMEYpeFf4AgEhf20OLvJBekqmxppQoQy54t1xmnXqVxsZ2K_nsc2q62iAvKwfHM875jjyfLXmM0xrTAH-5d7zvVjrdbFccYIU5I-SS7xJzTUUEL9vTR_0X2IoR7hBimWDzPLojgSCCELrPtbfS9jr2HfJLc9sGG_K7Tbgc-5Cqf22bd7vNPdthDvupjfhKoNiWmrgvgd1DnN8aAjs7nM7WxKWO7_Nt6H1063do10Fmdz_qusS-zZ0a1AV4d16vsbnbzYzofLb9-Xkwny5EuKI0jjmihNFfaMEpL4BhVuCYrUzBdcmFqQykFXuEVrzQSQgBSdFXVBa0FNpwgepW9PfhuWxfksVlB4uQueFHxgVgciNqpe7n1dqP8Xjpl5Z-A841UPlrdgtSlqogWSMNwngpKBgQVBcOVEEoYkrw-Hqv1qw3UGrqYGnRmep7p7Fo2bieZIIyQweD6YLD-SzafLOUQQ0RQRgTa4cS-Pxbz7mcPIcqNDRraVnXg-uGOpCRckEIk9N0BbVS6hu2MS9X1gMsJo0yUFa4Gw_E_qPTVsLHadWBsip8Jrs8EiYnwKzaqD0Eubr__B_vlnGUHVnsXggfz0AqM5DD1p4eUw9TL49Qn2ZvH3X8Qncac_gaa7f3Y</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>de Guillen, Karine</creator><creator>Ortiz-Vallejo, Diana</creator><creator>Gracy, Jérome</creator><creator>Fournier, Elisabeth</creator><creator>Kroj, Thomas</creator><creator>Padilla, André</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3752-1788</orcidid><orcidid>https://orcid.org/0000-0002-5037-2115</orcidid><orcidid>https://orcid.org/0000-0001-6120-5788</orcidid><orcidid>https://orcid.org/0000-0001-9702-4612</orcidid><orcidid>https://orcid.org/0000-0001-6959-1855</orcidid><orcidid>https://orcid.org/0000-0002-9778-0327</orcidid></search><sort><creationdate>20151001</creationdate><title>Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi</title><author>de Guillen, Karine ; Ortiz-Vallejo, Diana ; Gracy, Jérome ; Fournier, Elisabeth ; Kroj, Thomas ; Padilla, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c733t-5037ac5acf4338e51091d2bf74c856fdf333e591b59c0666e0a3b9d73d61f5203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Sequence</topic><topic>Analysis</topic><topic>Ascomycota - chemistry</topic><topic>Ascomycota - pathogenicity</topic><topic>Cloning</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungi</topic><topic>Fungi, Phytopathogenic</topic><topic>Genomes</topic><topic>Health aspects</topic><topic>Hypotheses</topic><topic>Immune response</topic><topic>Infections</topic><topic>Life Sciences</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Molecular Sequence Data</topic><topic>Nuclear magnetic resonance spectroscopy</topic><topic>Pathogens</topic><topic>Physiological aspects</topic><topic>Phytopathology and phytopharmacy</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Guillen, Karine</creatorcontrib><creatorcontrib>Ortiz-Vallejo, Diana</creatorcontrib><creatorcontrib>Gracy, Jérome</creatorcontrib><creatorcontrib>Fournier, Elisabeth</creatorcontrib><creatorcontrib>Kroj, Thomas</creatorcontrib><creatorcontrib>Padilla, André</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Guillen, Karine</au><au>Ortiz-Vallejo, Diana</au><au>Gracy, Jérome</au><au>Fournier, Elisabeth</au><au>Kroj, Thomas</au><au>Padilla, André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>11</volume><issue>10</issue><spage>e1005228</spage><epage>e1005228</epage><pages>e1005228-e1005228</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Phytopathogenic ascomycete fungi possess huge effector repertoires that are dominated by hundreds of sequence-unrelated small secreted proteins. The molecular function of these effectors and the evolutionary mechanisms that generate this tremendous number of singleton genes are largely unknown. To get a deeper understanding of fungal effectors, we determined by NMR spectroscopy the 3-dimensional structures of the Magnaporthe oryzae effectors AVR1-CO39 and AVR-Pia. Despite a lack of sequence similarity, both proteins have very similar 6 β-sandwich structures that are stabilized in both cases by a disulfide bridge between 2 conserved cysteins located in similar positions of the proteins. Structural similarity searches revealed that AvrPiz-t, another effector from M. oryzae, and ToxB, an effector of the wheat tan spot pathogen Pyrenophora tritici-repentis have the same structures suggesting the existence of a family of sequence-unrelated but structurally conserved fungal effectors that we named MAX-effectors (Magnaporthe Avrs and ToxB like). Structure-informed pattern searches strengthened this hypothesis by identifying MAX-effector candidates in a broad range of ascomycete phytopathogens. Strong expansion of the MAX-effector family was detected in M. oryzae and M. grisea where they seem to be particularly important since they account for 5-10% of the effector repertoire and 50% of the cloned avirulence effectors. Expression analysis indicated that the majority of M. oryzae MAX-effectors are expressed specifically during early infection suggesting important functions during biotrophic host colonization. We hypothesize that the scenario observed for MAX-effectors can serve as a paradigm for ascomycete effector diversity and that the enormous number of sequence-unrelated ascomycete effectors may in fact belong to a restricted set of structurally conserved effector families.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26506000</pmid><doi>10.1371/journal.ppat.1005228</doi><orcidid>https://orcid.org/0000-0002-3752-1788</orcidid><orcidid>https://orcid.org/0000-0002-5037-2115</orcidid><orcidid>https://orcid.org/0000-0001-6120-5788</orcidid><orcidid>https://orcid.org/0000-0001-9702-4612</orcidid><orcidid>https://orcid.org/0000-0001-6959-1855</orcidid><orcidid>https://orcid.org/0000-0002-9778-0327</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2015-10, Vol.11 (10), p.e1005228-e1005228
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_1733657950
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Public Library of Science (PLoS)
subjects Amino Acid Sequence
Analysis
Ascomycota - chemistry
Ascomycota - pathogenicity
Cloning
Fungal Proteins - chemistry
Fungi
Fungi, Phytopathogenic
Genomes
Health aspects
Hypotheses
Immune response
Infections
Life Sciences
Magnetic Resonance Spectroscopy
Molecular Sequence Data
Nuclear magnetic resonance spectroscopy
Pathogens
Physiological aspects
Phytopathology and phytopharmacy
Protein Structure, Secondary
Proteins
Vegetal Biology
title Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20Analysis%20Uncovers%20a%20Highly%20Diverse%20but%20Structurally%20Conserved%20Effector%20Family%20in%20Phytopathogenic%20Fungi&rft.jtitle=PLoS%20pathogens&rft.au=de%20Guillen,%20Karine&rft.date=2015-10-01&rft.volume=11&rft.issue=10&rft.spage=e1005228&rft.epage=e1005228&rft.pages=e1005228-e1005228&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1005228&rft_dat=%3Cgale_plos_%3EA434689191%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1728256276&rft_id=info:pmid/26506000&rft_galeid=A434689191&rft_doaj_id=oai_doaj_org_article_c8a92c60cecf439e84e207741966a6f2&rfr_iscdi=true