Deregulated Renal Calcium and Phosphate Transport during Experimental Kidney Failure

Impaired mineral homeostasis and inflammation are hallmarks of chronic kidney disease (CKD), yet the underlying mechanisms of electrolyte regulation during CKD are still unclear. Here, we applied two different murine models, partial nephrectomy and adenine-enriched dietary intervention, to induce ki...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-11, Vol.10 (11), p.e0142510-e0142510
Hauptverfasser: Pulskens, Wilco P, Verkaik, Melissa, Sheedfar, Fareeba, van Loon, Ellen P, van de Sluis, Bart, Vervloet, Mark G, Hoenderop, Joost G, Bindels, René J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0142510
container_issue 11
container_start_page e0142510
container_title PloS one
container_volume 10
creator Pulskens, Wilco P
Verkaik, Melissa
Sheedfar, Fareeba
van Loon, Ellen P
van de Sluis, Bart
Vervloet, Mark G
Hoenderop, Joost G
Bindels, René J
description Impaired mineral homeostasis and inflammation are hallmarks of chronic kidney disease (CKD), yet the underlying mechanisms of electrolyte regulation during CKD are still unclear. Here, we applied two different murine models, partial nephrectomy and adenine-enriched dietary intervention, to induce kidney failure and to investigate the subsequent impact on systemic and local renal factors involved in Ca(2+) and Pi regulation. Our results demonstrated that both experimental models induce features of CKD, as reflected by uremia, and elevated renal neutrophil gelatinase-associated lipocalin (NGAL) expression. In our model kidney failure was associated with polyuria, hypercalcemia and elevated urinary Ca(2+) excretion. In accordance, CKD augmented systemic PTH and affected the FGF23-αklotho-vitamin-D axis by elevating circulatory FGF23 levels and reducing renal αklotho expression. Interestingly, renal FGF23 expression was also induced by inflammatory stimuli directly. Renal expression of Cyp27b1, but not Cyp24a1, and blood levels of 1,25-dihydroxy vitamin D3 were significantly elevated in both models. Furthermore, kidney failure was characterized by enhanced renal expression of the transient receptor potential cation channel subfamily V member 5 (TRPV5), calbindin-D28k, and sodium-dependent Pi transporter type 2b (NaPi2b), whereas the renal expression of sodium-dependent Pi transporter type 2a (NaPi2a) and type 3 (PIT2) were reduced. Together, our data indicates two different models of experimental kidney failure comparably associate with disturbed FGF23-αklotho-vitamin-D signalling and a deregulated electrolyte homeostasis. Moreover, this study identifies local tubular, possibly inflammation- or PTH- and/or FGF23-associated, adaptive mechanisms, impacting on Ca(2+)/Pi homeostasis, hence enabling new opportunities to target electrolyte disturbances that emerge as a consequence of CKD development.
