Protein Homeostasis Imposes a Barrier on Functional Integration of Horizontally Transferred Genes in Bacteria

Horizontal gene transfer (HGT) plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzym...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2015-10, Vol.11 (10), p.e1005612-e1005612
Hauptverfasser: Bershtein, Shimon, Serohijos, Adrian W R, Bhattacharyya, Sanchari, Manhart, Michael, Choi, Jeong-Mo, Mu, Wanmeng, Zhou, Jingwen, Shakhnovich, Eugene I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1005612
container_issue 10
container_start_page e1005612
container_title PLoS genetics
container_volume 11
creator Bershtein, Shimon
Serohijos, Adrian W R
Bhattacharyya, Sanchari
Manhart, Michael
Choi, Jeong-Mo
Mu, Wanmeng
Zhou, Jingwen
Shakhnovich, Eugene I
description Horizontal gene transfer (HGT) plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR), with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10-90%) in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.coli DHFR at 37°C and are more catalytically active than E. coli DHFR. Although phylogenetic distance between E. coli and orthologous DHFRs as well as their individual molecular properties correlate poorly with growth rates, the product of the intracellular DHFR abundance and catalytic activity (kcat/KM), correlates strongly with growth rates, indicating that the drop in DHFR abundance constitutes the major fitness barrier to HGT. Serial propagation of the orthologous strains for ~600 generations dramatically improved growth rates by largely alleviating the fitness barriers. Whole genome sequencing and global proteome quantification revealed that the evolved strains with the largest fitness improvements have accumulated mutations that inactivated the ATP-dependent Lon protease, causing an increase in the intracellular DHFR abundance. In one case DHFR abundance increased further due to mutations accumulated in folA promoter, but only after the lon inactivating mutations were fixed in the population. Thus, by apparently distinguishing between self and non-self proteins, protein homeostasis imposes an immediate and global barrier to the functional integration of foreign genes by decreasing the intracellular abundance of their products. Once this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the transferred proteins to the constraints imposed by the intracellular environment of the host organism.
doi_str_mv 10.1371/journal.pgen.1005612
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1733642375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A434414141</galeid><doaj_id>oai_doaj_org_article_69f3bfda25b742d087938cf779cea004</doaj_id><sourcerecordid>A434414141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c698t-ee0013464ed773bb0b7dd414e02dfa43bb1a70ed1588793216053d5607bb90ea3</originalsourceid><addsrcrecordid>eNqVk8Fu1DAQhiMEoqXwBggiISE47GLHTpxckNqKtitVFEHhak3iSdZVYi-2gyhPj8Nuq43EAeSD4_H3_zMaZ5LkOSVLygR9d2NHZ6Bfbjo0S0pIXtDsQXJI85wtBCf84d73QfLE-xtCWF5W4nFykBW85GWRHSbDJ2cDapNe2AGtD-C1T1fDxnr0KaQn4JxGl1qTno2mCdrGlOnKBOwcTKfUtlHq9C9rAvT9bXrtwPgWnUOVnqOJLtH8BJqATsPT5FELvcdnu_0o-Xr24fr0YnF5db46Pb5cNEVVhgUiIZTxgqMSgtU1qYVSnHIkmWqBxwgFQVDRvCxFxTJakJypvCCiriuCwI6Sl1vfTW-93HXKSyoYK3jGRB6J1ZZQFm7kxukB3K20oOWfgHWdBBd006MsqpbVrYIsrwXPFJlSlk0rRNUgEMKj1_tdtrEeUDVogoN-Zjq_MXotO_tD8oKWLJ-KebMzcPb7iD7IQfsG-x4M2nGqO8tzmvGyjOirLdpBLE2b1kbHZsLlMWc8NimuSC3_QsWlcNCNNdjqGJ8J3s4EkQn4M3Qwei9XXz7_B_vx39mrb3P29R67RujD2tt-nH4zPwf5Fmyc9d5he99qSuQ0G3cvLqfZkLvZiLIX-890L7obBvYbZgoJXg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1725512488</pqid></control><display><type>article</type><title>Protein Homeostasis Imposes a Barrier on Functional Integration of Horizontally Transferred Genes in Bacteria</title><source>PubMed Central Free</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><creator>Bershtein, Shimon ; Serohijos, Adrian W R ; Bhattacharyya, Sanchari ; Manhart, Michael ; Choi, Jeong-Mo ; Mu, Wanmeng ; Zhou, Jingwen ; Shakhnovich, Eugene I</creator><contributor>Achtman, Mark</contributor><creatorcontrib>Bershtein, Shimon ; Serohijos, Adrian W R ; Bhattacharyya, Sanchari ; Manhart, Michael ; Choi, Jeong-Mo ; Mu, Wanmeng ; Zhou, Jingwen ; Shakhnovich, Eugene I ; Achtman, Mark</creatorcontrib><description>Horizontal gene transfer (HGT) plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR), with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10-90%) in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.coli DHFR at 37°C and are more catalytically active than E. coli DHFR. Although phylogenetic distance between E. coli and orthologous DHFRs as well as their individual molecular properties correlate poorly with growth rates, the product of the intracellular DHFR abundance and catalytic activity (kcat/KM), correlates strongly with growth rates, indicating that the drop in DHFR abundance constitutes the major fitness barrier to HGT. Serial propagation of the orthologous strains for ~600 generations dramatically improved growth rates by largely alleviating the fitness barriers. Whole genome sequencing and global proteome quantification revealed that the evolved strains with the largest fitness improvements have accumulated mutations that inactivated the ATP-dependent Lon protease, causing an increase in the intracellular DHFR abundance. In one case DHFR abundance increased further due to mutations accumulated in folA promoter, but only after the lon inactivating mutations were fixed in the population. Thus, by apparently distinguishing between self and non-self proteins, protein homeostasis imposes an immediate and global barrier to the functional integration of foreign genes by decreasing the intracellular abundance of their products. Once this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the transferred proteins to the constraints imposed by the intracellular environment of the host organism.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1005612</identifier><identifier>PMID: 26484862</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acquisitions &amp; mergers ; Amino Acid Sequence - genetics ; Analysis ; Bacteria ; Bacterial genetics ; Bacteriology ; Cloning ; Deoxyribonucleic acid ; Dihydrofolate reductase ; DNA ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Evolution ; Evolution, Molecular ; Gene Transfer, Horizontal - genetics ; Genes ; Genetic aspects ; Genomes ; Growth rate ; High-Throughput Nucleotide Sequencing ; Homeostasis ; Homeostasis - genetics ; Mutation ; Phylogeny ; Physiological aspects ; Proteins ; Species Specificity ; Standard deviation ; Studies ; Tetrahydrofolate Dehydrogenase - genetics</subject><ispartof>PLoS genetics, 2015-10, Vol.11 (10), p.e1005612-e1005612</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Bershtein et al 2015 Bershtein et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Bershtein S, Serohijos AWR, Bhattacharyya S, Manhart M, Choi J-M, Mu W, et al. (2015) Protein Homeostasis Imposes a Barrier on Functional Integration of Horizontally Transferred Genes in Bacteria. PLoS Genet 11(10): e1005612. doi:10.1371/journal.pgen.1005612</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c698t-ee0013464ed773bb0b7dd414e02dfa43bb1a70ed1588793216053d5607bb90ea3</citedby><cites>FETCH-LOGICAL-c698t-ee0013464ed773bb0b7dd414e02dfa43bb1a70ed1588793216053d5607bb90ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618355/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618355/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26484862$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Achtman, Mark</contributor><creatorcontrib>Bershtein, Shimon</creatorcontrib><creatorcontrib>Serohijos, Adrian W R</creatorcontrib><creatorcontrib>Bhattacharyya, Sanchari</creatorcontrib><creatorcontrib>Manhart, Michael</creatorcontrib><creatorcontrib>Choi, Jeong-Mo</creatorcontrib><creatorcontrib>Mu, Wanmeng</creatorcontrib><creatorcontrib>Zhou, Jingwen</creatorcontrib><creatorcontrib>Shakhnovich, Eugene I</creatorcontrib><title>Protein Homeostasis Imposes a Barrier on Functional Integration of Horizontally Transferred Genes in Bacteria</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Horizontal gene transfer (HGT) plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR), with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10-90%) in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.coli DHFR at 37°C and are more catalytically active than E. coli DHFR. Although phylogenetic distance between E. coli and orthologous DHFRs as well as their individual molecular properties correlate poorly with growth rates, the product of the intracellular DHFR abundance and catalytic