Phospho-dependent Regulation of SAMHD1 Oligomerisation Couples Catalysis and Restriction

SAMHD1 restricts HIV-1 infection of myeloid-lineage and resting CD4+ T-cells. Most likely this occurs through deoxynucleoside triphosphate triphosphohydrolase activity that reduces cellular dNTP to a level where reverse transcriptase cannot function, although alternative mechanisms have been propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2015-10, Vol.11 (10), p.e1005194-e1005194
Hauptverfasser: Arnold, Laurence H, Groom, Harriet C T, Kunzelmann, Simone, Schwefel, David, Caswell, Sarah J, Ordonez, Paula, Mann, Melanie C, Rueschenbaum, Sabrina, Goldstone, David C, Pennell, Simon, Howell, Steven A, Stoye, Jonathan P, Webb, Michelle, Taylor, Ian A, Bishop, Kate N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1005194
container_issue 10
container_start_page e1005194
container_title PLoS pathogens
container_volume 11
creator Arnold, Laurence H
Groom, Harriet C T
Kunzelmann, Simone
Schwefel, David
Caswell, Sarah J
Ordonez, Paula
Mann, Melanie C
Rueschenbaum, Sabrina
Goldstone, David C
Pennell, Simon
Howell, Steven A
Stoye, Jonathan P
Webb, Michelle
Taylor, Ian A
Bishop, Kate N
description SAMHD1 restricts HIV-1 infection of myeloid-lineage and resting CD4+ T-cells. Most likely this occurs through deoxynucleoside triphosphate triphosphohydrolase activity that reduces cellular dNTP to a level where reverse transcriptase cannot function, although alternative mechanisms have been proposed recently. Here, we present combined structural and virological data demonstrating that in addition to allosteric activation and triphosphohydrolase activity, restriction correlates with the capacity of SAMHD1 to form "long-lived" enzymatically competent tetramers. Tetramer disruption invariably abolishes restriction but has varied effects on in vitro triphosphohydrolase activity. SAMHD1 phosphorylation also ablates restriction and tetramer formation but without affecting triphosphohydrolase steady-state kinetics. However phospho-SAMHD1 is unable to catalyse dNTP turnover under conditions of nucleotide depletion. Based on our findings we propose a model for phosphorylation-dependent regulation of SAMHD1 activity where dephosphorylation switches housekeeping SAMHD1 found in cycling cells to a high-activity stable tetrameric form that depletes and maintains low levels of dNTPs in differentiated cells.
doi_str_mv 10.1371/journal.ppat.1005194
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1733657328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A434689170</galeid><doaj_id>oai_doaj_org_article_6417b0e1f2764693a511bf12d963870d</doaj_id><sourcerecordid>A434689170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-95ee61c17cd9ced8a3245545cd8a045232a5b7e9d28eb4f356ca9b9ab09e46483</originalsourceid><addsrcrecordid>eNqVkktvEzEUhUcIREvhHyAYiQ0sEvx2vEGKwqORCkUtSOwsj-fOxJEzHuwZRP89HpJWjcQGeWHr-jvHV8e3KJ5jNMdU4rfbMMbO-Hnfm2GOEeJYsQfFKeacziSV7OG980nxJKUtQgxTLB4XJ0QwiglCp8WPr5uQ-k2Y1dBDV0M3lFfQjt4MLnRlaMrr5efz97i89K4NO4gu7W9WYew9pHJlBuNvkkul6eosTUN0diKeFo8a4xM8O-xnxfePH76tzmcXl5_Wq-XFzApKh5niAAJbLG2tLNQLQwnjnHGbj4hxQonhlQRVkwVUrKFcWKMqZSqkgAm2oGfFy71v70PSh1CSxpJSwSUlE7HeE3UwW91HtzPxRgfj9N9CiK02cXDWgxYMywoBbogUTChqOMZVg0mtBF1IVGevd4fXxmoHtc15ReOPTI9vOrfRbfilGVeEYJUNXh8MYvg55rj0ziUL3psOwjj1nb-RIMVoRl_t0dbk1lzXhOxoJ1wvGWViobBEmZr_g8qrhp2zoYPG5fqR4M2RIDMD_B5aM6ak19dX_8F-OWbZnrUxpBShuUsFIz1N7O3n6Gli9WFis-zF_UTvRLcjSv8AnG_mtA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1719420943</pqid></control><display><type>article</type><title>Phospho-dependent