doi_str_mv 10.1371/journal.pone.0142510
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1732948136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A434486040</galeid><doaj_id>oai_doaj_org_article_1dae194f46cf4180a54c7c04a6a512c1</doaj_id><sourcerecordid>A434486040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-583e6fe9e1b5dc3bb382a6dbbf088f44b56d58f5d1dbaa6bd9a6d6263e88046c3</originalsourceid><addsrcrecordid>eNqNklFv0zAUhSMEYmPwDxBEQkLw0GLHjuu8IE1lg4pJQ6Pwajn2TeLKjTM7Qdu_x12zqUF7QHlw5PudY9_rkySvMZpjssCfNm7wrbTzzrUwR5hmOUZPkmNckGzGMkSeHvwfJS9C2CCUE87Y8-QoYzlj2WJxnKy_gId6sLIHnV5BNEyX0iozbFPZ6vRH40LXxGK69rINnfN9qgdv2jo9u-nAmy20fdR8N7qF2_RcGjt4eJk8q6QN8GpcT5Jf52fr5bfZxeXX1fL0YqZYkfWznBNgFRSAy1wrUpaEZ5LpsqwQ5xWlZc50zqtcY11KyUpdxCrLGAHOEWWKnCRv976ddUGMAwkCL0hWUI4Ji8RqT2gnN6KL95X-VjhpxN2G87WQvjfKgsBaAi5oFY0rijmSOVULhahkMseZwtHr83jaUG5Bq9i5l3ZiOq20phG1-yMoo6TgNBp8GA28ux4g9GJrggJrZQtuuLs3zThlhET03T_o492NVC1jA6atXDxX7UzFKSWUcoYoitT8ESp-GrZGxfRUJu5PBB8ngsj0cNPXcghBrH5e_T97-XvKvj9gG5C2b4KzQ29cG6Yg3YPKuxA8VA9Dxkjswn8_DbELvxjDH2VvDh_oQXSfdvIXPVv_Rg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732948136</pqid></control><display><type>article</type><title>Deregulated Renal Calcium and Phosphate Transport during Experimental Kidney Failure</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Pulskens, Wilco P ; Verkaik, Melissa ; Sheedfar, Fareeba ; van Loon, Ellen P ; van de Sluis, Bart ; Vervloet, Mark G ; Hoenderop, Joost G ; Bindels, René J</creator><contributor>Joles, Jaap A.</contributor><creatorcontrib>Pulskens, Wilco P ; Verkaik, Melissa ; Sheedfar, Fareeba ; van Loon, Ellen P ; van de Sluis, Bart ; Vervloet, Mark G ; Hoenderop, Joost G ; Bindels, René J ; NIGRAM Consortium ; NIGRAM Consortium ; Joles, Jaap A.</creatorcontrib><description>Impaired mineral homeostasis and inflammation are hallmarks of chronic kidney disease (CKD), yet the underlying mechanisms of electrolyte regulation during CKD are still unclear. Here, we applied two different murine models, partial nephrectomy and adenine-enriched dietary intervention, to induce kidney failure and to investigate the subsequent impact on systemic and local renal factors involved in Ca(2+) and Pi regulation. Our results demonstrated that both experimental models induce features of CKD, as reflected by uremia, and elevated renal neutrophil gelatinase-associated lipocalin (NGAL) expression. In our model kidney failure was associated with polyuria, hypercalcemia and elevated urinary Ca(2+) excretion. In accordance, CKD augmented systemic PTH and affected the FGF23-αklotho-vitamin-D axis by elevating circulatory FGF23 levels and reducing renal αklotho expression. Interestingly, renal FGF23 expression was also induced by inflammatory stimuli directly. Renal expression of Cyp27b1, but not Cyp24a1, and blood levels of 1,25-dihydroxy vitamin D3 were significantly elevated in both models. Furthermore, kidney failure was characterized by enhanced renal expression of the transient receptor potential cation channel subfamily V member 5 (TRPV5), calbindin-D28k, and sodium-dependent Pi transporter type 2b (NaPi2b), whereas the renal expression of sodium-dependent Pi transporter type 2a (NaPi2a) and type 3 (PIT2) were reduced. Together, our data indicates two different models of experimental kidney failure comparably associate with disturbed FGF23-αklotho-vitamin-D signalling and a deregulated electrolyte homeostasis. Moreover, this study identifies local tubular, possibly inflammation- or PTH- and/or FGF23-associated, adaptive mechanisms, impacting on Ca(2+)/Pi homeostasis, hence enabling new opportunities to target electrolyte disturbances that emerge as a consequence of CKD development.