Hypothetical Outcome Plots Outperform Error Bars and Violin Plots for Inferences about Reliability of Variable Ordering
Many visual depictions of probability distributions, such as error bars, are difficult for users to accurately interpret. We present and study an alternative representation, Hypothetical Outcome Plots (HOPs), that animates a finite set of individual draws. In contrast to the statistical background r...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-11, Vol.10 (11), p.e0142444-e0142444 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0142444 |
---|---|
container_issue | 11 |
container_start_page | e0142444 |
container_title | PloS one |
container_volume | 10 |
creator | Hullman, Jessica Resnick, Paul Adar, Eytan |
description | Many visual depictions of probability distributions, such as error bars, are difficult for users to accurately interpret. We present and study an alternative representation, Hypothetical Outcome Plots (HOPs), that animates a finite set of individual draws. In contrast to the statistical background required to interpret many static representations of distributions, HOPs require relatively little background knowledge to interpret. Instead, HOPs enables viewers to infer properties of the distribution using mental processes like counting and integration. We conducted an experiment comparing HOPs to error bars and violin plots. With HOPs, people made much more accurate judgments about plots of two and three quantities. Accuracy was similar with all three representations for most questions about distributions of a single quantity. |
doi_str_mv | 10.1371/journal.pone.0142444 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1733489940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A434748115</galeid><doaj_id>oai_doaj_org_article_9160065d29304b4894a89477c6b988e6</doaj_id><sourcerecordid>A434748115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-b13c858e2e7f1c4c77da1b0309820687d33f236adf18abbe4e9a955bdc4d1e263</originalsourceid><addsrcrecordid>eNqNk9Fu0zAUhiMEYmPwBggiISG4aLFjx45vkMY0WKVJRQN6aznOSevKjYvtAH173DWbGrQLZEXOsb__P_GJT5a9xGiKCccf1q73nbLTretgijAtKKWPslMsSDFhBSKPj95PsmchrBEqScXY0-ykYCXHtOKn2e-r3dbFFUSjlc3nfdRuA_lX62LYR1vwrfOb_NJ75_NPyodcdU2-MM6absASkM-6Fjx0GtJ-7fqY34A1qjbWxF3u2nyhfAot5HPfgDfd8nn2pFU2wIthPst-fL78fnE1uZ5_mV2cX080E0Wc1JjoqqygAN5iTTXnjcI1IkhUBWIVbwhpC8JU0-JK1TVQEEqUZd1o2mAoGDnLXh98t9YFOdQsSMwJoZUQFCVidiAap9Zy681G-Z10ysjbBeeXUvlUHgtSYIYQK5tCEETrpKcqPZxrVouqgn22j0O2vt5Ao6GLXtmR6XinMyu5dL8kZZQxUSWDd4OBdz97CFFuTNBgrerA9bffXQqEuMAJffMP-vDpBmqp0gFM17qUV-9N5TkllNMK4zJR0weoNBrYGJ0uWGvS-kjwfiRITIQ_can6EOTs283_s_PFmH17xK5A2bgKzvbRuC6MQXoAtXcheGjvi4yR3PfHXTXkvj_k0B9J9ur4B92L7hqC_AU3bQrY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1733489940</pqid></control><display><type>article</type><title>Hypothetical Outcome Plots Outperform Error Bars and Violin Plots for Inferences about Reliability of Variable Ordering</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Hullman, Jessica ; Resnick, Paul ; Adar, Eytan</creator><contributor>Papaleo, Elena</contributor><creatorcontrib>Hullman, Jessica ; Resnick, Paul ; Adar, Eytan ; Papaleo, Elena</creatorcontrib><description>Many visual depictions of probability distributions, such as error bars, are difficult for users to accurately interpret. We present and study an alternative representation, Hypothetical Outcome Plots (HOPs), that animates a finite set of individual draws. In contrast to the statistical background required to interpret many static representations of distributions, HOPs require relatively little background knowledge to interpret. Instead, HOPs enables viewers to infer properties of the distribution using mental processes like counting and integration. We conducted an experiment comparing HOPs to error bars and violin plots. With HOPs, people made much more accurate judgments about plots of two and three quantities. Accuracy was similar with all three representations for most questions about distributions of a single quantity.