Regulation of SAMHD1 Oligomerisation Couples Catalysis and Restriction</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><creator>Arnold, Laurence H ; Groom, Harriet C T ; Kunzelmann, Simone ; Schwefel, David ; Caswell, Sarah J ; Ordonez, Paula ; Mann, Melanie C ; Rueschenbaum, Sabrina ; Goldstone, David C ; Pennell, Simon ; Howell, Steven A ; Stoye, Jonathan P ; Webb, Michelle ; Taylor, Ian A ; Bishop, Kate N</creator><creatorcontrib>Arnold, Laurence H ; Groom, Harriet C T ; Kunzelmann, Simone ; Schwefel, David ; Caswell, Sarah J ; Ordonez, Paula ; Mann, Melanie C ; Rueschenbaum, Sabrina ; Goldstone, David C ; Pennell, Simon ; Howell, Steven A ; Stoye, Jonathan P ; Webb, Michelle ; Taylor, Ian A ; Bishop, Kate N</creatorcontrib><description>SAMHD1 restricts HIV-1 infection of myeloid-lineage and resting CD4+ T-cells. Most likely this occurs through deoxynucleoside triphosphate triphosphohydrolase activity that reduces cellular dNTP to a level where reverse transcriptase cannot function, although alternative mechanisms have been proposed recently. Here, we present combined structural and virological data demonstrating that in addition to allosteric activation and triphosphohydrolase activity, restriction correlates with the capacity of SAMHD1 to form "long-lived" enzymatically competent tetramers. Tetramer disruption invariably abolishes restriction but has varied effects on in vitro triphosphohydrolase activity. SAMHD1 phosphorylation also ablates restriction and tetramer formation but without affecting triphosphohydrolase steady-state kinetics. However phospho-SAMHD1 is unable to catalyse dNTP turnover under conditions of nucleotide depletion. Based on our findings we propose a model for phosphorylation-dependent regulation of SAMHD1 activity where dephosphorylation switches housekeeping SAMHD1 found in cycling cells to a high-activity stable tetrameric form that depletes and maintains low levels of dNTPs in differentiated cells.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1005194</identifier><identifier>PMID: 26431200</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biocatalysis ; Care and treatment ; Catalysis ; Cell Line ; Chromatography, Gel ; Chromatography, High Pressure Liquid ; Complications and side effects ; Crystallography, X-Ray ; Development and progression ; DNA polymerases ; Enzymes ; Experiments ; Flow Cytometry ; Gene mutations ; Health aspects ; HIV infection ; HIV-1 - pathogenicity ; Humans ; Infections ; Molecular weight ; Monomeric GTP-Binding Proteins - chemistry ; Monomeric GTP-Binding Proteins - metabolism ; Phosphorylation ; Protein Conformation ; Proteins ; Reverse Transcriptase Polymerase Chain Reaction ; Risk factors ; SAM Domain and HD Domain-Containing Protein 1 ; Spectrophotometry, Atomic</subject><ispartof>PLoS pathogens, 2015-10, Vol.11 (10), p.e1005194-e1005194</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Arnold et al 2015 Arnold et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Arnold LH, Groom HCT, Kunzelmann S, Schwefel D, Caswell SJ, Ordonez P, et al. (2015) Phospho-dependent Regulation of SAMHD1 Oligomerisation Couples Catalysis and Restriction. PLoS Pathog 11(10): e1005194. doi:10.1371/journal.ppat.1005194</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-95ee61c17cd9ced8a3245545cd8a045232a5b7e9d28eb4f356ca9b9ab09e46483</citedby><cites>FETCH-LOGICAL-c633t-95ee61c17cd9ced8a3245545cd8a045232a5b7e9d28eb4f356ca9b9ab09e46483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4592219/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4592219/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26431200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arnold, Laurence