Expression Quantitative Trait Loci Information Improves Predictive Modeling of Disease Relevance of Non-Coding Genetic Variation

Disease-associated loci identified through genome-wide association studies (GWAS) frequently localize to non-coding sequence. We and others have demonstrated strong enrichment of such single nucleotide polymorphisms (SNPs) for expression quantitative trait loci (eQTLs), supporting an important role...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-10, Vol.10 (10), p.e0140758-e0140758
Hauptverfasser: Croteau-Chonka, Damien C, Rogers, Angela J, Raj, Towfique, McGeachie, Michael J, Qiu, Weiliang, Ziniti, John P, Stubbs, Benjamin J, Liang, Liming, Martinez, Fernando D, Strunk, Robert C, Lemanske, Jr, Robert F, Liu, Andrew H, Stranger, Barbara E, Carey, Vincent J, Raby, Benjamin A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0140758
container_issue 10
container_start_page e0140758
container_title PloS one
container_volume 10
creator Croteau-Chonka, Damien C
Rogers, Angela J
Raj, Towfique
McGeachie, Michael J
Qiu, Weiliang
Ziniti, John P
Stubbs, Benjamin J
Liang, Liming
Martinez, Fernando D
Strunk, Robert C
Lemanske, Jr, Robert F
Liu, Andrew H
Stranger, Barbara E
Carey, Vincent J
Raby, Benjamin A
description Disease-associated loci identified through genome-wide association studies (GWAS) frequently localize to non-coding sequence. We and others have demonstrated strong enrichment of such single nucleotide polymorphisms (SNPs) for expression quantitative trait loci (eQTLs), supporting an important role for regulatory genetic variation in complex disease pathogenesis. Herein we describe our initial efforts to develop a predictive model of disease-associated variants leveraging eQTL information. We first catalogued cis-acting eQTLs (SNPs within 100 kb of target gene transcripts) by meta-analyzing four studies of three blood-derived tissues (n = 586). At a false discovery rate < 5%, we mapped eQTLs for 6,535 genes; these were enriched for disease-associated genes (P < 10(-04)), particularly those related to immune diseases and metabolic traits. Based on eQTL information and other variant annotations (distance from target gene transcript, minor allele frequency, and chromatin state), we created multivariate logistic regression models to predict SNP membership in reported GWAS. The complete model revealed independent contributions of specific annotations as strong predictors, including evidence for an eQTL (odds ratio (OR) = 1.2-2.0, P < 10(-11)) and the chromatin states of active promoters, different classes of strong or weak enhancers, or transcriptionally active regions (OR = 1.5-2.3, P < 10(-11)). This complete prediction model including eQTL association information ultimately allowed for better discrimination of SNPs with higher probabilities of GWAS membership (6.3-10.0%, compared to 3.5% for a random SNP) than the other two models excluding eQTL information. This eQTL-based prediction model of disease relevance can help systematically prioritize non-coding GWAS SNPs for further functional characterization.
doi_str_mv 10.1371/journal.pone.0140758
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1722648758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A431814628</galeid><doaj_id>oai_doaj_org_article_685bf48145f04d43ae29eca953601ace</doaj_id><sourcerecordid>A431814628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-81e53a1449ee628577091b6e5350d855e118425eda1303ac450660644a691b383</originalsourceid><addsrcrecordid>eNqNk19v0zAUxSMEYmPwDRBEQkLw0GLHf-K8TJrKGJUKgzH2arnOTesqsYudVOONj47TZlOL9oDykOjkd499j32T5CVGY0xy_GHlOm9VPV47C2OEKcqZeJQc44JkI54h8njv-yh5FsIKIUYE50-To4zTnFIhjpM_57drDyEYZ9PvnbKtaVVrNpBee2XadOa0Sae2cr6JcmSmzdq7DYT0m4fS6C36xZVQG7tIXZV-NAFUgPQKatgoq6EXvzo7mriyRy7AQmt0eqO82To-T55Uqg7wYnifJD8_nV9PPo9mlxfTydlspHmRtSOBgRGFKS0AeCZYnqMCz3kUGSoFY4CxoBmDUmGCiNKUIc4Rp1TxyBFBTpLXO9917YIcwgsS51kMQ8TsIjHdEaVTK7n2plH-t3TKyK3g_EIqH_deg-SCzSsqMGUVoiUlCrICtCoY4QgrDdHrdFitmzdQarCtV_WB6eEfa5Zy4TaSciR4TqLBu8HAu18dhFY2Jmioa2XBddt904yjAtGIvvkHfbi7gVqo2ICJRxrX1b2pPKMEx15irJEaP0DFp4TG6HjTKhP1g4L3BwWRaeG2XaguBDn9cfX_7OXNIft2j12CqttlcHXXX5lwCNIdqL0LwUN1HzJGsh-UuzRkPyhyGJRY9mr_gO6L7iaD_AWJPw02</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1722648758</pqid></control><display><type>article</type><title>Expression