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0142444</identifier><identifier>PMID: 26571487</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Bars ; Clinical trials ; Computer graphics ; Computer simulation ; Confidence intervals ; Data Interpretation, Statistical ; Discrimination (Psychology) ; Errors ; Experiments ; Hops ; Humans ; Judgments ; Medical care ; Medical research ; Models, Statistical ; Normal Distribution ; Probability ; Probability distribution ; Quality management ; Rain ; Random variables ; Representations ; Reproducibility of Results ; Standard deviation ; Statistical analysis ; United States</subject><ispartof>PloS one, 2015-11, Vol.10 (11), p.e0142444-e0142444</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Hullman et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Hullman et al 2015 Hullman et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-b13c858e2e7f1c4c77da1b0309820687d33f236adf18abbe4e9a955bdc4d1e263</citedby><cites>FETCH-LOGICAL-c692t-b13c858e2e7f1c4c77da1b0309820687d33f236adf18abbe4e9a955bdc4d1e263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646698/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646698/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26571487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Papaleo, Elena</contributor><creatorcontrib>Hullman, Jessica</creatorcontrib><creatorcontrib>Resnick, Paul</creatorcontrib><creatorcontrib>Adar, Eytan</creatorcontrib><title>Hypothetical Outcome Plots Outperform Error Bars and Violin Plots for Inferences about Reliability of Variable Ordering</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Many visual depictions of probability distributions, such as error bars, are difficult for users to accurately interpret. We present and study an alternative representation, Hypothetical Outcome Plots (HOPs), that animates a finite set of individual draws. In contrast to the statistical background required to interpret many static representations of distributions, HOPs require relatively little background knowledge to interpret. Instead, HOPs enables viewers to infer properties of the distribution using mental processes like counting and integration. We conducted an experiment comparing HOPs to error bars and violin plots. With HOPs, people made much more accurate judgments about plots of two and three quantities. Accuracy was similar with all three representations for most questions about distributions of a single quantity.</description><subject>Analysis</subject><subject>Bars</subject><subject>Clinical trials</subject><subject>Computer graphics</subject><subject>Computer simulation</subject><subject>Confidence intervals</subject><subject>Data Interpretation, Statistical</subject><subject>Discrimination (Psychology)</subject><subject>Errors</subject><subject>Experiments</subject><subject>Hops</subject><subject>Humans</subject><subject>Judgments</subject><subject>Medical care</subject><subject>Medical research</subject><subject>Models, Statistical</subject><subject>Normal Distribution</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Quality management</subject><subject>Rain</subject><subject>Random variables</subject><subject>Representations</subject><subject>Reproducibility of Results</subject><subject>Standard deviation</subject><subject>Statistical analysis</subject><subject>United States</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9Fu0zAUhiMEYmPwBggiISG4aLFjx45vkMY0WKVJRQN6aznOSevKjYvtAH173DWbGrQLZEXOsb__P_GJT5a9xGiKCccf1q73nbLTretgijAtKKWPslMsSDFhBSKPj95PsmchrBEqScXY0-ykYCXHtOKn2e-r3dbFFUSjlc3nfdRuA_lX62LYR1vwrfOb_NJ75_NPyodcdU2-MM6absASkM-6Fjx0GtJ-7fqY34A1qjbWxF3u2nyhfAot5HPfgDfd8nn2pFU2wIthPst-fL78fnE1uZ5_mV2cX080E0Wc1JjoqqygAN5iTTXnjcI1IkhUBWIVbwhpC8JU0-JK1TVQEEqUZd1o2mAoGDnLXh98t9YFOdQsSMwJoZUQFCVidiAap9Zy681G-Z10ysjbBeeXUvlUHgtSYIYQK5tCEETrpKcqPZxrVouqgn22j0O2vt5Ao6GLXtmR6XinMyu5dL8kZZQxUSWDd4OBdz97CFFuTNBgrerA9bffXQqEuMAJffMP-vDpBmqp0gFM17qUV-9N5TkllNMK4zJR0weoNBrYGJ0uWGvS-kjwfiRITIQ_can6EOTs283_s_PFmH17xK5A2bgKzvbRuC6MQXoAtXcheGjvi4yR3PfHXTXkvj_k0B9J9ur4B92L7hqC_AU3bQrY</recordid><startdate>20151116</startdate><enddate>20151116</enddate><creator>Hullman, Jessica</creator><creator>Resnick, Paul</creator><creator>Adar, Eytan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151116</creationdate><title>Hypothetical Outcome Plots