H</creatorcontrib><creatorcontrib>Groom, Harriet C T</creatorcontrib><creatorcontrib>Kunzelmann, Simone</creatorcontrib><creatorcontrib>Schwefel, David</creatorcontrib><creatorcontrib>Caswell, Sarah J</creatorcontrib><creatorcontrib>Ordonez, Paula</creatorcontrib><creatorcontrib>Mann, Melanie C</creatorcontrib><creatorcontrib>Rueschenbaum, Sabrina</creatorcontrib><creatorcontrib>Goldstone, David C</creatorcontrib><creatorcontrib>Pennell, Simon</creatorcontrib><creatorcontrib>Howell, Steven A</creatorcontrib><creatorcontrib>Stoye, Jonathan P</creatorcontrib><creatorcontrib>Webb, Michelle</creatorcontrib><creatorcontrib>Taylor, Ian A</creatorcontrib><creatorcontrib>Bishop, Kate N</creatorcontrib><title>Phospho-dependent Regulation of SAMHD1 Oligomerisation Couples Catalysis and Restriction</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>SAMHD1 restricts HIV-1 infection of myeloid-lineage and resting CD4+ T-cells. Most likely this occurs through deoxynucleoside triphosphate triphosphohydrolase activity that reduces cellular dNTP to a level where reverse transcriptase cannot function, although alternative mechanisms have been proposed recently. Here, we present combined structural and virological data demonstrating that in addition to allosteric activation and triphosphohydrolase activity, restriction correlates with the capacity of SAMHD1 to form "long-lived" enzymatically competent tetramers. Tetramer disruption invariably abolishes restriction but has varied effects on in vitro triphosphohydrolase activity. SAMHD1 phosphorylation also ablates restriction and tetramer formation but without affecting triphosphohydrolase steady-state kinetics. However phospho-SAMHD1 is unable to catalyse dNTP turnover under conditions of nucleotide depletion. Based on our findings we propose a model for phosphorylation-dependent regulation of SAMHD1 activity where dephosphorylation switches housekeeping SAMHD1 found in cycling cells to a high-activity stable tetrameric form that depletes and maintains low levels of dNTPs in differentiated cells.</description><subject>Biocatalysis</subject><subject>Care and treatment</subject><subject>Catalysis</subject><subject>Cell Line</subject><subject>Chromatography, Gel</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Complications and side effects</subject><subject>Crystallography, X-Ray</subject><subject>Development and progression</subject><subject>DNA polymerases</subject><subject>Enzymes</subject><subject>Experiments</subject><subject>Flow Cytometry</subject><subject>Gene mutations</subject><subject>Health aspects</subject><subject>HIV infection</subject><subject>HIV-1 - pathogenicity</subject><subject>Humans</subject><subject>Infections</subject><subject>Molecular weight</subject><subject>Monomeric GTP-Binding Proteins - chemistry</subject><subject>Monomeric GTP-Binding Proteins - metabolism</subject><subject>Phosphorylation</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Risk factors</subject><subject>SAM Domain and HD Domain-Containing Protein 