Multiscale Estimation of Binding Kinetics Using Brownian Dynamics, Molecular Dynamics and Milestoning

The kinetic rate constants of binding were estimated for four biochemically relevant molecular systems by a method that uses milestoning theory to combine Brownian dynamics simulations with more detailed molecular dynamics simulations. The rate constants found using this method agreed well with expe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2015-10, Vol.11 (10), p.e1004381-e1004381
Hauptverfasser: Votapka, Lane W, Amaro, Rommie E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1004381
container_issue 10
container_start_page e1004381
container_title PLoS computational biology
container_volume 11
creator Votapka, Lane W
Amaro, Rommie E
description The kinetic rate constants of binding were estimated for four biochemically relevant molecular systems by a method that uses milestoning theory to combine Brownian dynamics simulations with more detailed molecular dynamics simulations. The rate constants found using this method agreed well with experimentally and theoretically obtained values. We predicted the association rate of a small charged molecule toward both a charged and an uncharged spherical receptor and verified the estimated value with Smoluchowski theory. We also calculated the kon rate constant for superoxide dismutase with its natural substrate, O2-, in a validation of a previous experiment using similar methods but with a number of important improvements. We also calculated the kon for a new system: the N-terminal domain of Troponin C with its natural substrate Ca2+. The kon calculated for the latter two systems closely resemble experimentally obtained values. This novel multiscale approach is computationally cheaper and more parallelizable when compared to other methods of similar accuracy. We anticipate that this methodology will be useful for predicting kinetic rate constants and for understanding the process of binding between a small molecule and a protein receptor.
doi_str_mv 10.1371/journal.pcbi.1004381
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1733462601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A434689218</galeid><doaj_id>oai_doaj_org_article_27648901794e47a28e38567d2ba684ce</doaj_id><sourcerecordid>A434689218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c671t-5447168c2fbe76b05929509a76e8f8f683010e0f4db23324e5615faf41195bb23</originalsourceid><addsrcrecordid>eNqVUk1vEzEQXSEQLYV_gGCPIJHgb3svldpSIKIBCejZ8u6OgyPHDvZuS_89Dkmj5oh88Hj83vPM81TVS4ymmEr8fhnHFIyfrrvWTTFCjCr8qDrGnNOJpFw9fhAfVc9yXiJUwkY8rY6I4IgzhY4rmI9-cLkzHurLPLiVGVwMdbT1uQu9C4v6iwswuC7X13lzPE_xNjgT6g93waxK_l09jx660Zu0z9Um9PXcechDDIX1vHpijc_wYrefVNcfL39efJ5cffs0uzi7mnRC4mHCGZNYqI7YFqRoEW9Iw1FjpABllRWKIowAWda3hFLCgAvMrbEM44a3JXdSvd7qrn3MeudQ1lhSygQRCBfEbIvoo1nqdSoNpzsdjdP_EjEttEmlXQ-aSMFUg7BsGDBpiAKquJA9aY1QrIOidbp7bWxX0HcQhmT8gejhTXC_9CLe6FILk0QVgTc7gRR_j8UsvSpfAd6bAHHc1E0U4UqSpkCnW-ii_JR2wcai2JXVQzE8BrDFbX3GSp-qIXij_faAUDAD_BkWZsxZz358_w_s10Ms22K7FHNOYPf9YqQ3g3lvu94Mpt4NZqG9eujVnnQ_ifQvlWXfDA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728258729</pqid></control><display><type>article</type><title>Multiscale Estimation of Binding Kinetics Using Brownian Dynamics, Molecular Dynamics and Milestoning</title><source>DOAJ, Directory of Open Access Journals</source><source>MEDLINE</source><source>NCBI_PubMed Central(免费)</source><source>Free E-Journal (出版社公開部分のみ)</source><source>PLoS_OA刊</source><creator>Votapka, Lane W ; Amaro, Rommie E</creator><creatorcontrib>Votapka, Lane W ; Amaro, Rommie E</creatorcontrib><description>The kinetic rate constants of binding were estimated for four biochemically relevant molecular systems by a method that uses milestoning theory to combine Brownian dynamics simulations with more detailed molecular dynamics simulations. The rate constants found using this method agreed well with experimentally and theoretically obtained values. We predicted the association rate of a small charged molecule toward both a charged and an uncharged spherical receptor and verified the estimated value with Smoluchowski theory. We also calculated the kon rate constant for superoxide dismutase with its natural substrate, O2-, in a validation of a previous experiment using similar methods but with a number of important improvements. We also calculated the kon for a new system: the N-terminal domain of Troponin C with its natural substrate Ca2+. The kon calculated for the latter two systems closely resemble experimentally obtained values. This novel multiscale approach is computationally cheaper and more parallelizable when compared to other methods of similar accuracy. We anticipate that this methodology will be useful for predicting kinetic rate constants and for understanding the process of binding between a small molecule and a protein receptor.