Role of (p)ppGpp in Viability and Biofilm Formation of Actinobacillus pleuropneumoniae S8

Actinobacillus pleuropneumoniae is a Gram-negative bacterium and the cause of porcine pleuropneumonia. When the bacterium encounters nutritional starvation, the relA-dependent (p)ppGpp-mediated stringent response is activated. The modified nucleotides guanosine 5'-diphosphate 3'-diphosphat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-10, Vol.10 (10), p.e0141501-e0141501
Hauptverfasser: Li, Gang, Xie, Fang, Zhang, Yanhe, Bossé, Janine T, Langford, Paul R, Wang, Chunlai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0141501
container_issue 10
container_start_page e0141501
container_title PloS one
container_volume 10
creator Li, Gang
Xie, Fang
Zhang, Yanhe
Bossé, Janine T
Langford, Paul R
Wang, Chunlai
description Actinobacillus pleuropneumoniae is a Gram-negative bacterium and the cause of porcine pleuropneumonia. When the bacterium encounters nutritional starvation, the relA-dependent (p)ppGpp-mediated stringent response is activated. The modified nucleotides guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate 3'-diphosphate (pppGpp) are known to be signaling molecules in other prokaryotes. Here, to investigate the role of (p)ppGpp in A. pleuropneumoniae, we created a mutant A. pleuropneumoniae strain, S8ΔrelA, which lacks the (p)ppGpp-synthesizing enzyme RelA, and investigated its phenotype in vitro. S8ΔrelA did not survive after stationary phase (starvation condition) and grew exclusively as non-extended cells. Compared to the wild-type (WT) strain, the S8ΔrelA mutant had an increased ability to form a biofilm. Transcriptional profiles of early stationary phase cultures revealed that a total of 405 bacterial genes were differentially expressed (including 380 up-regulated and 25 down-regulated genes) in S8ΔrelA as compared with the WT strain. Most of the up-regulated genes are involved in ribosomal structure and biogenesis, amino acid transport and metabolism, translation cell wall/membrane/envelope biogenesis. The data indicate that (p)ppGpp coordinates the growth, viability, morphology, biofilm formation and metabolic ability of A. pleuropneumoniae in starvation conditions. Furthermore, S8ΔrelA could not use certain sugars nor produce urease which has been associated with the virulence of A. pleuropneumoniae, suggesting that (p)ppGpp may directly or indirectly affect the pathogenesis of A. pleuropneumoniae during the infection process. In summary, (p)ppGpp signaling represents an essential component of the regulatory network governing stress adaptation and virulence in A. pleuropneumoniae.
doi_str_mv 10.1371/journal.pone.0141501
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1729020334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A432960284</galeid><doaj_id>oai_doaj_org_article_7e92336ea1c54eb693a2cec6232e1e52</doaj_id><sourcerecordid>A432960284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-405fa336b90f49b0ae3a5c6baec4412300c0743a44dadde90c6b9852a053e1ef3</originalsourceid><addsrcrecordid>eNqNk99rFDEQxxdRbK3-B6ILgrQPd2aTbG7zIpzF1oNCodWCT2E2O3uXkk3Wza7Y_95sb1vupA-Sh4TkM9_5kZkkeZuRecYW2adbP3QO7Lz1Duck41lOsmfJYSYZnQlK2POd80HyKoRbQnJWCPEyOaAiJ5JLeZj8vPIWU1-nx-1J2563bWpcemOgNNb0dym4Kv1ifG1sk575roHeeDfiS90b50vQxtohpK3FofOtw6HxzgCm18Xr5EUNNuCbaT9Kfpx9_X76bXZxeb46XV7MtJC0n3GS18CYKCWpuSwJIINcixJQc55RRogmC86A8wqqCiWJb7LIKcRkMMOaHSXvt7qt9UFNVQkqW1BJYuqMR2K1JSoPt6rtTAPdnfJg1P2F79YKut5oi2qBksZgEDKdcyyFZEA1akEZjc5yGrU-T96GssFKo-s7sHui-y_ObNTa_1ZcUF5wFgWOJ4HO_xow9KoxQaO14NAP93EXYpHzgkT0wz_o09lN1BpiAsbVPvrVo6hackalILQYqfkTVFwVNkbHFopfjPsGJ3sGkenxT7-GIQS1ur76f_byZp_9uMNuEGy_Cd4OY2OFfZBvQd35EDqsH4ucETVOwEM11DgBapqAaPZu94MejR5anv0F1WH_nw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1729020334</pqid></control><display><type>article</type><title>Role