Quantitative Trait Loci Information Improves Predictive Modeling of Disease Relevance of Non-Coding Genetic Variation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Croteau-Chonka, Damien C ; Rogers, Angela J ; Raj, Towfique ; McGeachie, Michael J ; Qiu, Weiliang ; Ziniti, John P ; Stubbs, Benjamin J ; Liang, Liming ; Martinez, Fernando D ; Strunk, Robert C ; Lemanske, Jr, Robert F ; Liu, Andrew H ; Stranger, Barbara E ; Carey, Vincent J ; Raby, Benjamin A</creator><contributor>Mersha, Tesfaye B</contributor><creatorcontrib>Croteau-Chonka, Damien C ; Rogers, Angela J ; Raj, Towfique ; McGeachie, Michael J ; Qiu, Weiliang ; Ziniti, John P ; Stubbs, Benjamin J ; Liang, Liming ; Martinez, Fernando D ; Strunk, Robert C ; Lemanske, Jr, Robert F ; Liu, Andrew H ; Stranger, Barbara E ; Carey, Vincent J ; Raby, Benjamin A ; Mersha, Tesfaye B</creatorcontrib><description>Disease-associated loci identified through genome-wide association studies (GWAS) frequently localize to non-coding sequence. We and others have demonstrated strong enrichment of such single nucleotide polymorphisms (SNPs) for expression quantitative trait loci (eQTLs), supporting an important role for regulatory genetic variation in complex disease pathogenesis. Herein we describe our initial efforts to develop a predictive model of disease-associated variants leveraging eQTL information. We first catalogued cis-acting eQTLs (SNPs within 100 kb of target gene transcripts) by meta-analyzing four studies of three blood-derived tissues (n = 586). At a false discovery rate &lt; 5%, we mapped eQTLs for 6,535 genes; these were enriched for disease-associated genes (P &lt; 10(-04)), particularly those related to immune diseases and metabolic traits. Based on eQTL information and other variant annotations (distance from target gene transcript, minor allele frequency, and chromatin state), we created multivariate logistic regression models to predict SNP membership in reported GWAS. The complete model revealed independent contributions of specific annotations as strong predictors, including evidence for an eQTL (odds ratio (OR) = 1.2-2.0, P &lt; 10(-11)) and the chromatin states of active promoters, different classes of strong or weak enhancers, or transcriptionally active regions (OR = 1.5-2.3, P &lt; 10(-11)). This complete prediction model including eQTL association information ultimately allowed for better discrimination of SNPs with higher probabilities of GWAS membership (6.3-10.0%, compared to 3.5% for a random SNP) than the other two models excluding eQTL information. This eQTL-based prediction model of disease relevance can help systematically prioritize non-coding GWAS SNPs for further functional characterization.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0140758</identifier><identifier>PMID: 26474488</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alleles ; Annotations ; Asthma ; Bioinformatics ; Blood ; Chromatin ; Chromosomes ; Critical care ; Disease ; Enhancers ; Female ; Gene expression ; Gene Expression Regulation ; Gene Frequency ; Genes ; Genetic diversity ; Genetic variation ; Genome-wide association studies ; Genome-Wide Association Study ; Genomes ; Hospitals ; Humans ; Immune System Diseases - genetics ; Immunological diseases ; Immunology ; Male ; Medical schools ; Medicine ; Meta-analysis ; Metabolic Diseases - genetics ; Models, Genetic ; Nucleotide sequence ; Pathogenesis ; Pediatrics ; Polymorphism, Single Nucleotide ; Population genetics ; Prediction models ; Predictive Value of Tests ; Principal components analysis ; Public health ; Quantitative Trait Loci ; Regression analysis ; Regression models ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Studies ; Transcription ; Womens health</subject><ispartof>PloS one, 2015-10, Vol.10 (10), p.e0140758-e0140758</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Croteau-Chonka et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Croteau-Chonka et al 2015 Croteau-Chonka