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1004381</identifier><identifier>PMID: 26505480</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Analysis ; Binding Sites ; Chemical properties ; Chemical reaction, Rate of ; Diffusion ; Funding ; Kinetics ; Ligands ; Methods ; Models, Chemical ; Models, Statistical ; Molecular Dynamics Simulation ; Protein Binding ; Protein Conformation ; Proteins ; Proteins - chemistry ; Proteins - ultrastructure ; R&amp;D ; Research &amp; development ; Scholarships &amp; fellowships ; Solvents ; Supercomputers ; Superoxide</subject><ispartof>PLoS computational biology, 2015-10, Vol.11 (10), p.e1004381-e1004381</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Votapka, Amaro 2015 Votapka, Amaro</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Votapka LW, Amaro RE (2015) Multiscale Estimation of Binding Kinetics Using Brownian Dynamics, Molecular Dynamics and Milestoning. PLoS Comput Biol 11(10): e1004381. doi:10.1371/journal.pcbi.1004381</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c671t-5447168c2fbe76b05929509a76e8f8f683010e0f4db23324e5615faf41195bb23</citedby><cites>FETCH-LOGICAL-c671t-5447168c2fbe76b05929509a76e8f8f683010e0f4db23324e5615faf41195bb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4624728/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4624728/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26505480$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Votapka, Lane W</creatorcontrib><creatorcontrib>Amaro, Rommie E</creatorcontrib><title>Multiscale Estimation of Binding Kinetics Using Brownian Dynamics, Molecular Dynamics and Milestoning</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The kinetic rate constants of binding were estimated for four biochemically relevant molecular systems by a method that uses milestoning theory to combine Brownian dynamics simulations with more detailed molecular dynamics simulations. The rate constants found using this method agreed well with experimentally and theoretically obtained values. We predicted the association rate of a small charged molecule toward both a charged and an uncharged spherical receptor and verified the estimated value with Smoluchowski theory. We also calculated the kon rate constant for superoxide dismutase with its natural substrate, O2-, in a validation of a previous experiment using similar methods but with a number of important improvements. We also calculated the kon for a new system: the N-terminal domain of Troponin C with its natural substrate Ca2+. The kon calculated for the latter two systems closely resemble experimentally obtained values. This novel multiscale approach is computationally cheaper and more parallelizable when compared to other methods of similar accuracy. We anticipate that this methodology will be useful for predicting kinetic rate constants and for understanding the process of binding between a small molecule and a protein receptor.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Binding Sites</subject><subject>Chemical properties</subject><subject>Chemical reaction, Rate of</subject><subject>Diffusion</subject><subject>Funding</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Methods</subject><subject>Models, Chemical</subject><subject>Models, Statistical</subject><subject>Molecular Dynamics Simulation</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Proteins - ultrastructure</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Scholarships &amp; fellowships</subject><subject>Solvents</subject><subject>Supercomputers</subject><subject>Superoxide</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVUk1vEzEQXSEQLYV_gGCPIJHgb3svldpSIKIBCejZ8u6OgyPHDvZuS_89Dkmj5oh88Hj83vPM81TVS4ymmEr8fhnHFIyfrrvWTTFCjCr8qDrGnNOJpFw9fhAfVc9yXiJUwkY8rY6I4IgzhY4rmI9-cLkzHurLPLiVGVwMdbT1uQu9C4v6iwswuC7X13lzPE_xNjgT6g93waxK_l09jx660Zu0z9Um9PXcechDDIX1vHpijc_wYrefVNcfL39efJ5cffs0uzi7mnRC4mHCGZNYqI7YFqRoEW9Iw1FjpABllRWKIowAWda3hFLCgAvMrbEM44a3JXdSvd7qrn3MeudQ1lhSygQRCBfEbIvoo1nqdSoNpzsdjdP_EjEttEmlXQ-aSMFUg7BsGDBpiAKquJA9aY1QrIOidbp7bWxX0HcQhmT8gejhTXC_9CLe6FILk0QVgTc7gRR_j8UsvSpfAd6bAHHc1E0U4UqSpkCnW-ii_JR2wcai2JXVQzE8BrDFbX3GSp-qIXij_faAUDAD_BkWZsxZz358_w_s10Ms22K7FHNOYPf9YqQ3g3lvu94Mpt4NZqG9eujVnnQ_ifQvlWXfDA</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Votapka, Lane