Deregulated Renal Calcium and Phosphate Transport during Experimental Kidney Failure
Impaired mineral homeostasis and inflammation are hallmarks of chronic kidney disease (CKD), yet the underlying mechanisms of electrolyte regulation during CKD are still unclear. Here, we applied two different murine models, partial nephrectomy and adenine-enriched dietary intervention, to induce ki...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-11, Vol.10 (11), p.e0142510-e0142510 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0142510 |
---|---|
container_issue | 11 |
container_start_page | e0142510 |
container_title | PloS one |
container_volume | 10 |
creator | Pulskens, Wilco P Verkaik, Melissa Sheedfar, Fareeba van Loon, Ellen P van de Sluis, Bart Vervloet, Mark G Hoenderop, Joost G Bindels, René J |
description | Impaired mineral homeostasis and inflammation are hallmarks of chronic kidney disease (CKD), yet the underlying mechanisms of electrolyte regulation during CKD are still unclear. Here, we applied two different murine models, partial nephrectomy and adenine-enriched dietary intervention, to induce kidney failure and to investigate the subsequent impact on systemic and local renal factors involved in Ca(2+) and Pi regulation. Our results demonstrated that both experimental models induce features of CKD, as reflected by uremia, and elevated renal neutrophil gelatinase-associated lipocalin (NGAL) expression. In our model kidney failure was associated with polyuria, hypercalcemia and elevated urinary Ca(2+) excretion. In accordance, CKD augmented systemic PTH and affected the FGF23-αklotho-vitamin-D axis by elevating circulatory FGF23 levels and reducing renal αklotho expression. Interestingly, renal FGF23 expression was also induced by inflammatory stimuli directly. Renal expression of Cyp27b1, but not Cyp24a1, and blood levels of 1,25-dihydroxy vitamin D3 were significantly elevated in both models. Furthermore, kidney failure was characterized by enhanced renal expression of the transient receptor potential cation channel subfamily V member 5 (TRPV5), calbindin-D28k, and sodium-dependent Pi transporter type 2b (NaPi2b), whereas the renal expression of sodium-dependent Pi transporter type 2a (NaPi2a) and type 3 (PIT2) were reduced. Together, our data indicates two different models of experimental kidney failure comparably associate with disturbed FGF23-αklotho-vitamin-D signalling and a deregulated electrolyte homeostasis. Moreover, this study identifies local tubular, possibly inflammation- or PTH- and/or FGF23-associated, adaptive mechanisms, impacting on Ca(2+)/Pi homeostasis, hence enabling new opportunities to target electrolyte disturbances that emerge as a consequence of CKD development. |
doi_str_mv | 10.1371/journal.pone.0142510 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1732948136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A434486040</galeid><doaj_id>oai_doaj_org_article_1dae194f46cf4180a54c7c04a6a512c1</doaj_id><sourcerecordid>A434486040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-583e6fe9e1b5dc3bb382a6dbbf088f44b56d58f5d1dbaa6bd9a6d6263e88046c3</originalsourceid><addsrcrecordid>eNqNklFv0zAUhSMEYmPwDxBEQkLw0GLHjuu8IE1lg4pJQ6Pwajn2TeLKjTM7Qdu_x12zqUF7QHlw5PudY9_rkySvMZpjssCfNm7wrbTzzrUwR5hmOUZPkmNckGzGMkSeHvwfJS9C2CCUE87Y8-QoYzlj2WJxnKy_gId6sLIHnV5BNEyX0iozbFPZ6vRH40LXxGK69rINnfN9qgdv2jo9u-nAmy20fdR8N7qF2_RcGjt4eJk8q6QN8GpcT5Jf52fr5bfZxeXX1fL0YqZYkfWznBNgFRSAy1wrUpaEZ5LpsqwQ5xWlZc50zqtcY11KyUpdxCrLGAHOEWWKnCRv976ddUGMAwkCL0hWUI4Ji8RqT2gnN6KL95X-VjhpxN2G87WQvjfKgsBaAi5oFY0rijmSOVULhahkMseZwtHr83jaUG5Bq9i5l3ZiOq20phG1-yMoo6TgNBp8GA28ux4g9GJrggJrZQtuuLs3zThlhET03T_o492NVC1jA6atXDxX7UzFKSWUcoYoitT8ESp-GrZGxfRUJu5PBB8ngsj0cNPXcghBrH5e_T97-XvKvj9gG5C2b4KzQ29cG6Yg3YPKuxA8VA9Dxkjswn8_DbELvxjDH2VvDh_oQXSfdvIXPVv_Rg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732948136</pqid></control><display><type>article</type><title>Deregulated