of (p)ppGpp in Viability and Biofilm Formation of Actinobacillus pleuropneumoniae S8</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Gang ; Xie, Fang ; Zhang, Yanhe ; Bossé, Janine T ; Langford, Paul R ; Wang, Chunlai</creator><contributor>van Schaik, Willem</contributor><creatorcontrib>Li, Gang ; Xie, Fang ; Zhang, Yanhe ; Bossé, Janine T ; Langford, Paul R ; Wang, Chunlai ; van Schaik, Willem</creatorcontrib><description>Actinobacillus pleuropneumoniae is a Gram-negative bacterium and the cause of porcine pleuropneumonia. When the bacterium encounters nutritional starvation, the relA-dependent (p)ppGpp-mediated stringent response is activated. The modified nucleotides guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate 3'-diphosphate (pppGpp) are known to be signaling molecules in other prokaryotes. Here, to investigate the role of (p)ppGpp in A. pleuropneumoniae, we created a mutant A. pleuropneumoniae strain, S8ΔrelA, which lacks the (p)ppGpp-synthesizing enzyme RelA, and investigated its phenotype in vitro. S8ΔrelA did not survive after stationary phase (starvation condition) and grew exclusively as non-extended cells. Compared to the wild-type (WT) strain, the S8ΔrelA mutant had an increased ability to form a biofilm. Transcriptional profiles of early stationary phase cultures revealed that a total of 405 bacterial genes were differentially expressed (including 380 up-regulated and 25 down-regulated genes) in S8ΔrelA as compared with the WT strain. Most of the up-regulated genes are involved in ribosomal structure and biogenesis, amino acid transport and metabolism, translation cell wall/membrane/envelope biogenesis. The data indicate that (p)ppGpp coordinates the growth, viability, morphology, biofilm formation and metabolic ability of A. pleuropneumoniae in starvation conditions. Furthermore, S8ΔrelA could not use certain sugars nor produce urease which has been associated with the virulence of A. pleuropneumoniae, suggesting that (p)ppGpp may directly or indirectly affect the pathogenesis of A. pleuropneumoniae during the infection process. In summary, (p)ppGpp signaling represents an essential component of the regulatory network governing stress adaptation and virulence in A. pleuropneumoniae.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0141501</identifier><identifier>PMID: 26509499</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Actinobacillus ; Actinobacillus pleuropneumoniae ; Actinobacillus pleuropneumoniae - physiology ; Amino acids ; Bacteria ; Biofilms ; Biotechnology ; Cell walls ; Cellular signal transduction ; Cloning ; Deoxyribonucleic acid ; Disease ; DNA ; E coli ; Escherichia coli ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Bacterial ; Genes ; Genetic aspects ; Genetic Complementation Test ; Growth ; Growth rate ; Guanine Nucleotides - metabolism ; Guanosine ; Laboratories ; Ligases - genetics ; Ligases - metabolism ; Metabolism ; Microbial Viability ; Nucleotides ; Pathogenesis ; Phenotypes ; Plasmids ; Pleuropneumonia ; Prokaryotes ; Properties ; Pseudomonas syringae ; RelA protein ; Reproducibility of Results ; Sequence Deletion ; Signaling ; Stationary phase ; Stress response ; Stringent response ; Sugar ; Transcription ; Urease ; Viability ; Virulence ; Virulence (Microbiology)</subject><ispartof>PloS one, 2015-10, Vol.10 (10), p.e0141501-e0141501</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Li et al 2015 Li