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0142510</identifier><identifier>PMID: 26566277</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Abdomen ; Adenine ; Analysis ; Animal models ; Animals ; Biological Transport ; Blood levels ; Calbindin-D28K ; Calcium ; Calcium (urinary) ; Calcium - metabolism ; Calcium homeostasis ; Calcium phosphates ; Calcium transport ; Chronic kidney failure ; Consortia ; Deregulation ; Diet ; Electrolytes ; Electrolytes - metabolism ; Excretion ; Failure ; Fibroblast growth factor 23 ; Fibroblast Growth Factors - blood ; Fibroblast Growth Factors - metabolism ; Gelatinase ; Glucuronidase - metabolism ; Homeostasis ; Hypercalcemia ; Inflammation ; Kidney - metabolism ; Kidney - physiopathology ; Kidney diseases ; Lipocalin ; Male ; Mice, Inbred C57BL ; Nephrectomy ; Nephrology ; Parathyroid hormone ; Parathyroid hormones ; Phosphates ; Phosphates - metabolism ; Phosphorus ; Physiology ; Polyuria ; Purines ; Renal failure ; Renal Insufficiency - blood ; Renal Insufficiency - metabolism ; Renal Insufficiency - physiopathology ; Rodents ; Signal Transduction ; Signaling ; Sodium ; Transient receptor potential proteins ; Uremia ; Urine ; Vitamin D ; Vitamin D - analogs &amp; derivatives ; Vitamin D - blood ; Vitamin D - metabolism ; Vitamin D3</subject><ispartof>PloS one, 2015-11, Vol.10 (11), p.e0142510-e0142510</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Pulskens et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Pulskens et al 2015 Pulskens et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-583e6fe9e1b5dc3bb382a6dbbf088f44b56d58f5d1dbaa6bd9a6d6263e88046c3</citedby><cites>FETCH-LOGICAL-c692t-583e6fe9e1b5dc3bb382a6dbbf088f44b56d58f5d1dbaa6bd9a6d6263e88046c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643984/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643984/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2101,2927,23865,27923,27924,53790,53792,79471,79472</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26566277$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Joles, Jaap A.</contributor><creatorcontrib>Pulskens, Wilco P</creatorcontrib><creatorcontrib>Verkaik, Melissa</creatorcontrib><creatorcontrib>Sheedfar, Fareeba</creatorcontrib><creatorcontrib>van Loon, Ellen P</creatorcontrib><creatorcontrib>van de Sluis, Bart</creatorcontrib><creatorcontrib>Vervloet, Mark G</creatorcontrib><creatorcontrib>Hoenderop, Joost G</creatorcontrib><creatorcontrib>Bindels, René J</creatorcontrib><creatorcontrib>NIGRAM Consortium</creatorcontrib><creatorcontrib>NIGRAM Consortium</creatorcontrib><title>Deregulated Renal Calcium and Phosphate Transport during Experimental Kidney Failure</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Impaired mineral homeostasis and inflammation are hallmarks of chronic kidney disease (CKD), yet the underlying mechanisms of electrolyte regulation during CKD are still unclear. Here, we applied two different murine models, partial nephrectomy and adenine-enriched dietary intervention, to induce kidney failure and to investigate the subsequent impact on systemic and local renal factors involved in Ca(2+) and Pi regulation. Our results demonstrated that both experimental models induce features of CKD, as reflected by uremia, and elevated renal neutrophil gelatinase-associated lipocalin (NGAL) expression. In our model kidney failure was associated with polyuria, hypercalcemia and elevated urinary Ca(2+) excretion. In accordance, CKD augmented systemic PTH and affected the FGF23-αklotho-vitamin-D axis by elevating circulatory FGF23 levels and reducing renal αklotho expression. Interestingly, renal FGF23 expression was also induced by inflammatory stimuli directly. Renal expression of Cyp27b1, but not Cyp24a1, and blood levels of 1,25-dihydroxy vitamin D3 were significantly elevated in both models. Furthermore, kidney failure was characterized by enhanced renal expression