activity (kcat/KM), correlates strongly with growth rates, indicating that the drop in DHFR abundance constitutes the major fitness barrier to HGT. Serial propagation of the orthologous strains for ~600 generations dramatically improved growth rates by largely alleviating the fitness barriers. Whole genome sequencing and global proteome quantification revealed that the evolved strains with the largest fitness improvements have accumulated mutations that inactivated the ATP-dependent Lon protease, causing an increase in the intracellular DHFR abundance. In one case DHFR abundance increased further due to mutations accumulated in folA promoter, but only after the lon inactivating mutations were fixed in the population. Thus, by apparently distinguishing between self and non-self proteins, protein homeostasis imposes an immediate and global barrier to the functional integration of foreign genes by decreasing the intracellular abundance of their products. Once this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the transferred proteins to the constraints imposed by the intracellular environment of the host organism.</description><subject>Acquisitions &amp; mergers</subject><subject>Amino Acid Sequence - genetics</subject><subject>Analysis</subject><subject>Bacteria</subject><subject>Bacterial genetics</subject><subject>Bacteriology</subject><subject>Cloning</subject><subject>Deoxyribonucleic acid</subject><subject>Dihydrofolate reductase</subject><subject>DNA</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Gene Transfer, Horizontal - genetics</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Growth rate</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Homeostasis</subject><subject>Homeostasis - genetics</subject><subject>Mutation</subject><subject>Phylogeny</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Species Specificity</subject><subject>Standard deviation</subject><subject>Studies</subject><subject>Tetrahydrofolate Dehydrogenase - genetics</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVk8Fu1DAQhiMEoqXwBggiISE47GLHTpxckNqKtitVFEHhak3iSdZVYi-2gyhPj8Nuq43EAeSD4_H3_zMaZ5LkOSVLygR9d2NHZ6Bfbjo0S0pIXtDsQXJI85wtBCf84d73QfLE-xtCWF5W4nFykBW85GWRHSbDJ2cDapNe2AGtD-C1T1fDxnr0KaQn4JxGl1qTno2mCdrGlOnKBOwcTKfUtlHq9C9rAvT9bXrtwPgWnUOVnqOJLtH8BJqATsPT5FELvcdnu_0o-Xr24fr0YnF5db46Pb5cNEVVhgUiIZTxgqMSgtU1qYVSnHIkmWqBxwgFQVDRvCxFxTJakJypvCCiriuCwI6Sl1vfTW-93HXKSyoYK3jGRB6J1ZZQFm7kxukB3K20oOWfgHWdBBd006MsqpbVrYIsrwXPFJlSlk0rRNUgEMKj1_tdtrEeUDVogoN-Zjq_MXotO_tD8oKWLJ-KebMzcPb7iD7IQfsG-x4M2nGqO8tzmvGyjOirLdpBLE2b1kbHZsLlMWc8NimuSC3_QsWlcNCNNdjqGJ8J3s4EkQn4M3Qwei9XXz7_B_vx39mrb3P29R67RujD2tt-nH4zPwf5Fmyc9d5he99qSuQ0G3cvLqfZkLvZiLIX-890L7obBvYbZgoJXg</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Bershtein, Shimon</creator><creator>Serohijos, Adrian W R</creator><creator>Bhattacharyya, Sanchari</creator><creator>Manhart, Michael</creator><creator>Choi, Jeong-Mo</creator><creator>Mu, Wanmeng</creator><creator>Zhou, Jingwen</creator><creator>Shakhnovich, Eugene I</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151001</creationdate><title>Protein Homeostasis Imposes a Barrier on Functional Integration of Horizontally Transferred Genes in Bacteria</title><author>Bershtein, Shimon ; Serohijos, Adrian W R ; Bhattacharyya, Sanchari ; Manhart, Michael ; Choi, Jeong-Mo ; Mu, Wanmeng ; Zhou, Jingwen ; Shakhnovich, Eugene I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c698t-ee0013464ed773bb0b7dd414e02dfa43bb1a70ed1588793216053d5607bb90ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acquisitions &amp; mergers</topic><topic>Amino Acid Sequence - genetics</topic><topic>Analysis</topic><topic>Bacteria</topic><topic>Bacterial genetics</topic><topic>Bacteriology</topic><topic>Cloning</topic><topic>Deoxyribonucleic acid</topic><topic>Dihydrofolate reductase</topic><topic>DNA</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Gene Transfer, Horizontal - genetics</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Growth rate</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Homeostasis</topic><topic>Homeostasis - genetics</topic><topic>Mutation</topic><topic>Phylogeny</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Species Specificity</topic><topic>Standard deviation</topic><topic>Studies</topic><topic>Tetrahydrofolate Dehydrogenase - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bershtein, Shimon</creatorcontrib><creatorcontrib>Serohijos, Adrian W R</creatorcontrib><creatorcontrib>Bhattacharyya, Sanchari</creatorcontrib><creatorcontrib>Manhart, Michael</creatorcontrib><creatorcontrib>Choi, Jeong-Mo</creatorcontrib><creatorcontrib>Mu, Wanmeng</creatorcontrib><creatorcontrib>Zhou, Jingwen</creatorcontrib><creatorcontrib>Shakhnovich, Eugene I</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bershtein, Shimon</au><au>Serohijos, Adrian W R</au><au>Bhattacharyya, Sanchari</au><au>Manhart, Michael</au><au>Choi, Jeong-Mo</au><au>Mu, Wanmeng</au><au>Zhou, Jingwen</au><au>Shakhnovich, Eugene I</au><au>Achtman, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein Homeostasis Imposes a Barrier on Functional Integration of Horizontally Transferred Genes in Bacteria</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>11</volume><issue>10</issue><spage>e1005612</spage><epage>e1005612</epage><pages>e1005612-e1005612</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Horizontal gene transfer (HGT) plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR), with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10-90%) in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.coli DHFR at 37°C and are more catalytically active than E. coli DHFR. Although phylogenetic distance between E. coli and orthologous DHFRs as well as their individual molecular properties correlate poorly with growth rates, the product of the intracellular DHFR abundance and catalytic activity (kcat/KM), correlates strongly with growth rates, indicating that the drop in DHFR abundance constitutes the major fitness barrier to HGT. Serial propagation of the orthologous strains for ~600 generations dramatically improved growth rates by largely alleviating the fitness barriers. Whole genome sequencing and global proteome quantification revealed that the evolved strains with the largest fitness improvements have accumulated mutations that inactivated the ATP-dependent Lon protease, causing an increase in the intracellular DHFR abundance. In one case DHFR abundance increased further due to mutations accumulated in folA promoter, but only after the lon inactivating mutations were fixed in the population. Thus, by apparently distinguishing between self and non-self proteins, protein homeostasis imposes an immediate and global barrier to the functional integration of foreign genes by decreasing the intracellular abundance of their products. Once this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the transferred proteins to the constraints imposed by the intracellular environment of the host organism.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26484862</pmid><doi>10.1371/journal.pgen.1005612</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2015-10, Vol.11 (10), p.e1005612-e1005612
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1733642375
source PubMed Central Free; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access
subjects Acquisitions & mergers
Amino Acid Sequence - genetics
Analysis
Bacteria
Bacterial genetics
Bacteriology
Cloning
Deoxyribonucleic acid
Dihydrofolate reductase
DNA
E coli
Escherichia coli
Escherichia coli - genetics
Evolution
Evolution, Molecular
Gene Transfer, Horizontal - genetics
Genes
Genetic aspects
Genomes
Growth rate
High-Throughput Nucleotide Sequencing
Homeostasis
Homeostasis - genetics
Mutation
Phylogeny
Physiological aspects
Proteins
Species Specificity
Standard deviation
Studies
Tetrahydrofolate Dehydrogenase - genetics
title Protein Homeostasis Imposes a Barrier on Functional Integration of Horizontally Transferred Genes in Bacteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20Homeostasis%20Imposes%20a%20Barrier%20on%20Functional%20Integration%20of%20Horizontally%20Transferred%20Genes%20in%20Bacteria&rft.jtitle=PLoS%20genetics&rft.au=Bershtein,%20Shimon&rft.date=2015-10-01&rft.volume=11&rft.issue=10&rft.spage=e1005612&rft.epage=e1005612&rft.pages=e1005612-e1005612&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1005612&rft_dat=%3Cgale_plos_%3EA434414141%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1725512488&rft_id=info:pmid/26484862&rft_galeid=A434414141&rft_doaj_id=oai_doaj_org_article_69f3bfda25b742d087938cf779cea004&rfr_iscdi=true