1</subject><subject>Spectrophotometry, Atomic</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktvEzEUhUcIREvhHyAYiQ0sEvx2vEGKwqORCkUtSOwsj-fOxJEzHuwZRP89HpJWjcQGeWHr-jvHV8e3KJ5jNMdU4rfbMMbO-Hnfm2GOEeJYsQfFKeacziSV7OG980nxJKUtQgxTLB4XJ0QwiglCp8WPr5uQ-k2Y1dBDV0M3lFfQjt4MLnRlaMrr5efz97i89K4NO4gu7W9WYew9pHJlBuNvkkul6eosTUN0diKeFo8a4xM8O-xnxfePH76tzmcXl5_Wq-XFzApKh5niAAJbLG2tLNQLQwnjnHGbj4hxQonhlQRVkwVUrKFcWKMqZSqkgAm2oGfFy71v70PSh1CSxpJSwSUlE7HeE3UwW91HtzPxRgfj9N9CiK02cXDWgxYMywoBbogUTChqOMZVg0mtBF1IVGevd4fXxmoHtc15ReOPTI9vOrfRbfilGVeEYJUNXh8MYvg55rj0ziUL3psOwjj1nb-RIMVoRl_t0dbk1lzXhOxoJ1wvGWViobBEmZr_g8qrhp2zoYPG5fqR4M2RIDMD_B5aM6ak19dX_8F-OWbZnrUxpBShuUsFIz1N7O3n6Gli9WFis-zF_UTvRLcjSv8AnG_mtA</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Arnold, Laurence H</creator><creator>Groom, Harriet C T</creator><creator>Kunzelmann, Simone</creator><creator>Schwefel, David</creator><creator>Caswell, Sarah J</creator><creator>Ordonez, Paula</creator><creator>Mann, Melanie C</creator><creator>Rueschenbaum, Sabrina</creator><creator>Goldstone, David C</creator><creator>Pennell, Simon</creator><creator>Howell, Steven A</creator><creator>Stoye, Jonathan P</creator><creator>Webb, Michelle</creator><creator>Taylor, Ian A</creator><creator>Bishop, Kate N</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151001</creationdate><title>Phospho-dependent Regulation of SAMHD1 Oligomerisation Couples Catalysis and Restriction</title><author>Arnold, Laurence H ; Groom, Harriet C T ; Kunzelmann, Simone ; Schwefel, David ; Caswell, Sarah J ; Ordonez, Paula ; Mann, Melanie C ; Rueschenbaum, Sabrina ; Goldstone, David C ; Pennell, Simon ; Howell, Steven A ; Stoye, Jonathan P ; Webb, Michelle ; Taylor, Ian A ; Bishop, Kate N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-95ee61c17cd9ced8a3245545cd8a045232a5b7e9d28eb4f356ca9b9ab09e46483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biocatalysis</topic><topic>Care and treatment</topic><topic>Catalysis</topic><topic>Cell Line</topic><topic>Chromatography, Gel</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Complications and side effects</topic><topic>Crystallography, X-Ray</topic><topic>Development and progression</topic><topic>DNA polymerases</topic><topic>Enzymes</topic><topic>Experiments</topic><topic>Flow Cytometry</topic><topic>Gene mutations</topic><topic>Health aspects</topic><topic>HIV infection</topic><topic>HIV-1 - pathogenicity</topic><topic>Humans</topic><topic>Infections</topic><topic>Molecular weight</topic><topic>Monomeric GTP-Binding Proteins - chemistry</topic><topic>Monomeric GTP-Binding Proteins - metabolism</topic><topic>Phosphorylation</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Risk factors</topic><topic>SAM Domain and HD Domain-Containing Protein 1</topic><topic>Spectrophotometry, Atomic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnold, Laurence H</creatorcontrib><creatorcontrib>Groom, Harriet C T</creatorcontrib><creatorcontrib>Kunzelmann, Simone</creatorcontrib><creatorcontrib>Schwefel, David</creatorcontrib><creatorcontrib>Caswell, Sarah J</creatorcontrib><creatorcontrib>Ordonez, Paula</creatorcontrib><creatorcontrib>Mann, Melanie C</creatorcontrib><creatorcontrib>Rueschenbaum, Sabrina</creatorcontrib><creatorcontrib>Goldstone, David C</creatorcontrib><creatorcontrib>Pennell, Simon</creatorcontrib><creatorcontrib>Howell, Steven A</creatorcontrib><creatorcontrib>Stoye, Jonathan P</creatorcontrib><creatorcontrib>Webb, Michelle</creatorcontrib><creatorcontrib>Taylor, Ian A</creatorcontrib><creatorcontrib>Bishop, Kate N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnold, Laurence H</au><au>Groom, Harriet C T</au><au>Kunzelmann, Simone</au><au>Schwefel, David</au><au>Caswell, Sarah