Development of an Agent-Based Model (ABM) to Simulate the Immune System and Integration of a Regression Method to Estimate the Key ABM Parameters by Fitting the Experimental Data
Agent-based models (ABM) and differential equations (DE) are two commonly used methods for immune system simulation. However, it is difficult for ABM to estimate key parameters of the model by incorporating experimental data, whereas the differential equation model is incapable of describing the com...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-11, Vol.10 (11), p.e0141295-e0141295 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0141295 |
---|---|
container_issue | 11 |
container_start_page | e0141295 |
container_title | PloS one |
container_volume | 10 |
creator | Tong, Xuming Chen, Jinghang Miao, Hongyu Li, Tingting Zhang, Le |
description | Agent-based models (ABM) and differential equations (DE) are two commonly used methods for immune system simulation. However, it is difficult for ABM to estimate key parameters of the model by incorporating experimental data, whereas the differential equation model is incapable of describing the complicated immune system in detail. To overcome these problems, we developed an integrated ABM regression model (IABMR). It can combine the advantages of ABM and DE by employing ABM to mimic the multi-scale immune system with various phenotypes and types of cells as well as using the input and output of ABM to build up the Loess regression for key parameter estimation. Next, we employed the greedy algorithm to estimate the key parameters of the ABM with respect to the same experimental data set and used ABM to describe a 3D immune system similar to previous studies that employed the DE model. These results indicate that IABMR not only has the potential to simulate the immune system at various scales, phenotypes and cell types, but can also accurately infer the key parameters like DE model. Therefore, this study innovatively developed a complex system development mechanism that could simulate the complicated immune system in detail like ABM and validate the reliability and efficiency of model like DE by fitting the experimental data. |
doi_str_mv | 10.1371/journal.pone.0141295 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1730277237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A433632127</galeid><doaj_id>oai_doaj_org_article_939e8e5e9158449abcfa649a1d70d15a</doaj_id><sourcerecordid>A433632127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-49d1bfec8521eecb9c8c714c25068914d0faba4700c89c68b95673811183b9523</originalsourceid><addsrcrecordid>eNqNk81u1DAQxyMEoqXwBggsIaH2sEscx0l8Qdp-wYpWRS1wtSbOJOvKiZfYqbqvxRPibLdVF_WAfPDY_s3fM2NPFL2l8ZSynH66tkPfgZkubYfTmKY0EfxZtEsFSyZZErPnj-yd6JVz13HMWZFlL6OdJOOM80LsRn-O8QaNXbbYeWJrAh2ZNcGeHILDipzbCg3Znx2eHxBvyZVuBwMeiV8gmbft0CG5WjmPbXCsyLzz2PTgte3WWuQyLNG5cX2OfmGrUeTEed3ei3zDFQnq5Dv00KLH3pFyRU6197pr1sTJ7RJ7PcYHhhyDh9fRixqMwzebeS_6eXry4-jr5Oziy_xodjZROS_8JBUVLWtUBU8ooiqFKlROU5XwOCsETau4hhLSPI5VIVRWlIJnOSsopQULdsL2ovd3uktjndyU20maszjJ84TlgZjfEZWFa7kMUUK_kha0XG_YvpHQe60MSsEEFshRUF6kqYBS1ZCFmVZ5XFEOQevz5rahbLFSId8ezJbo9kmnF7KxNzLNGKMpDwL7G4He_h7Qedlqp9AY6NAO67hpLihlLKAf_kGfzm5DNRAS0F1tw71qFJWzlLGMJTQZqekTVBgVtlqFv1nrsL_lcLDlEBiPt76BwTk5v7r8f_bi1zb78RG7QDB-4awZxt_otsH0DlS9da7H-qHINJZja91XQ46tJTetFdzePX6gB6f7XmJ_AQJsHeM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730277237</pqid></control><display><type>article</type><title>Development of an Agent-Based Model (ABM) to Simulate the Immune System and Integration of a Regression Method to Estimate the Key ABM Parameters by Fitting the Experimental Data</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Tong, Xuming ; Chen, Jinghang ; Miao, Hongyu ; Li, Tingting ; Zhang, Le</creator><creatorcontrib>Tong, Xuming ; Chen, Jinghang ; Miao, Hongyu ; Li, Tingting ; Zhang, Le</creatorcontrib><description>Agent-based models (ABM) and differential equations (DE) are two commonly used methods for immune system simulation. However, it is difficult for ABM to estimate key parameters of the model by incorporating experimental data, whereas the differential equation model is incapable of describing the complicated immune system in detail. To overcome these problems, we developed an integrated ABM regression model (IABMR). It can combine the advantages of ABM and DE by employing ABM to mimic the multi-scale immune system with various phenotypes and types of cells as well as using the input and output of ABM to build up the Loess regression for key parameter estimation. Next, we employed the greedy algorithm to estimate the key parameters of the ABM with respect to the same experimental data set and used ABM to describe a 3D immune system similar to previous studies that employed the DE model. These results indicate that IABMR not only has the potential to simulate the immune system at various scales, phenotypes and cell types, but can also accurately infer the key parameters like DE model. Therefore, this study innovatively developed a complex system development mechanism that could simulate the complicated immune system in detail like ABM and validate the reliability and efficiency of model like DE by fitting the experimental data.