of the transient receptor potential cation channel subfamily V member 5 (TRPV5), calbindin-D28k, and sodium-dependent Pi transporter type 2b (NaPi2b), whereas the renal expression of sodium-dependent Pi transporter type 2a (NaPi2a) and type 3 (PIT2) were reduced. Together, our data indicates two different models of experimental kidney failure comparably associate with disturbed FGF23-αklotho-vitamin-D signalling and a deregulated electrolyte homeostasis. Moreover, this study identifies local tubular, possibly inflammation- or PTH- and/or FGF23-associated, adaptive mechanisms, impacting on Ca(2+)/Pi homeostasis, hence enabling new opportunities to target electrolyte disturbances that emerge as a consequence of CKD development.</description><subject>Abdomen</subject><subject>Adenine</subject><subject>Analysis</subject><subject>Animal models</subject><subject>Animals</subject><subject>Biological Transport</subject><subject>Blood levels</subject><subject>Calbindin-D28K</subject><subject>Calcium</subject><subject>Calcium (urinary)</subject><subject>Calcium - metabolism</subject><subject>Calcium homeostasis</subject><subject>Calcium phosphates</subject><subject>Calcium transport</subject><subject>Chronic kidney failure</subject><subject>Consortia</subject><subject>Deregulation</subject><subject>Diet</subject><subject>Electrolytes</subject><subject>Electrolytes - metabolism</subject><subject>Excretion</subject><subject>Failure</subject><subject>Fibroblast growth factor 23</subject><subject>Fibroblast Growth Factors - blood</subject><subject>Fibroblast Growth Factors - metabolism</subject><subject>Gelatinase</subject><subject>Glucuronidase - metabolism</subject><subject>Homeostasis</subject><subject>Hypercalcemia</subject><subject>Inflammation</subject><subject>Kidney - metabolism</subject><subject>Kidney - physiopathology</subject><subject>Kidney diseases</subject><subject>Lipocalin</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Nephrectomy</subject><subject>Nephrology</subject><subject>Parathyroid hormone</subject><subject>Parathyroid hormones</subject><subject>Phosphates</subject><subject>Phosphates - metabolism</subject><subject>Phosphorus</subject><subject>Physiology</subject><subject>Polyuria</subject><subject>Purines</subject><subject>Renal failure</subject><subject>Renal Insufficiency - blood</subject><subject>Renal Insufficiency - metabolism</subject><subject>Renal Insufficiency - physiopathology</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Sodium</subject><subject>Transient receptor potential proteins</subject><subject>Uremia</subject><subject>Urine</subject><subject>Vitamin D</subject><subject>Vitamin D - analogs &amp; derivatives</subject><subject>Vitamin D - blood</subject><subject>Vitamin D - metabolism</subject><subject>Vitamin D3</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNklFv0zAUhSMEYmPwDxBEQkLw0GLHjuu8IE1lg4pJQ6Pwajn2TeLKjTM7Qdu_x12zqUF7QHlw5PudY9_rkySvMZpjssCfNm7wrbTzzrUwR5hmOUZPkmNckGzGMkSeHvwfJS9C2CCUE87Y8-QoYzlj2WJxnKy_gId6sLIHnV5BNEyX0iozbFPZ6vRH40LXxGK69rINnfN9qgdv2jo9u-nAmy20fdR8N7qF2_RcGjt4eJk8q6QN8GpcT5Jf52fr5bfZxeXX1fL0YqZYkfWznBNgFRSAy1wrUpaEZ5LpsqwQ5xWlZc50zqtcY11KyUpdxCrLGAHOEWWKnCRv976ddUGMAwkCL0hWUI4Ji8RqT2gnN6KL95X-VjhpxN2G87WQvjfKgsBaAi5oFY0rijmSOVULhahkMseZwtHr83jaUG5Bq9i5l3ZiOq20phG1-yMoo6TgNBp8GA28ux4g9GJrggJrZQtuuLs3zThlhET03T_o492NVC1jA6atXDxX7UzFKSWUcoYoitT8ESp-GrZGxfRUJu5PBB8ngsj0cNPXcghBrH5e_T97-XvKvj9gG5C2b4KzQ29cG6Yg3YPKuxA8VA9Dxkjswn8_DbELvxjDH2VvDh_oQXSfdvIXPVv_Rg</recordid><startdate>20151113</startdate><enddate>20151113</enddate><creator>Pulskens, Wilco P</creator><creator>Verkaik, Melissa</creator><creator>Sheedfar, Fareeba</creator><creator>van Loon, Ellen P</creator><creator>van de Sluis, Bart</creator><creator>Vervloet, Mark G</creator><creator>Hoenderop, Joost G</creator><creator>Bindels, René