New Insights on the Burstein-Moss Shift and Band Gap Narrowing in Indium-Doped Zinc Oxide Thin Films
The Burstein-Moss shift and band gap narrowing of sputtered indium-doped zinc oxide (IZO) thin films are investigated as a function of carrier concentrations. The optical band gap shifts below the carrier concentration of 5.61 × 1019 cm-3 are well-described by the Burstein-Moss model. For carrier co...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-10, Vol.10 (10), p.e0141180-e0141180 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0141180 |
---|---|
container_issue | 10 |
container_start_page | e0141180 |
container_title | PloS one |
container_volume | 10 |
creator | Saw, K G Aznan, N M Yam, F K Ng, S S Pung, S Y |
description | The Burstein-Moss shift and band gap narrowing of sputtered indium-doped zinc oxide (IZO) thin films are investigated as a function of carrier concentrations. The optical band gap shifts below the carrier concentration of 5.61 × 1019 cm-3 are well-described by the Burstein-Moss model. For carrier concentrations higher than 8.71 × 1019 cm-3 the shift decreases, indicating that band gap narrowing mechanisms are increasingly significant and are competing with the Burstein-Moss effect. The incorporation of In causes the resistivity to decrease three orders of magnitude. As the mean-free path of carriers is less than the crystallite size, the resistivity is probably affected by ionized impurities as well as defect scattering mechanisms, but not grain boundary scattering. The c lattice constant as well as film stress is observed to increase in stages with increasing carrier concentration. The asymmetric XPS Zn 2p3/2 peak in the film with the highest carrier concentration of 7.02 × 1020 cm-3 suggests the presence of stacking defects in the ZnO lattice. The Raman peak at 274 cm-1 is attributed to lattice defects introduced by In dopants. |
doi_str_mv | 10.1371/journal.pone.0141180 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1728400197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A433167136</galeid><doaj_id>oai_doaj_org_article_612ca71c82a54cc4b9e902f82543a3f2</doaj_id><sourcerecordid>A433167136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-95bc133a42c70d6bc3de09435f1e6cd2171067679e05e0dca41964180b86b3973</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBEQkJwkeKv2MkN0jbYqDRWiQ0uuLEc20lcJXaxEzb-PW6bTS3aBbJkR_bzvs45PidJXkIwg5jBD0s3eiu62cpZPQOQQFiAR8khLDHKKAL48c73QfIshCUAOS4ofZocIJpDhik5TNSlvknnNpimHULqbDq0Oj0ZfRi0sdlXF0J61Zp6SIVV6cl6Oher9FJ4726MbVJjo1qZsc8-uZVW6U9jZbq4NUqn1208PDNdH54nT2rRBf1iWo-S72efr0-_ZBeL8_np8UUmWV4MWZlXEmIsCJIMKFpJrDQoCc5rqKlUCDIIKKOs1CDXQElBYElJDLsqaIVLho-S11vfVecCnxIUOGSoIADADTHfEsqJJV950wv_hzth-GbD-YYLPxjZaU4hkoJBWSCREylJVeoSoLpAOcEC1yh6fZxuG6teK6nt4EW3Z7p_Yk3LG_ebE4oYy3E0eDcZePdr1GHgvQlSd52w2o2b_y5xDihYo2_-QR-ObqIaEQMwtnbxXrk25ccEY0gZxDRSsweoOJTujYzVVJu4vyd4vyeIzKBvh0aMIfD51bf_Zxc_9tm3O2yrRTe0wXXjYJwN-yDZgtLHgvS6vk8yBHzdDHfZ4Otm4FMzRNmr3Qe6F91VP_4L_OgBVA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728400197</pqid></control><display><type>article</type><title>New Insights on the Burstein-Moss Shift and Band Gap Narrowing in Indium-Doped Zinc Oxide Thin Films</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Saw, K G ; Aznan, N M ; Yam, F K ; Ng, S S ; Pung, S Y</creator><creatorcontrib>Saw, K G ; Aznan, N M ; Yam, F K ; Ng, S S ; Pung, S Y</creatorcontrib><description>The Burstein-Moss shift and band gap narrowing of sputtered indium-doped zinc oxide (IZO) thin films are investigated as a function of carrier concentrations. The optical band gap shifts below the carrier concentration of 5.61 × 1019 cm-3 are well-described by the Burstein-Moss model. For carrier concentrations higher than 8.71 × 1019 cm-3 the shift decreases, indicating that band gap narrowing mechanisms are increasingly significant and are competing with the Burstein-Moss effect. The incorporation of In causes the resistivity to decrease three orders of magnitude. As the mean-free path of carriers is less than the crystallite size, the resistivity is probably affected by ionized impurities as well as defect scattering mechanisms, but not grain boundary scattering. The c lattice constant as well as film stress is observed to increase in stages with increasing carrier concentration. The asymmetric XPS Zn 2p3/2 peak in the film with the highest carrier concentration of 7.02 × 1020 cm-3 suggests the presence of stacking defects in the ZnO lattice. The Raman peak at 274 cm-1 is attributed to lattice defects introduced by In dopants.