Renal Calcium and Phosphate Transport during Experimental Kidney Failure</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Pulskens, Wilco P ; Verkaik, Melissa ; Sheedfar, Fareeba ; van Loon, Ellen P ; van de Sluis, Bart ; Vervloet, Mark G ; Hoenderop, Joost G ; Bindels, René J</creator><contributor>Joles, Jaap A.</contributor><creatorcontrib>Pulskens, Wilco P ; Verkaik, Melissa ; Sheedfar, Fareeba ; van Loon, Ellen P ; van de Sluis, Bart ; Vervloet, Mark G ; Hoenderop, Joost G ; Bindels, René J ; NIGRAM Consortium ; NIGRAM Consortium ; Joles, Jaap A.</creatorcontrib><description>Impaired mineral homeostasis and inflammation are hallmarks of chronic kidney disease (CKD), yet the underlying mechanisms of electrolyte regulation during CKD are still unclear. Here, we applied two different murine models, partial nephrectomy and adenine-enriched dietary intervention, to induce kidney failure and to investigate the subsequent impact on systemic and local renal factors involved in Ca(2+) and Pi regulation. Our results demonstrated that both experimental models induce features of CKD, as reflected by uremia, and elevated renal neutrophil gelatinase-associated lipocalin (NGAL) expression. In our model kidney failure was associated with polyuria, hypercalcemia and elevated urinary Ca(2+) excretion. In accordance, CKD augmented systemic PTH and affected the FGF23-αklotho-vitamin-D axis by elevating circulatory FGF23 levels and reducing renal αklotho expression. Interestingly, renal FGF23 expression was also induced by inflammatory stimuli directly. Renal expression of Cyp27b1, but not Cyp24a1, and blood levels of 1,25-dihydroxy vitamin D3 were significantly elevated in both models. Furthermore, kidney failure was characterized by enhanced renal expression of the transient receptor potential cation channel subfamily V member 5 (TRPV5), calbindin-D28k, and sodium-dependent Pi transporter type 2b (NaPi2b), whereas the renal expression of sodium-dependent Pi transporter type 2a (NaPi2a) and type 3 (PIT2) were reduced. Together, our data indicates two different models of experimental kidney failure comparably associate with disturbed FGF23-αklotho-vitamin-D signalling and a deregulated electrolyte homeostasis. Moreover, this study identifies local tubular, possibly inflammation- or PTH- and/or FGF23-associated, adaptive mechanisms, impacting on Ca(2+)/Pi homeostasis, hence enabling new opportunities to target electrolyte disturbances that emerge as a consequence of CKD development.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0142510</identifier><identifier>PMID: 26566277</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Abdomen ; Adenine ; Analysis ; Animal models ; Animals ; Biological Transport ; Blood levels ; Calbindin-D28K ; Calcium ; Calcium (urinary) ; Calcium - metabolism ; Calcium homeostasis ; Calcium phosphates ; Calcium transport ; Chronic kidney failure ; Consortia ; Deregulation ; Diet ; Electrolytes ; Electrolytes - metabolism ; Excretion ; Failure ; Fibroblast growth factor 23 ; Fibroblast Growth Factors - blood ; Fibroblast Growth Factors - metabolism ; Gelatinase ; Glucuronidase - metabolism ; Homeostasis ; Hypercalcemia ; Inflammation ; Kidney - metabolism ; Kidney - physiopathology ; Kidney diseases ; Lipocalin ; Male ; Mice, Inbred C57BL ; Nephrectomy ; Nephrology ; Parathyroid hormone ; Parathyroid hormones ; Phosphates ; Phosphates - metabolism ; Phosphorus ; Physiology ; Polyuria ; Purines ; Renal failure ; Renal Insufficiency - blood ; Renal Insufficiency - metabolism ; Renal Insufficiency - physiopathology ; Rodents ; Signal Transduction ; Signaling ; Sodium ; Transient receptor potential proteins ; Uremia ; Urine ; Vitamin D ; Vitamin D - analogs & derivatives ; Vitamin D - blood ; Vitamin D - metabolism ; Vitamin D3</subject><ispartof>PloS one, 2015-11, Vol.10 (11), p.e0142510-e0142510</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Pulskens et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Pulskens et al 2015 Pulskens et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-583e6fe9e1b5dc3bb382a6dbbf088f44b56d58f5d1dbaa6bd9a6d6263e88046c3</citedby><cites>FETCH-LOGICAL-c692t-583e6fe9e1b5dc3bb382a6dbbf088f44b56d58f5d1dbaa6bd9a6d6263e88046c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643984/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643984/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2101,2927,23865,27923,27924,53790,53792,79471,79472</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26566277$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Joles, Jaap A.</contributor><creatorcontrib>Pulskens, Wilco P</creatorcontrib><creatorcontrib>Verkaik, Melissa</creatorcontrib><creatorcontrib>Sheedfar, Fareeba</creatorcontrib><creatorcontrib>van Loon, Ellen P</creatorcontrib><creatorcontrib>van de Sluis, Bart</creatorcontrib><creatorcontrib>Vervloet, Mark G</creatorcontrib><creatorcontrib>Hoenderop, Joost G</creatorcontrib><creatorcontrib>Bindels, René J</creatorcontrib><creatorcontrib>NIGRAM Consortium</creatorcontrib><creatorcontrib>NIGRAM Consortium</creatorcontrib><title>Deregulated Renal Calcium and Phosphate Transport during Experimental Kidney Failure</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Impaired mineral homeostasis and inflammation are hallmarks of chronic kidney disease (CKD), yet the underlying mechanisms of electrolyte regulation during CKD are still unclear. Here, we applied two different murine models, partial nephrectomy and adenine-enriched dietary intervention, to induce kidney failure and to investigate the subsequent impact on systemic and local renal factors involved in Ca(2+) and Pi regulation. Our results demonstrated that both experimental models induce features of CKD, as reflected by uremia, and elevated renal neutrophil gelatinase-associated lipocalin (NGAL) expression. In our model kidney failure was associated with polyuria, hypercalcemia and elevated urinary Ca(2+) excretion. In accordance, CKD augmented systemic PTH and affected the FGF23-αklotho-vitamin-D axis by elevating circulatory FGF23 levels and reducing renal αklotho expression. Interestingly, renal FGF23 expression was also induced by inflammatory stimuli directly. Renal expression of Cyp27b1, but not Cyp24a1, and blood levels of 1,25-dihydroxy vitamin D3 were significantly elevated in both models. Furthermore, kidney failure was characterized by enhanced renal expression of the transient receptor potential cation channel subfamily V member 5 (TRPV5), calbindin-D28k, and sodium-dependent Pi transporter type 2b (NaPi2b), whereas the renal expression of sodium-dependent Pi transporter type 2a (NaPi2a) and type 3 (PIT2) were reduced. Together, our data indicates two different models of experimental kidney failure comparably associate with disturbed FGF23-αklotho-vitamin-D signalling and a deregulated electrolyte homeostasis. Moreover, this study identifies local tubular, possibly inflammation- or PTH- and/or FGF23-associated, adaptive mechanisms, impacting on Ca(2+)/Pi homeostasis, hence enabling new opportunities to target electrolyte disturbances that emerge as a consequence of CKD development.