et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-405fa336b90f49b0ae3a5c6baec4412300c0743a44dadde90c6b9852a053e1ef3</citedby><cites>FETCH-LOGICAL-c692t-405fa336b90f49b0ae3a5c6baec4412300c0743a44dadde90c6b9852a053e1ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4624843/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4624843/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26509499$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>van Schaik, Willem</contributor><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Xie, Fang</creatorcontrib><creatorcontrib>Zhang, Yanhe</creatorcontrib><creatorcontrib>Bossé, Janine T</creatorcontrib><creatorcontrib>Langford, Paul R</creatorcontrib><creatorcontrib>Wang, Chunlai</creatorcontrib><title>Role of (p)ppGpp in Viability and Biofilm Formation of Actinobacillus pleuropneumoniae S8</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Actinobacillus pleuropneumoniae is a Gram-negative bacterium and the cause of porcine pleuropneumonia. When the bacterium encounters nutritional starvation, the relA-dependent (p)ppGpp-mediated stringent response is activated. The modified nucleotides guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate 3'-diphosphate (pppGpp) are known to be signaling molecules in other prokaryotes. Here, to investigate the role of (p)ppGpp in A. pleuropneumoniae, we created a mutant A. pleuropneumoniae strain, S8ΔrelA, which lacks the (p)ppGpp-synthesizing enzyme RelA, and investigated its phenotype in vitro. S8ΔrelA did not survive after stationary phase (starvation condition) and grew exclusively as non-extended cells. Compared to the wild-type (WT) strain, the S8ΔrelA mutant had an increased ability to form a biofilm. Transcriptional profiles of early stationary phase cultures revealed that a total of 405 bacterial genes were differentially expressed (including 380 up-regulated and 25 down-regulated genes) in S8ΔrelA as compared with the WT strain. Most of the up-regulated genes are involved in ribosomal structure and biogenesis, amino acid transport and metabolism, translation cell wall/membrane/envelope biogenesis. The data indicate that (p)ppGpp coordinates the growth, viability, morphology, biofilm formation and metabolic ability of A. pleuropneumoniae in starvation conditions. Furthermore, S8ΔrelA could not use certain sugars nor produce urease which has been associated with the virulence of A. pleuropneumoniae, suggesting that (p)ppGpp may directly or indirectly affect the pathogenesis of A. pleuropneumoniae during the infection process. In summary, (p)ppGpp signaling represents an essential component of the regulatory network governing stress adaptation and virulence in A. pleuropneumoniae.</description><subject>Actinobacillus</subject><subject>Actinobacillus pleuropneumoniae</subject><subject>Actinobacillus pleuropneumoniae - physiology</subject><subject>Amino acids</subject><subject>Bacteria</subject><subject>Biofilms</subject><subject>Biotechnology</subject><subject>Cell walls</subject><subject>Cellular signal transduction</subject><subject>Cloning</subject><subject>Deoxyribonucleic acid</subject><subject>Disease</subject><subject>DNA</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic Complementation Test</subject><subject>Growth</subject><subject>Growth rate</subject><subject>Guanine Nucleotides - metabolism</subject><subject>Guanosine</subject><subject>Laboratories</subject><subject>Ligases - genetics</subject><subject>Ligases - metabolism</subject><subject>Metabolism</subject><subject>Microbial Viability</subject><subject>Nucleotides</subject><subject>Pathogenesis</subject><subject>Phenotypes</subject><subject>Plasmids</subject><subject>Pleuropneumonia</subject><subject>Prokaryotes</subject><subject>Properties</subject><subject>Pseudomonas syringae</subject><subject>RelA protein</subject><subject>Reproducibility of Results</subject><subject>Sequence Deletion</subject><subject>Signaling</subject><subject>Stationary