et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-81e53a1449ee628577091b6e5350d855e118425eda1303ac450660644a691b383</citedby><cites>FETCH-LOGICAL-c692t-81e53a1449ee628577091b6e5350d855e118425eda1303ac450660644a691b383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608673/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608673/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26474488$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mersha, Tesfaye B</contributor><creatorcontrib>Croteau-Chonka, Damien C</creatorcontrib><creatorcontrib>Rogers, Angela J</creatorcontrib><creatorcontrib>Raj, Towfique</creatorcontrib><creatorcontrib>McGeachie, Michael J</creatorcontrib><creatorcontrib>Qiu, Weiliang</creatorcontrib><creatorcontrib>Ziniti, John P</creatorcontrib><creatorcontrib>Stubbs, Benjamin J</creatorcontrib><creatorcontrib>Liang, Liming</creatorcontrib><creatorcontrib>Martinez, Fernando D</creatorcontrib><creatorcontrib>Strunk, Robert C</creatorcontrib><creatorcontrib>Lemanske, Jr, Robert F</creatorcontrib><creatorcontrib>Liu, Andrew H</creatorcontrib><creatorcontrib>Stranger, Barbara E</creatorcontrib><creatorcontrib>Carey, Vincent J</creatorcontrib><creatorcontrib>Raby, Benjamin A</creatorcontrib><title>Expression Quantitative Trait Loci Information Improves Predictive Modeling of Disease Relevance of Non-Coding Genetic Variation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Disease-associated loci identified through genome-wide association studies (GWAS) frequently localize to non-coding sequence. We and others have demonstrated strong enrichment of such single nucleotide polymorphisms (SNPs) for expression quantitative trait loci (eQTLs), supporting an important role for regulatory genetic variation in complex disease pathogenesis. Herein we describe our initial efforts to develop a predictive model of disease-associated variants leveraging eQTL information. We first catalogued cis-acting eQTLs (SNPs within 100 kb of target gene transcripts) by meta-analyzing four studies of three blood-derived tissues (n = 586). At a false discovery rate &lt; 5%, we mapped eQTLs for 6,535 genes; these were enriched for disease-associated genes (P &lt; 10(-04)), particularly those related to immune diseases and metabolic traits. Based on eQTL information and other variant annotations (distance from target gene transcript, minor allele frequency, and chromatin state), we created multivariate logistic regression models to predict SNP membership in reported GWAS. The complete model revealed independent contributions of specific annotations as strong predictors, including evidence for an eQTL (odds ratio (OR) = 1.2-2.0, P &lt; 10(-11)) and the chromatin states of active promoters, different classes of strong or weak enhancers, or transcriptionally active regions (OR = 1.5-2.3, P &lt; 10(-11)). This complete prediction model including eQTL association information ultimately allowed for better discrimination of SNPs with higher probabilities of GWAS membership (6.3-10.0%, compared to 3.5% for a random SNP) than the other two models excluding eQTL information. This eQTL-based prediction model of disease relevance can help systematically prioritize non-coding GWAS SNPs for further functional characterization.</description><subject>Alleles</subject><subject>Annotations</subject><subject>Asthma</subject><subject>Bioinformatics</subject><subject>Blood</subject><subject>Chromatin</subject><subject>Chromosomes</subject><subject>Critical care</subject><subject>Disease</subject><subject>Enhancers</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Gene Frequency</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>Genetic variation</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Immune System Diseases - genetics</subject><subject>Immunological diseases</subject><subject>Immunology</subject><subject>Male</subject><subject>Medical schools</subject><subject>Medicine</subject><subject>Meta-analysis</subject><subject>Metabolic Diseases - genetics</subject><subject>Models, Genetic</subject><subject>Nucleotide sequence</subject><subject>Pathogenesis</subject><subject>Pediatrics</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Population genetics</subject><subject>Prediction models</subject><subject>Predictive Value of Tests</subject><subject>Principal components analysis</subject><subject>Public health</subject><subject>Quantitative