</description><subject>Abdomen</subject><subject>Adenine</subject><subject>Analysis</subject><subject>Animal models</subject><subject>Animals</subject><subject>Biological Transport</subject><subject>Blood levels</subject><subject>Calbindin-D28K</subject><subject>Calcium</subject><subject>Calcium (urinary)</subject><subject>Calcium - metabolism</subject><subject>Calcium homeostasis</subject><subject>Calcium phosphates</subject><subject>Calcium transport</subject><subject>Chronic kidney failure</subject><subject>Consortia</subject><subject>Deregulation</subject><subject>Diet</subject><subject>Electrolytes</subject><subject>Electrolytes - metabolism</subject><subject>Excretion</subject><subject>Failure</subject><subject>Fibroblast growth factor 23</subject><subject>Fibroblast Growth Factors - blood</subject><subject>Fibroblast Growth Factors - metabolism</subject><subject>Gelatinase</subject><subject>Glucuronidase - metabolism</subject><subject>Homeostasis</subject><subject>Hypercalcemia</subject><subject>Inflammation</subject><subject>Kidney - metabolism</subject><subject>Kidney - physiopathology</subject><subject>Kidney diseases</subject><subject>Lipocalin</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Nephrectomy</subject><subject>Nephrology</subject><subject>Parathyroid hormone</subject><subject>Parathyroid hormones</subject><subject>Phosphates</subject><subject>Phosphates - metabolism</subject><subject>Phosphorus</subject><subject>Physiology</subject><subject>Polyuria</subject><subject>Purines</subject><subject>Renal failure</subject><subject>Renal Insufficiency - blood</subject><subject>Renal Insufficiency - metabolism</subject><subject>Renal Insufficiency - physiopathology</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Sodium</subject><subject>Transient receptor potential proteins</subject><subject>Uremia</subject><subject>Urine</subject><subject>Vitamin D</subject><subject>Vitamin D - analogs & derivatives</subject><subject>Vitamin D - blood</subject><subject>Vitamin D - metabolism</subject><subject>Vitamin D3</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNklFv0zAUhSMEYmPwDxBEQkLw0GLHjuu8IE1lg4pJQ6Pwajn2TeLKjTM7Qdu_x12zqUF7QHlw5PudY9_rkySvMZpjssCfNm7wrbTzzrUwR5hmOUZPkmNckGzGMkSeHvwfJS9C2CCUE87Y8-QoYzlj2WJxnKy_gId6sLIHnV5BNEyX0iozbFPZ6vRH40LXxGK69rINnfN9qgdv2jo9u-nAmy20fdR8N7qF2_RcGjt4eJk8q6QN8GpcT5Jf52fr5bfZxeXX1fL0YqZYkfWznBNgFRSAy1wrUpaEZ5LpsqwQ5xWlZc50zqtcY11KyUpdxCrLGAHOEWWKnCRv976ddUGMAwkCL0hWUI4Ji8RqT2gnN6KL95X-VjhpxN2G87WQvjfKgsBaAi5oFY0rijmSOVULhahkMseZwtHr83jaUG5Bq9i5l3ZiOq20phG1-yMoo6TgNBp8GA28ux4g9GJrggJrZQtuuLs3zThlhET03T_o492NVC1jA6atXDxX7UzFKSWUcoYoitT8ESp-GrZGxfRUJu5PBB8ngsj0cNPXcghBrH5e_T97-XvKvj9gG5C2b4KzQ29cG6Yg3YPKuxA8VA9Dxkjswn8_DbELvxjDH2VvDh_oQXSfdvIXPVv_Rg</recordid><startdate>20151113</startdate><enddate>20151113</enddate><creator>Pulskens, Wilco P</creator><creator>Verkaik, Melissa</creator><creator>Sheedfar, Fareeba</creator><creator>van Loon, Ellen P</creator><creator>van de Sluis, Bart</creator><creator>Vervloet, Mark G</creator><creator>Hoenderop, Joost G</creator><creator>Bindels, René J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151113</creationdate><title>Deregulated Renal Calcium and Phosphate Transport during Experimental Kidney Failure</title><author>Pulskens, Wilco P ; Verkaik, Melissa ; Sheedfar, Fareeba ; van Loon, Ellen P ; van de Sluis, Bart ; Vervloet, Mark G ; Hoenderop, Joost G ; Bindels, René