Outperform Error Bars and Violin Plots for Inferences about Reliability of Variable Ordering</title><author>Hullman, Jessica ; Resnick, Paul ; Adar, Eytan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-b13c858e2e7f1c4c77da1b0309820687d33f236adf18abbe4e9a955bdc4d1e263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Bars</topic><topic>Clinical trials</topic><topic>Computer graphics</topic><topic>Computer simulation</topic><topic>Confidence intervals</topic><topic>Data Interpretation, Statistical</topic><topic>Discrimination (Psychology)</topic><topic>Errors</topic><topic>Experiments</topic><topic>Hops</topic><topic>Humans</topic><topic>Judgments</topic><topic>Medical care</topic><topic>Medical research</topic><topic>Models, Statistical</topic><topic>Normal Distribution</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Quality management</topic><topic>Rain</topic><topic>Random variables</topic><topic>Representations</topic><topic>Reproducibility of Results</topic><topic>Standard deviation</topic><topic>Statistical analysis</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hullman, Jessica</creatorcontrib><creatorcontrib>Resnick, Paul</creatorcontrib><creatorcontrib>Adar, Eytan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hullman, Jessica</au><au>Resnick, Paul</au><au>Adar, Eytan</au><au>Papaleo, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypothetical Outcome Plots Outperform Error Bars and Violin Plots for Inferences about Reliability of Variable Ordering</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-11-16</date><risdate>2015</risdate><volume>10</volume><issue>11</issue><spage>e0142444</spage><epage>e0142444</epage><pages>e0142444-e0142444</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Many visual depictions of probability distributions, such as error bars, are difficult for users to accurately interpret. We present and study an alternative representation, Hypothetical Outcome Plots (HOPs), that animates a finite set of individual draws. In contrast to the statistical background required to interpret many static representations of distributions, HOPs require relatively little background knowledge to interpret. Instead, HOPs enables viewers to infer properties of the distribution using mental processes like counting and integration. We conducted an experiment comparing HOPs to error bars and violin plots. With HOPs, people made much more accurate judgments about plots of two and three quantities. Accuracy was similar with all three representations for most questions about distributions of a single quantity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26571487</pmid><doi>10.1371/journal.pone.0142444</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-11, Vol.10 (11), p.e0142444-e0142444 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1733489940 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; PubMed; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | Analysis Bars Clinical trials Computer graphics Computer simulation Confidence intervals Data Interpretation, Statistical Discrimination (Psychology) Errors Experiments Hops Humans Judgments Medical care Medical research Models, Statistical Normal Distribution Probability Probability distribution Quality management Rain Random variables Representations Reproducibility of Results Standard deviation Statistical analysis United States |
title | Hypothetical Outcome Plots Outperform Error Bars and Violin Plots for Inferences about Reliability of Variable Ordering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypothetical%20Outcome%20Plots%20Outperform%20Error%20Bars%20and%20Violin%20Plots%20for%20Inferences%20about%20Reliability%20of%20Variable%20Ordering&rft.jtitle=PloS%20one&rft.au=Hullman,%20Jessica&rft.date=2015-11-16&rft.volume=10&rft.issue=11&rft.spage=e0142444&rft.epage=e0142444&rft.pages=e0142444-e0142444&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0142444&rft_dat=%3Cgale_plos_%3EA434748115%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1733489940&rft_id=info:pmid/26571487&rft_galeid=A434748115&rft_doaj_id=oai_doaj_org_article_9160065d29304b4894a89477c6b988e6&rfr_iscdi=true |