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0141295</identifier><identifier>PMID: 26535589</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agent-based models ; Algorithms ; Animals ; Biodiversity ; Computer simulation ; Differential equations ; Encyclopedias ; Experimental data ; Greedy algorithms ; Humans ; Immune system ; Infections ; Influenza ; Information science ; Loess ; Mathematical models ; Mathematical problems ; Models, Immunological ; Optimization techniques ; Ordinary differential equations ; Parameter estimation ; Partial differential equations ; Probability ; Regression models ; Researchers</subject><ispartof>PloS one, 2015-11, Vol.10 (11), p.e0141295-e0141295</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Tong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Tong et al 2015 Tong et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-49d1bfec8521eecb9c8c714c25068914d0faba4700c89c68b95673811183b9523</citedby><cites>FETCH-LOGICAL-c758t-49d1bfec8521eecb9c8c714c25068914d0faba4700c89c68b95673811183b9523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633145/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633145/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26535589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tong, Xuming</creatorcontrib><creatorcontrib>Chen, Jinghang</creatorcontrib><creatorcontrib>Miao, Hongyu</creatorcontrib><creatorcontrib>Li, Tingting</creatorcontrib><creatorcontrib>Zhang, Le</creatorcontrib><title>Development of an Agent-Based Model (ABM) to Simulate the Immune System and Integration of a Regression Method to Estimate the Key ABM Parameters by Fitting the Experimental Data</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Agent-based models (ABM) and differential equations (DE) are two commonly used methods for immune system simulation. However, it is difficult for ABM to estimate key parameters of the model by incorporating experimental data, whereas the differential equation model is incapable of describing the complicated immune system in detail. To overcome these problems, we developed an integrated ABM regression model (IABMR). It can combine the advantages of ABM and DE by employing ABM to mimic the multi-scale immune system with various phenotypes and types of cells as well as using the input and output of ABM to build up the Loess regression for key parameter estimation. Next, we employed the greedy algorithm to estimate the key parameters of the ABM with respect to the same experimental data set and used ABM to describe a 3D immune system similar to previous studies that employed the DE model. These results indicate that IABMR not only has the potential to simulate the immune system at various scales, phenotypes and cell types, but can also accurately infer the key parameters like DE model. Therefore, this study innovatively developed a complex system development mechanism that could simulate the complicated immune system in detail like ABM and validate the reliability and efficiency of model like DE by fitting the experimental data.</description><subject>Agent-based models</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Biodiversity</subject><subject>Computer simulation</subject><subject>Differential equations</subject><subject>Encyclopedias</subject><subject>Experimental data</subject><subject>Greedy algorithms</subject><subject>Humans</subject><subject>Immune system</subject><subject>Infections</subject><subject>Influenza</subject><subject>Information science</subject><subject>Loess</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Models, Immunological</subject><subject>Optimization techniques</subject><subject>Ordinary differential equations</subject><subject>Parameter estimation</subject><subject>Partial differential equations</subject><subject>Probability</subject><subject>Regression models</subject><subject>Researchers</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk81u1DAQxyMEoqXwBggsIaH2sEscx0l8Qdp-wYpWRS1wtSbOJOvKiZfYqbqvxRPibLdVF_WAfPDY_s3fM2NPFL2l8ZSynH66tkPfgZkubYfTmKY0EfxZtEsFSyZZErPnj-yd6JVz13HMWZFlL6OdJOOM80LsRn-O8QaNXbbYeWJrAh2ZNcGeHILDipzbCg3Znx2eHxBvyZVuBwMeiV8gmbft0CG5WjmPbXCsyLzz2PTgte3WWuQyLNG5cX2OfmGrUeTEed3ei3zDFQnq5Dv00KLH3pFyRU6197pr1sTJ7RJ7PcYHhhyDh9fRixqMwzebeS_6eXry4-jr5Oziy_xodjZROS_8JBUVLWtUBU8ooiqFKlROU5XwOCsETau4hhLSPI5VIVRWlIJnOSsopQULdsL2ovd3uktjndyU20maszjJ84TlgZjfEZWFa7kMUUK_kha0XG_YvpHQe60MSsEEFshRUF6kqYBS1ZCFmVZ5XFEOQevz5rahbLFSId8ezJbo9kmnF7KxNzLNGKMpDwL7G4He_h7Qedlqp9AY6NAO67hpLihlLKAf_kGfzm5DNRAS0F1tw71qFJWzlLGMJTQZqekTVBgVtlqFv1nrsL_lcLDlEBiPt76BwTk5v7r8f_bi1zb78RG7QDB-4awZxt_otsH0DlS9da7H-qHINJZja91XQ46tJTetFdzePX6gB6f7XmJ_AQJsHeM</recordid><startdate>20151104</startdate><enddate>20151104</enddate><creator>Tong, Xuming</creator><creator>Chen, Jinghang</creator><creator>Miao, Hongyu</creator><creator>Li, Tingting</creator><creator>Zhang, Le</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151104</creationdate><title>Development