J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-583e6fe9e1b5dc3bb382a6dbbf088f44b56d58f5d1dbaa6bd9a6d6263e88046c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Abdomen</topic><topic>Adenine</topic><topic>Analysis</topic><topic>Animal models</topic><topic>Animals</topic><topic>Biological Transport</topic><topic>Blood levels</topic><topic>Calbindin-D28K</topic><topic>Calcium</topic><topic>Calcium (urinary)</topic><topic>Calcium - metabolism</topic><topic>Calcium homeostasis</topic><topic>Calcium phosphates</topic><topic>Calcium transport</topic><topic>Chronic kidney failure</topic><topic>Consortia</topic><topic>Deregulation</topic><topic>Diet</topic><topic>Electrolytes</topic><topic>Electrolytes - metabolism</topic><topic>Excretion</topic><topic>Failure</topic><topic>Fibroblast growth factor 23</topic><topic>Fibroblast Growth Factors - blood</topic><topic>Fibroblast Growth Factors - metabolism</topic><topic>Gelatinase</topic><topic>Glucuronidase - metabolism</topic><topic>Homeostasis</topic><topic>Hypercalcemia</topic><topic>Inflammation</topic><topic>Kidney - metabolism</topic><topic>Kidney - physiopathology</topic><topic>Kidney diseases</topic><topic>Lipocalin</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Nephrectomy</topic><topic>Nephrology</topic><topic>Parathyroid hormone</topic><topic>Parathyroid hormones</topic><topic>Phosphates</topic><topic>Phosphates - metabolism</topic><topic>Phosphorus</topic><topic>Physiology</topic><topic>Polyuria</topic><topic>Purines</topic><topic>Renal failure</topic><topic>Renal Insufficiency - blood</topic><topic>Renal Insufficiency - metabolism</topic><topic>Renal Insufficiency - physiopathology</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Sodium</topic><topic>Transient receptor potential proteins</topic><topic>Uremia</topic><topic>Urine</topic><topic>Vitamin D</topic><topic>Vitamin D - analogs & derivatives</topic><topic>Vitamin D - blood</topic><topic>Vitamin D - metabolism</topic><topic>Vitamin D3</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pulskens, Wilco P</creatorcontrib><creatorcontrib>Verkaik, Melissa</creatorcontrib><creatorcontrib>Sheedfar, Fareeba</creatorcontrib><creatorcontrib>van Loon, Ellen P</creatorcontrib><creatorcontrib>van de Sluis, Bart</creatorcontrib><creatorcontrib>Vervloet, Mark G</creatorcontrib><creatorcontrib>Hoenderop, Joost G</creatorcontrib><creatorcontrib>Bindels, René J</creatorcontrib><creatorcontrib>NIGRAM Consortium</creatorcontrib><creatorcontrib>NIGRAM Consortium</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pulskens, Wilco P</au><au>Verkaik, Melissa</au><au>Sheedfar, Fareeba</au><au>van Loon, Ellen P</au><au>van de Sluis, Bart</au><au>Vervloet, Mark G</au><au>Hoenderop, Joost G</au><au>Bindels, René J</au><au>Joles, Jaap A.</au><aucorp>NIGRAM Consortium</aucorp><aucorp>NIGRAM Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deregulated Renal Calcium and Phosphate Transport during Experimental Kidney Failure</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-11-13</date><risdate>2015</risdate><volume>10</volume><issue>11</issue><spage>e0142510</spage><epage>e0142510</epage><pages>e0142510-e0142510</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Impaired mineral homeostasis and inflammation are hallmarks of chronic kidney disease (CKD), yet the underlying mechanisms of electrolyte regulation during CKD are still unclear. Here, we applied two different murine models, partial nephrectomy and adenine-enriched dietary intervention, to induce kidney failure and to investigate the subsequent impact on systemic and local renal factors involved in Ca(2+) and Pi regulation. Our