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0141180</identifier><identifier>PMID: 26517364</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Band gap ; Bursting ; Carrier density ; Crystal defects ; Crystallization ; Distance learning ; Electric properties ; Electrical resistivity ; Grain boundaries ; Impurities ; Indium ; Indium - chemistry ; Lattice parameters ; Mosses ; Particle Size ; Photovoltaic cells ; Physics ; Plasma ; Scattering ; Semiconductors ; Semiconductors (Materials) ; Spectrum analysis ; Spectrum Analysis, Raman ; Studies ; Temperature ; Thin films ; Zinc ; Zinc oxide ; Zinc Oxide - chemistry ; Zinc oxides</subject><ispartof>PloS one, 2015-10, Vol.10 (10), p.e0141180-e0141180</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Saw et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Saw et al 2015 Saw et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-95bc133a42c70d6bc3de09435f1e6cd2171067679e05e0dca41964180b86b3973</citedby><cites>FETCH-LOGICAL-c758t-95bc133a42c70d6bc3de09435f1e6cd2171067679e05e0dca41964180b86b3973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4627753/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4627753/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26517364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saw, K G</creatorcontrib><creatorcontrib>Aznan, N M</creatorcontrib><creatorcontrib>Yam, F K</creatorcontrib><creatorcontrib>Ng, S S</creatorcontrib><creatorcontrib>Pung, S Y</creatorcontrib><title>New Insights on the Burstein-Moss Shift and Band Gap Narrowing in Indium-Doped Zinc Oxide Thin Films</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The Burstein-Moss shift and band gap narrowing of sputtered indium-doped zinc oxide (IZO) thin films are investigated as a function of carrier concentrations. The optical band gap shifts below the carrier concentration of 5.61 × 1019 cm-3 are well-described by the Burstein-Moss model. For carrier concentrations higher than 8.71 × 1019 cm-3 the shift decreases, indicating that band gap narrowing mechanisms are increasingly significant and are competing with the Burstein-Moss effect. The incorporation of In causes the resistivity to decrease three orders of magnitude. As the mean-free path of carriers is less than the crystallite size, the resistivity is probably affected by ionized impurities as well as defect scattering mechanisms, but not grain boundary scattering. The c lattice constant as well as film stress is observed to increase in stages with increasing carrier concentration. The asymmetric XPS Zn 2p3/2 peak in the film with the highest carrier concentration of 7.02 × 1020 cm-3 suggests the presence of stacking defects in the ZnO lattice. The Raman peak at 274 cm-1 is attributed to lattice defects introduced by In dopants.</description><subject>Analysis</subject><subject>Band gap</subject><subject>Bursting</subject><subject>Carrier density</subject><subject>Crystal defects</subject><subject>Crystallization</subject><subject>Distance learning</subject><subject>Electric properties</subject><subject>Electrical resistivity</subject><subject>Grain boundaries</subject><subject>Impurities</subject><subject>Indium</subject><subject>Indium - chemistry</subject><subject>Lattice parameters</subject><subject>Mosses</subject><subject>Particle Size</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Plasma</subject><subject>Scattering</subject><subject>Semiconductors</subject><subject>Semiconductors (Materials)</subject><subject>Spectrum analysis</subject><subject>Spectrum Analysis, Raman</subject><subject>Studies</subject><subject>Temperature</subject><subject>Thin films</subject><subject>Zinc</subject><subject>Zinc oxide</subject><subject>Zinc Oxide - chemistry</subject><subject>Zinc oxides</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBEQkJwkeKv2MkN0jbYqDRWiQ0uuLEc20lcJXaxEzb-PW6bTS3aBbJkR_bzvs45PidJXkIwg5jBD0s3eiu62cpZPQOQQFiAR8khLDHKKAL48c73QfIshCUAOS4ofZocIJpDhik5TNSlvknnNpimHULqbDq0Oj0ZfRi0sdlXF0J61Zp6SIVV6cl6Oher9FJ4726MbVJjo1qZsc8-uZVW6U9jZbq4NUqn1208PDNdH54nT2rRBf1iWo-S72efr0-_ZBeL8_np8UUmWV4MWZlXEmIsCJIMKFpJrDQoCc5rqKlUCDIIKKOs1CDXQElBYElJDLsqaIVLho-S11vfVecCnxIUOGSoIADADTHfEsqJJV950wv_hzth-GbD-YYLPxjZaU4hkoJBWSCREylJVeoSoLpAOcEC1yh6fZxuG6teK6nt4EW3Z7p_Yk3LG_ebE4oYy3E0eDcZePdr1GHgvQlSd52w2o2b_y5xDihYo2_-QR-ObqIaEQMwtnbxXrk25ccEY0gZxDRSsweoOJTujYzVVJu4vyd4vyeIzKBvh0aMIfD51bf_Zxc_9tm3O2yrRTe0wXXjYJwN-yDZgtLHgvS6vk8yBHzdDHfZ4Otm4FMzRNmr3Qe6F91VP_4L_OgBVA</recordid><startdate>20151030</startdate><enddate>20151030</enddate><creator>Saw, K G</creator><creator>Aznan, N M</creator><creator>Yam, F K</creator><creator>Ng, S S</creator><creator>Pung, S