of an Agent-Based Model (ABM) to Simulate the Immune System and Integration of a Regression Method to Estimate the Key ABM Parameters by Fitting the Experimental Data</title><author>Tong, Xuming ; Chen, Jinghang ; Miao, Hongyu ; Li, Tingting ; Zhang, Le</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-49d1bfec8521eecb9c8c714c25068914d0faba4700c89c68b95673811183b9523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Agent-based models</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Biodiversity</topic><topic>Computer simulation</topic><topic>Differential equations</topic><topic>Encyclopedias</topic><topic>Experimental data</topic><topic>Greedy algorithms</topic><topic>Humans</topic><topic>Immune system</topic><topic>Infections</topic><topic>Influenza</topic><topic>Information science</topic><topic>Loess</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Models, Immunological</topic><topic>Optimization techniques</topic><topic>Ordinary differential equations</topic><topic>Parameter estimation</topic><topic>Partial differential equations</topic><topic>Probability</topic><topic>Regression models</topic><topic>Researchers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Xuming</creatorcontrib><creatorcontrib>Chen, Jinghang</creatorcontrib><creatorcontrib>Miao, Hongyu</creatorcontrib><creatorcontrib>Li, Tingting</creatorcontrib><creatorcontrib>Zhang, Le</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Xuming</au><au>Chen, Jinghang</au><au>Miao, Hongyu</au><au>Li, Tingting</au><au>Zhang, Le</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of an Agent-Based Model (ABM) to Simulate the Immune System and Integration of a Regression Method to Estimate the Key ABM Parameters by Fitting the Experimental Data</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-11-04</date><risdate>2015</risdate><volume>10</volume><issue>11</issue><spage>e0141295</spage><epage>e0141295</epage><pages>e0141295-e0141295</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Agent-based models (ABM) and differential equations (DE) are two commonly used methods for immune system simulation. However, it is difficult for ABM to estimate key parameters of the model by incorporating experimental data, whereas the differential equation model is incapable of describing the complicated immune system in detail. To overcome these problems, we developed an integrated ABM regression model (IABMR). It can combine the advantages of ABM and DE by employing ABM to mimic the multi-scale immune system with various phenotypes and types of cells as well as using the input and output of ABM to build up the Loess regression for key parameter estimation. Next, we employed the greedy algorithm to estimate the key parameters of the ABM with respect to the same experimental data set and used ABM to describe a 3D immune system similar to previous studies that employed the DE model. These results indicate that IABMR not only has the potential to simulate the immune system at various scales, phenotypes and cell types, but can also accurately infer the key parameters like DE model. Therefore, this study innovatively developed a complex system development mechanism that could simulate the complicated immune system in detail like ABM and validate the reliability and efficiency of model like DE by fitting the experimental data.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26535589</pmid><doi>10.1371/journal.pone.0141295</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-11, Vol.10 (11), p.e0141295-e0141295 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1730277237 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Agent-based models Algorithms Animals Biodiversity Computer simulation Differential equations Encyclopedias Experimental data Greedy algorithms Humans Immune system Infections Influenza Information science Loess Mathematical models Mathematical problems Models, Immunological Optimization techniques Ordinary differential equations Parameter estimation Partial differential equations Probability Regression models Researchers |
title | Development of an Agent-Based Model (ABM) to Simulate the Immune System and Integration of a Regression Method to Estimate the Key ABM Parameters by Fitting the Experimental Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20an%20Agent-Based%20Model%20(ABM)%20to%20Simulate%20the%20Immune%20System%20and%20Integration%20of%20a%20Regression%20Method%20to%20Estimate%20the%20Key%20ABM%20Parameters%20by%20Fitting%20the%20Experimental%20Data&rft.jtitle=PloS%20one&rft.au=Tong,%20Xuming&rft.date=2015-11-04&rft.volume=10&rft.issue=11&rft.spage=e0141295&rft.epage=e0141295&rft.pages=e0141295-e0141295&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0141295&rft_dat=%3Cgale_plos_%3EA433632127%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730277237&rft_id=info:pmid/26535589&rft_galeid=A433632127&rft_doaj_id=oai_doaj_org_article_939e8e5e9158449abcfa649a1d70d15a&rfr_iscdi=true |