results demonstrated that both experimental models induce features of CKD, as reflected by uremia, and elevated renal neutrophil gelatinase-associated lipocalin (NGAL) expression. In our model kidney failure was associated with polyuria, hypercalcemia and elevated urinary Ca(2+) excretion. In accordance, CKD augmented systemic PTH and affected the FGF23-αklotho-vitamin-D axis by elevating circulatory FGF23 levels and reducing renal αklotho expression. Interestingly, renal FGF23 expression was also induced by inflammatory stimuli directly. Renal expression of Cyp27b1, but not Cyp24a1, and blood levels of 1,25-dihydroxy vitamin D3 were significantly elevated in both models. Furthermore, kidney failure was characterized by enhanced renal expression of the transient receptor potential cation channel subfamily V member 5 (TRPV5), calbindin-D28k, and sodium-dependent Pi transporter type 2b (NaPi2b), whereas the renal expression of sodium-dependent Pi transporter type 2a (NaPi2a) and type 3 (PIT2) were reduced. Together, our data indicates two different models of experimental kidney failure comparably associate with disturbed FGF23-αklotho-vitamin-D signalling and a deregulated electrolyte homeostasis. Moreover, this study identifies local tubular, possibly inflammation- or PTH- and/or FGF23-associated, adaptive mechanisms, impacting on Ca(2+)/Pi homeostasis, hence enabling new opportunities to target electrolyte disturbances that emerge as a consequence of CKD development.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26566277</pmid><doi>10.1371/journal.pone.0142510</doi><tpages>e0142510</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-11, Vol.10 (11), p.e0142510-e0142510 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1732948136 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Abdomen Adenine Analysis Animal models Animals Biological Transport Blood levels Calbindin-D28K Calcium Calcium (urinary) Calcium - metabolism Calcium homeostasis Calcium phosphates Calcium transport Chronic kidney failure Consortia Deregulation Diet Electrolytes Electrolytes - metabolism Excretion Failure Fibroblast growth factor 23 Fibroblast Growth Factors - blood Fibroblast Growth Factors - metabolism Gelatinase Glucuronidase - metabolism Homeostasis Hypercalcemia Inflammation Kidney - metabolism Kidney - physiopathology Kidney diseases Lipocalin Male Mice, Inbred C57BL Nephrectomy Nephrology Parathyroid hormone Parathyroid hormones Phosphates Phosphates - metabolism Phosphorus Physiology Polyuria Purines Renal failure Renal Insufficiency - blood Renal Insufficiency - metabolism Renal Insufficiency - physiopathology Rodents Signal Transduction Signaling Sodium Transient receptor potential proteins Uremia Urine Vitamin D Vitamin D - analogs & derivatives Vitamin D - blood Vitamin D - metabolism Vitamin D3 |
title | Deregulated Renal Calcium and Phosphate Transport during Experimental Kidney Failure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A08%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deregulated%20Renal%20Calcium%20and%20Phosphate%20Transport%20during%20Experimental%20Kidney%20Failure&rft.jtitle=PloS%20one&rft.au=Pulskens,%20Wilco%20P&rft.aucorp=NIGRAM%20Consortium&rft.date=2015-11-13&rft.volume=10&rft.issue=11&rft.spage=e0142510&rft.epage=e0142510&rft.pages=e0142510-e0142510&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0142510&rft_dat=%3Cgale_plos_%3EA434486040%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1732948136&rft_id=info:pmid/26566277&rft_galeid=A434486040&rft_doaj_id=oai_doaj_org_article_1dae194f46cf4180a54c7c04a6a512c1&rfr_iscdi=true |