phase</subject><subject>Stress response</subject><subject>Stringent response</subject><subject>Sugar</subject><subject>Transcription</subject><subject>Urease</subject><subject>Viability</subject><subject>Virulence</subject><subject>Virulence (Microbiology)</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99rFDEQxxdRbK3-B6ILgrQPd2aTbG7zIpzF1oNCodWCT2E2O3uXkk3Wza7Y_95sb1vupA-Sh4TkM9_5kZkkeZuRecYW2adbP3QO7Lz1Duck41lOsmfJYSYZnQlK2POd80HyKoRbQnJWCPEyOaAiJ5JLeZj8vPIWU1-nx-1J2563bWpcemOgNNb0dym4Kv1ifG1sk575roHeeDfiS90b50vQxtohpK3FofOtw6HxzgCm18Xr5EUNNuCbaT9Kfpx9_X76bXZxeb46XV7MtJC0n3GS18CYKCWpuSwJIINcixJQc55RRogmC86A8wqqCiWJb7LIKcRkMMOaHSXvt7qt9UFNVQkqW1BJYuqMR2K1JSoPt6rtTAPdnfJg1P2F79YKut5oi2qBksZgEDKdcyyFZEA1akEZjc5yGrU-T96GssFKo-s7sHui-y_ObNTa_1ZcUF5wFgWOJ4HO_xow9KoxQaO14NAP93EXYpHzgkT0wz_o09lN1BpiAsbVPvrVo6hackalILQYqfkTVFwVNkbHFopfjPsGJ3sGkenxT7-GIQS1ur76f_byZp_9uMNuEGy_Cd4OY2OFfZBvQd35EDqsH4ucETVOwEM11DgBapqAaPZu94MejR5anv0F1WH_nw</recordid><startdate>20151028</startdate><enddate>20151028</enddate><creator>Li, Gang</creator><creator>Xie, Fang</creator><creator>Zhang, Yanhe</creator><creator>Bossé, Janine T</creator><creator>Langford, Paul R</creator><creator>Wang, Chunlai</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151028</creationdate><title>Role of (p)ppGpp in Viability and Biofilm Formation of Actinobacillus pleuropneumoniae S8</title><author>Li, Gang ; Xie, Fang ; Zhang, Yanhe ; Bossé, Janine T ; Langford, Paul R ; Wang, Chunlai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-405fa336b90f49b0ae3a5c6baec4412300c0743a44dadde90c6b9852a053e1ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Actinobacillus</topic><topic>Actinobacillus pleuropneumoniae</topic><topic>Actinobacillus pleuropneumoniae - physiology</topic><topic>Amino acids</topic><topic>Bacteria</topic><topic>Biofilms</topic><topic>Biotechnology</topic><topic>Cell walls</topic><topic>Cellular signal transduction</topic><topic>Cloning</topic><topic>Deoxyribonucleic acid</topic><topic>Disease</topic><topic>DNA</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic Complementation Test</topic><topic>Growth</topic><topic>Growth rate</topic><topic>Guanine Nucleotides - metabolism</topic><topic>Guanosine</topic><topic>Laboratories</topic><topic>Ligases - genetics</topic><topic>Ligases - metabolism</topic><topic>Metabolism</topic><topic>Microbial Viability</topic><topic>Nucleotides</topic><topic>Pathogenesis</topic><topic>Phenotypes</topic><topic>Plasmids</topic><topic>Pleuropneumonia</topic><topic>Prokaryotes</topic><topic>Properties</topic><topic>Pseudomonas syringae</topic><topic>RelA protein</topic><topic>Reproducibility of Results</topic><topic>Sequence Deletion</topic><topic>Signaling</topic><topic>Stationary phase</topic><topic>Stress response</topic><topic>Stringent response</topic><topic>Sugar</topic><topic>Transcription</topic><topic>Urease</topic><topic>Viability</topic><topic>Virulence</topic><topic>Virulence (Microbiology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Xie, Fang</creatorcontrib><creatorcontrib>Zhang, Yanhe</creatorcontrib><creatorcontrib>Bossé, Janine T</creatorcontrib><creatorcontrib>Langford, Paul R</creatorcontrib><creatorcontrib>Wang, Chunlai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Gang</au><au>Xie, Fang</au><au>Zhang, Yanhe</au><au>Bossé, Janine T</au><au>Langford, Paul R</au><au>Wang, Chunlai</au><au>van Schaik, Willem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of (p)ppGpp in Viability and Biofilm Formation of Actinobacillus pleuropneumoniae S8</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-10-28</date><risdate>2015</risdate><volume>10</volume><issue>10</issue><spage>e0141501</spage><epage>e0141501</epage><pages>e0141501-e0141501</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Actinobacillus