J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151113</creationdate><title>Deregulated Renal Calcium and Phosphate Transport during Experimental Kidney Failure</title><author>Pulskens, Wilco P ; Verkaik, Melissa ; Sheedfar, Fareeba ; van Loon, Ellen P ; van de Sluis, Bart ; Vervloet, Mark G ; Hoenderop, Joost G ; Bindels, René J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-583e6fe9e1b5dc3bb382a6dbbf088f44b56d58f5d1dbaa6bd9a6d6263e88046c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Abdomen</topic><topic>Adenine</topic><topic>Analysis</topic><topic>Animal models</topic><topic>Animals</topic><topic>Biological Transport</topic><topic>Blood levels</topic><topic>Calbindin-D28K</topic><topic>Calcium</topic><topic>Calcium (urinary)</topic><topic>Calcium - metabolism</topic><topic>Calcium homeostasis</topic><topic>Calcium phosphates</topic><topic>Calcium transport</topic><topic>Chronic kidney failure</topic><topic>Consortia</topic><topic>Deregulation</topic><topic>Diet</topic><topic>Electrolytes</topic><topic>Electrolytes - metabolism</topic><topic>Excretion</topic><topic>Failure</topic><topic>Fibroblast growth factor 23</topic><topic>Fibroblast Growth Factors - blood</topic><topic>Fibroblast Growth Factors - metabolism</topic><topic>Gelatinase</topic><topic>Glucuronidase - metabolism</topic><topic>Homeostasis</topic><topic>Hypercalcemia</topic><topic>Inflammation</topic><topic>Kidney - metabolism</topic><topic>Kidney - physiopathology</topic><topic>Kidney diseases</topic><topic>Lipocalin</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Nephrectomy</topic><topic>Nephrology</topic><topic>Parathyroid hormone</topic><topic>Parathyroid hormones</topic><topic>Phosphates</topic><topic>Phosphates - metabolism</topic><topic>Phosphorus</topic><topic>Physiology</topic><topic>Polyuria</topic><topic>Purines</topic><topic>Renal failure</topic><topic>Renal Insufficiency - blood</topic><topic>Renal Insufficiency - metabolism</topic><topic>Renal Insufficiency - physiopathology</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Sodium</topic><topic>Transient receptor potential proteins</topic><topic>Uremia</topic><topic>Urine</topic><topic>Vitamin D</topic><topic>Vitamin D - analogs &amp; derivatives</topic><topic>Vitamin D - blood</topic><topic>Vitamin D - metabolism</topic><topic>Vitamin D3</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pulskens, Wilco P</creatorcontrib><creatorcontrib>Verkaik, Melissa</creatorcontrib><creatorcontrib>Sheedfar, Fareeba</creatorcontrib><creatorcontrib>van Loon, Ellen P</creatorcontrib><creatorcontrib>van de Sluis, Bart</creatorcontrib><creatorcontrib>Vervloet, Mark G</creatorcontrib><creatorcontrib>Hoenderop, Joost G</creatorcontrib><creatorcontrib>Bindels, René J</creatorcontrib><creatorcontrib>NIGRAM Consortium</creatorcontrib><creatorcontrib>NIGRAM Consortium</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pulskens, Wilco P</au><au>Verkaik, Melissa</au><au>Sheedfar, Fareeba</au><au>van Loon, Ellen P</au><au>van de Sluis, Bart</au><au>Vervloet, Mark G</au><au>Hoenderop, Joost G</au><au>Bindels, René J</au><au>Joles, Jaap A.</au><aucorp>NIGRAM Consortium</aucorp><aucorp>NIGRAM Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deregulated Renal Calcium and Phosphate Transport during Experimental Kidney Failure</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-11-13</date><risdate>2015</risdate><volume>10</volume><issue>11</issue><spage>e0142510</spage><epage>e0142510</epage><pages>e0142510-e0142510</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Impaired mineral homeostasis and inflammation are hallmarks of chronic kidney disease (CKD), yet the underlying mechanisms of electrolyte regulation during CKD are still unclear. Here, we applied two different murine models, partial nephrectomy