Y</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151030</creationdate><title>New Insights on the Burstein-Moss Shift and Band Gap Narrowing in Indium-Doped Zinc Oxide Thin Films</title><author>Saw, K G ; Aznan, N M ; Yam, F K ; Ng, S S ; Pung, S Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-95bc133a42c70d6bc3de09435f1e6cd2171067679e05e0dca41964180b86b3973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Band gap</topic><topic>Bursting</topic><topic>Carrier density</topic><topic>Crystal defects</topic><topic>Crystallization</topic><topic>Distance learning</topic><topic>Electric properties</topic><topic>Electrical resistivity</topic><topic>Grain boundaries</topic><topic>Impurities</topic><topic>Indium</topic><topic>Indium - chemistry</topic><topic>Lattice parameters</topic><topic>Mosses</topic><topic>Particle Size</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Plasma</topic><topic>Scattering</topic><topic>Semiconductors</topic><topic>Semiconductors (Materials)</topic><topic>Spectrum analysis</topic><topic>Spectrum Analysis, Raman</topic><topic>Studies</topic><topic>Temperature</topic><topic>Thin films</topic><topic>Zinc</topic><topic>Zinc oxide</topic><topic>Zinc Oxide - chemistry</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saw, K G</creatorcontrib><creatorcontrib>Aznan, N M</creatorcontrib><creatorcontrib>Yam, F K</creatorcontrib><creatorcontrib>Ng, S S</creatorcontrib><creatorcontrib>Pung, S Y</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saw, K G</au><au>Aznan, N M</au><au>Yam, F K</au><au>Ng, S S</au><au>Pung, S Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Insights on the Burstein-Moss Shift and Band Gap Narrowing in Indium-Doped Zinc Oxide Thin Films</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-10-30</date><risdate>2015</risdate><volume>10</volume><issue>10</issue><spage>e0141180</spage><epage>e0141180</epage><pages>e0141180-e0141180</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The Burstein-Moss shift and band gap narrowing of sputtered indium-doped zinc oxide (IZO) thin films are investigated as a function of carrier concentrations. The optical band gap shifts below the carrier concentration of 5.61 × 1019 cm-3 are well-described by the Burstein-Moss model. For carrier concentrations higher than 8.71 × 1019 cm-3 the shift decreases, indicating that band gap narrowing mechanisms are increasingly significant and are competing with the Burstein-Moss effect. The incorporation of In causes the resistivity to decrease three orders of magnitude. As the mean-free path of carriers is less than the crystallite size, the resistivity is probably affected by ionized impurities as well as defect scattering mechanisms, but not grain boundary scattering. The c lattice constant as well as film stress is observed to increase in stages with increasing carrier concentration. The asymmetric XPS Zn 2p3/2 peak in the film with the highest carrier concentration of 7.02 × 1020 cm-3 suggests the presence of stacking defects in the ZnO lattice. The Raman peak at 274 cm-1 is attributed to lattice defects introduced by In dopants.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26517364</pmid><doi>10.1371/journal.pone.0141180</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-10, Vol.10 (10), p.e0141180-e0141180 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1728400197 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Analysis Band gap Bursting Carrier density Crystal defects Crystallization Distance learning Electric properties Electrical resistivity Grain boundaries Impurities Indium Indium - chemistry Lattice parameters Mosses Particle Size Photovoltaic cells Physics Plasma Scattering Semiconductors Semiconductors (Materials) Spectrum analysis Spectrum Analysis, Raman Studies Temperature Thin films Zinc Zinc oxide Zinc Oxide - chemistry Zinc oxides |
title | New Insights on the Burstein-Moss Shift and Band Gap Narrowing in Indium-Doped Zinc Oxide Thin Films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Insights%20on%20the%20Burstein-Moss%20Shift%20and%20Band%20Gap%20Narrowing%20in%20Indium-Doped%20Zinc%20Oxide%20Thin%20Films&rft.jtitle=PloS%20one&rft.au=Saw,%20K%20G&rft.date=2015-10-30&rft.volume=10&rft.issue=10&rft.spage=e0141180&rft.epage=e0141180&rft.pages=e0141180-e0141180&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0141180&rft_dat=%3Cgale_plos_%3EA433167136%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1728400197&rft_id=info:pmid/26517364&rft_galeid=A433167136&rft_doaj_id=oai_doaj_org_article_612ca71c82a54cc4b9e902f82543a3f2&rfr_iscdi=true |