The Neuropilin-1 Inhibitor, ATWLPPR Peptide, Prevents Experimental Diabetes-Induced Retinal Injury by Preserving Vascular Integrity and Decreasing Oxidative Stress
Neuropilin-1 (NRP-1) is a transmembrane glycoprotein. As a VEGF co-receptor, NRP1 significantly enhances VEGFR2 signaling and promotes vascular permeability and migration. The purpose of this study was to evaluate the effects of an NRP-1 inhibitor, ATWLPPR peptide, on the early stages of diabetic re...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-11, Vol.10 (11), p.e0142571-e0142571 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neuropilin-1 (NRP-1) is a transmembrane glycoprotein. As a VEGF co-receptor, NRP1 significantly enhances VEGFR2 signaling and promotes vascular permeability and migration. The purpose of this study was to evaluate the effects of an NRP-1 inhibitor, ATWLPPR peptide, on the early stages of diabetic retinopathy. Eight-week-old male C57BL/6 mice were divided into three groups: a Normal group, a Diabetes (DB) ATWLPPR treatment group and a DB saline group. Electroretinography (ERG), fundus fluorescence angiography (FFA) and leukostasis were examined to evaluate the retinal injury induced by diabetes at the end of the fifth week after STZ injection. Occludin expression and extravasation of albumin were measured to determine the extent of vascular injury. The oxidative stress level and the levels of inflammation-associated proteins were also assayed. The results indicated that treatment with ATWLPPR prevents the abnormal condition of ERG (amplitudes of b-wave decreased and implicit time increased) and vascular injury (occludin degradation and increase in extravasated albumin). These effects were associated with a reduction in the oxidase stress level and the expression of VEGF, GFAP, and ICAM-1. We conclude that ATWLPPR, an NRP-1 inhibitor, may reduce the early retinal damage induced by diabetes by preserving vascular integrity and decreasing the oxidative stress level. Blockade of NRP-1 may be a new therapeutic strategy for the early stages of DR. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0142571 |