and adenine-enriched dietary intervention, to induce kidney failure and to investigate the subsequent impact on systemic and local renal factors involved in Ca(2+) and Pi regulation. Our results demonstrated that both experimental models induce features of CKD, as reflected by uremia, and elevated renal neutrophil gelatinase-associated lipocalin (NGAL) expression. In our model kidney failure was associated with polyuria, hypercalcemia and elevated urinary Ca(2+) excretion. In accordance, CKD augmented systemic PTH and affected the FGF23-αklotho-vitamin-D axis by elevating circulatory FGF23 levels and reducing renal αklotho expression. Interestingly, renal FGF23 expression was also induced by inflammatory stimuli directly. Renal expression of Cyp27b1, but not Cyp24a1, and blood levels of 1,25-dihydroxy vitamin D3 were significantly elevated in both models. Furthermore, kidney failure was characterized by enhanced renal expression of the transient receptor potential cation channel subfamily V member 5 (TRPV5), calbindin-D28k, and sodium-dependent Pi transporter type 2b (NaPi2b), whereas the renal expression of sodium-dependent Pi transporter type 2a (NaPi2a) and type 3 (PIT2) were reduced. Together, our data indicates two different models of experimental kidney failure comparably associate with disturbed FGF23-αklotho-vitamin-D signalling and a deregulated electrolyte homeostasis. Moreover, this study identifies local tubular, possibly inflammation- or PTH- and/or FGF23-associated, adaptive mechanisms, impacting on Ca(2+)/Pi homeostasis, hence enabling new opportunities to target electrolyte disturbances that emerge as a consequence of CKD development.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26566277</pmid><doi>10.1371/journal.pone.0142510</doi><tpages>e0142510</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-11, Vol.10 (11), p.e0142510-e0142510
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1732948136
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Abdomen
Adenine
Analysis
Animal models
Animals
Biological Transport
Blood levels
Calbindin-D28K
Calcium
Calcium (urinary)
Calcium - metabolism
Calcium homeostasis
Calcium phosphates
Calcium transport
Chronic kidney failure
Consortia
Deregulation
Diet
Electrolytes
Electrolytes - metabolism
Excretion
Failure
Fibroblast growth factor 23
Fibroblast Growth Factors - blood
Fibroblast Growth Factors - metabolism
Gelatinase
Glucuronidase - metabolism
Homeostasis
Hypercalcemia
Inflammation
Kidney - metabolism
Kidney - physiopathology
Kidney diseases
Lipocalin
Male
Mice, Inbred C57BL
Nephrectomy
Nephrology
Parathyroid hormone
Parathyroid hormones
Phosphates
Phosphates - metabolism
Phosphorus
Physiology
Polyuria
Purines
Renal failure
Renal Insufficiency - blood
Renal Insufficiency - metabolism
Renal Insufficiency - physiopathology
Rodents
Signal Transduction
Signaling
Sodium
Transient receptor potential proteins
Uremia
Urine
Vitamin D
Vitamin D - analogs & derivatives
Vitamin D - blood
Vitamin D - metabolism
Vitamin D3
title Deregulated Renal Calcium and Phosphate Transport during Experimental Kidney Failure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A08%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deregulated%20Renal%20Calcium%20and%20Phosphate%20Transport%20during%20Experimental%20Kidney%20Failure&rft.jtitle=PloS%20one&rft.au=Pulskens,%20Wilco%20P&rft.aucorp=NIGRAM%20Consortium&rft.date=2015-11-13&rft.volume=10&rft.issue=11&rft.spage=e0142510&rft.epage=e0142510&rft.pages=e0142510-e0142510&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0142510&rft_dat=%3Cgale_plos_%3EA434486040%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1732948136&rft_id=info:pmid/26566277&rft_galeid=A434486040&rft_doaj_id=oai_doaj_org_article_1dae194f46cf4180a54c7c04a6a512c1&rfr_iscdi=true