W</creator><creator>Amaro, Rommie E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151001</creationdate><title>Multiscale Estimation of Binding Kinetics Using Brownian Dynamics, Molecular Dynamics and Milestoning</title><author>Votapka, Lane W ; Amaro, Rommie E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c671t-5447168c2fbe76b05929509a76e8f8f683010e0f4db23324e5615faf41195bb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Binding Sites</topic><topic>Chemical properties</topic><topic>Chemical reaction, Rate of</topic><topic>Diffusion</topic><topic>Funding</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Methods</topic><topic>Models, Chemical</topic><topic>Models, Statistical</topic><topic>Molecular Dynamics Simulation</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Proteins - ultrastructure</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Scholarships &amp; fellowships</topic><topic>Solvents</topic><topic>Supercomputers</topic><topic>Superoxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Votapka, Lane W</creatorcontrib><creatorcontrib>Amaro, Rommie E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ, Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Votapka, Lane W</au><au>Amaro, Rommie E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale Estimation of Binding Kinetics Using Brownian Dynamics, Molecular Dynamics and Milestoning</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>11</volume><issue>10</issue><spage>e1004381</spage><epage>e1004381</epage><pages>e1004381-e1004381</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The kinetic rate constants of binding were estimated for four biochemically relevant molecular systems by a method that uses milestoning theory to combine Brownian dynamics simulations with more detailed molecular dynamics simulations. The rate constants found using this method agreed well with experimentally and theoretically obtained values. We predicted the association rate of a small charged molecule toward both a charged and an uncharged spherical receptor and verified the estimated value with Smoluchowski theory. We also calculated the kon rate constant for superoxide dismutase with its natural substrate, O2-, in a validation of a previous experiment using similar methods but with a number of important improvements. We also calculated the kon for a new system: the N-terminal domain of Troponin C with its natural substrate Ca2+. The kon calculated for the latter two systems closely resemble experimentally obtained values. This novel multiscale approach is computationally cheaper and more parallelizable when compared to other methods of similar accuracy. We anticipate that this methodology will be useful for predicting kinetic rate constants and for understanding the process of binding between a small molecule and a protein receptor.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26505480</pmid><doi>10.1371/journal.pcbi.1004381</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2015-10, Vol.11 (10), p.e1004381-e1004381
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1733462601
source DOAJ, Directory of Open Access Journals; MEDLINE; NCBI_PubMed Central(免费); Free E-Journal (出版社公開部分のみ); PLoS_OA刊
subjects Accuracy
Algorithms
Analysis
Binding Sites
Chemical properties
Chemical reaction, Rate of
Diffusion
Funding
Kinetics
Ligands
Methods
Models, Chemical
Models, Statistical
Molecular Dynamics Simulation
Protein Binding
Protein Conformation
Proteins
Proteins - chemistry
Proteins - ultrastructure
R&D
Research & development
Scholarships & fellowships
Solvents
Supercomputers
Superoxide
title Multiscale Estimation of Binding Kinetics Using Brownian Dynamics, Molecular Dynamics and Milestoning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20Estimation%20of%20Binding%20Kinetics%20Using%20Brownian%20Dynamics,%20Molecular%20Dynamics%20and%20Milestoning&rft.jtitle=PLoS%20computational%20biology&rft.au=Votapka,%20Lane%20W&rft.date=2015-10-01&rft.volume=11&rft.issue=10&rft.spage=e1004381&rft.epage=e1004381&rft.pages=e1004381-e1004381&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1004381&rft_dat=%3Cgale_plos_%3EA434689218%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1728258729&rft_id=info:pmid/26505480&rft_galeid=A434689218&rft_doaj_id=oai_doaj_org_article_27648901794e47a28e38567d2ba684ce&rfr_iscdi=true