pleuropneumoniae is a Gram-negative bacterium and the cause of porcine pleuropneumonia. When the bacterium encounters nutritional starvation, the relA-dependent (p)ppGpp-mediated stringent response is activated. The modified nucleotides guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate 3'-diphosphate (pppGpp) are known to be signaling molecules in other prokaryotes. Here, to investigate the role of (p)ppGpp in A. pleuropneumoniae, we created a mutant A. pleuropneumoniae strain, S8ΔrelA, which lacks the (p)ppGpp-synthesizing enzyme RelA, and investigated its phenotype in vitro. S8ΔrelA did not survive after stationary phase (starvation condition) and grew exclusively as non-extended cells. Compared to the wild-type (WT) strain, the S8ΔrelA mutant had an increased ability to form a biofilm. Transcriptional profiles of early stationary phase cultures revealed that a total of 405 bacterial genes were differentially expressed (including 380 up-regulated and 25 down-regulated genes) in S8ΔrelA as compared with the WT strain. Most of the up-regulated genes are involved in ribosomal structure and biogenesis, amino acid transport and metabolism, translation cell wall/membrane/envelope biogenesis. The data indicate that (p)ppGpp coordinates the growth, viability, morphology, biofilm formation and metabolic ability of A. pleuropneumoniae in starvation conditions. Furthermore, S8ΔrelA could not use certain sugars nor produce urease which has been associated with the virulence of A. pleuropneumoniae, suggesting that (p)ppGpp may directly or indirectly affect the pathogenesis of A. pleuropneumoniae during the infection process. In summary, (p)ppGpp signaling represents an essential component of the regulatory network governing stress adaptation and virulence in A. pleuropneumoniae.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26509499</pmid><doi>10.1371/journal.pone.0141501</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-10, Vol.10 (10), p.e0141501-e0141501
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1729020334
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Actinobacillus
Actinobacillus pleuropneumoniae
Actinobacillus pleuropneumoniae - physiology
Amino acids
Bacteria
Biofilms
Biotechnology
Cell walls
Cellular signal transduction
Cloning
Deoxyribonucleic acid
Disease
DNA
E coli
Escherichia coli
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Bacterial
Genes
Genetic aspects
Genetic Complementation Test
Growth
Growth rate
Guanine Nucleotides - metabolism
Guanosine
Laboratories
Ligases - genetics
Ligases - metabolism
Metabolism
Microbial Viability
Nucleotides
Pathogenesis
Phenotypes
Plasmids
Pleuropneumonia
Prokaryotes
Properties
Pseudomonas syringae
RelA protein
Reproducibility of Results
Sequence Deletion
Signaling
Stationary phase
Stress response
Stringent response
Sugar
Transcription
Urease
Viability
Virulence
Virulence (Microbiology)
title Role of (p)ppGpp in Viability and Biofilm Formation of Actinobacillus pleuropneumoniae S8
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A16%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20(p)ppGpp%20in%20Viability%20and%20Biofilm%20Formation%20of%20Actinobacillus%20pleuropneumoniae%20S8&rft.jtitle=PloS%20one&rft.au=Li,%20Gang&rft.date=2015-10-28&rft.volume=10&rft.issue=10&rft.spage=e0141501&rft.epage=e0141501&rft.pages=e0141501-e0141501&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0141501&rft_dat=%3Cgale_plos_%3EA432960284%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1729020334&rft_id=info:pmid/26509499&rft_galeid=A432960284&rft_doaj_id=oai_doaj_org_article_7e92336ea1c54eb693a2cec6232e1e52&rfr_iscdi=true