J</au><au>Ordonez, Paula</au><au>Mann, Melanie C</au><au>Rueschenbaum, Sabrina</au><au>Goldstone, David C</au><au>Pennell, Simon</au><au>Howell, Steven A</au><au>Stoye, Jonathan P</au><au>Webb, Michelle</au><au>Taylor, Ian A</au><au>Bishop, Kate N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phospho-dependent Regulation of SAMHD1 Oligomerisation Couples Catalysis and Restriction</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>11</volume><issue>10</issue><spage>e1005194</spage><epage>e1005194</epage><pages>e1005194-e1005194</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>SAMHD1 restricts HIV-1 infection of myeloid-lineage and resting CD4+ T-cells. Most likely this occurs through deoxynucleoside triphosphate triphosphohydrolase activity that reduces cellular dNTP to a level where reverse transcriptase cannot function, although alternative mechanisms have been proposed recently. Here, we present combined structural and virological data demonstrating that in addition to allosteric activation and triphosphohydrolase activity, restriction correlates with the capacity of SAMHD1 to form "long-lived" enzymatically competent tetramers. Tetramer disruption invariably abolishes restriction but has varied effects on in vitro triphosphohydrolase activity. SAMHD1 phosphorylation also ablates restriction and tetramer formation but without affecting triphosphohydrolase steady-state kinetics. However phospho-SAMHD1 is unable to catalyse dNTP turnover under conditions of nucleotide depletion. Based on our findings we propose a model for phosphorylation-dependent regulation of SAMHD1 activity where dephosphorylation switches housekeeping SAMHD1 found in cycling cells to a high-activity stable tetrameric form that depletes and maintains low levels of dNTPs in differentiated cells.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26431200</pmid><doi>10.1371/journal.ppat.1005194</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2015-10, Vol.11 (10), p.e1005194-e1005194
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_1733657328
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Public Library of Science (PLoS)
subjects Biocatalysis
Care and treatment
Catalysis
Cell Line
Chromatography, Gel
Chromatography, High Pressure Liquid
Complications and side effects
Crystallography, X-Ray
Development and progression
DNA polymerases
Enzymes
Experiments
Flow Cytometry
Gene mutations
Health aspects
HIV infection
HIV-1 - pathogenicity
Humans
Infections
Molecular weight
Monomeric GTP-Binding Proteins - chemistry
Monomeric GTP-Binding Proteins - metabolism
Phosphorylation
Protein Conformation
Proteins
Reverse Transcriptase Polymerase Chain Reaction
Risk factors
SAM Domain and HD Domain-Containing Protein 1
Spectrophotometry, Atomic
title Phospho-dependent Regulation of SAMHD1 Oligomerisation Couples Catalysis and Restriction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A02%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phospho-dependent%20Regulation%20of%20SAMHD1%20Oligomerisation%20Couples%20Catalysis%20and%20Restriction&rft.jtitle=PLoS%20pathogens&rft.au=Arnold,%20Laurence%20H&rft.date=2015-10-01&rft.volume=11&rft.issue=10&rft.spage=e1005194&rft.epage=e1005194&rft.pages=e1005194-e1005194&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1005194&rft_dat=%3Cgale_plos_%3EA434689170%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1719420943&rft_id=info:pmid/26431200&rft_galeid=A434689170&rft_doaj_id=oai_doaj_org_article_6417b0e1f2764693a511bf12d963870d&rfr_iscdi=true