Trait Loci</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Studies</subject><subject>Transcription</subject><subject>Womens health</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk19v0zAUxSMEYmPwDRBEQkLw0GLHf-K8TJrKGJUKgzH2arnOTesqsYudVOONj47TZlOL9oDykOjkd499j32T5CVGY0xy_GHlOm9VPV47C2OEKcqZeJQc44JkI54h8njv-yh5FsIKIUYE50-To4zTnFIhjpM_57drDyEYZ9PvnbKtaVVrNpBee2XadOa0Sae2cr6JcmSmzdq7DYT0m4fS6C36xZVQG7tIXZV-NAFUgPQKatgoq6EXvzo7mriyRy7AQmt0eqO82To-T55Uqg7wYnifJD8_nV9PPo9mlxfTydlspHmRtSOBgRGFKS0AeCZYnqMCz3kUGSoFY4CxoBmDUmGCiNKUIc4Rp1TxyBFBTpLXO9917YIcwgsS51kMQ8TsIjHdEaVTK7n2plH-t3TKyK3g_EIqH_deg-SCzSsqMGUVoiUlCrICtCoY4QgrDdHrdFitmzdQarCtV_WB6eEfa5Zy4TaSciR4TqLBu8HAu18dhFY2Jmioa2XBddt904yjAtGIvvkHfbi7gVqo2ICJRxrX1b2pPKMEx15irJEaP0DFp4TG6HjTKhP1g4L3BwWRaeG2XaguBDn9cfX_7OXNIft2j12CqttlcHXXX5lwCNIdqL0LwUN1HzJGsh-UuzRkPyhyGJRY9mr_gO6L7iaD_AWJPw02</recordid><startdate>20151016</startdate><enddate>20151016</enddate><creator>Croteau-Chonka, Damien C</creator><creator>Rogers, Angela J</creator><creator>Raj, Towfique</creator><creator>McGeachie, Michael J</creator><creator>Qiu, Weiliang</creator><creator>Ziniti, John P</creator><creator>Stubbs, Benjamin J</creator><creator>Liang, Liming</creator><creator>Martinez, Fernando D</creator><creator>Strunk, Robert C</creator><creator>Lemanske, Jr, Robert F</creator><creator>Liu, Andrew H</creator><creator>Stranger, Barbara E</creator><creator>Carey, Vincent J</creator><creator>Raby, Benjamin A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151016</creationdate><title>Expression Quantitative Trait Loci Information Improves Predictive Modeling of Disease Relevance of Non-Coding Genetic Variation</title><author>Croteau-Chonka, Damien C ; Rogers, Angela J ; Raj, Towfique ; McGeachie, Michael J ; Qiu, Weiliang ; Ziniti, John P ; Stubbs, Benjamin J ; Liang, Liming ; Martinez, Fernando D ; Strunk, Robert C ; Lemanske, Jr, Robert F ; Liu, Andrew H ; Stranger, Barbara E ; Carey, Vincent J ; Raby, Benjamin A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-81e53a1449ee628577091b6e5350d855e118425eda1303ac450660644a691b383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alleles</topic><topic>Annotations</topic><topic>Asthma</topic><topic>Bioinformatics</topic><topic>Blood</topic><topic>Chromatin</topic><topic>Chromosomes</topic><topic>Critical care</topic><topic>Disease</topic><topic>Enhancers</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Gene Frequency</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>Genetic variation</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Immune System Diseases - genetics</topic><topic>Immunological diseases</topic><topic>Immunology</topic><topic>Male</topic><topic>Medical schools</topic><topic>Medicine</topic><topic>Meta-analysis</topic><topic>Metabolic Diseases - genetics</topic><topic>Models, Genetic</topic><topic>Nucleotide sequence</topic><topic>Pathogenesis</topic><topic>Pediatrics</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Population genetics</topic><topic>Prediction models</topic><topic>Predictive Value of Tests</topic><topic>Principal components analysis</topic><topic>Public health</topic><topic>Quantitative Trait Loci</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Studies</topic><topic>Transcription</topic><topic>Womens health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Croteau-Chonka, Damien C</creatorcontrib><creatorcontrib>Rogers, Angela J</creatorcontrib><creatorcontrib>Raj, Towfique</creatorcontrib><creatorcontrib>McGeachie, Michael J</creatorcontrib><creatorcontrib>Qiu, Weiliang</creatorcontrib><creatorcontrib>Ziniti, John P</creatorcontrib><creatorcontrib>Stubbs, Benjamin J</creatorcontrib><creatorcontrib>Liang, Liming</creatorcontrib><creatorcontrib>Martinez, Fernando D</creatorcontrib><creatorcontrib>Strunk, Robert C</creatorcontrib><creatorcontrib>Lemanske, Jr, Robert F</creatorcontrib><creatorcontrib>Liu, Andrew H</creatorcontrib><creatorcontrib>Stranger, Barbara E</creatorcontrib><creatorcontrib>Carey, Vincent J</creatorcontrib><creatorcontrib>Raby, Benjamin A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Croteau-Chonka, Damien C</au><au>Rogers, Angela J</au><au>Raj, Towfique</au><au>McGeachie, Michael J</au><au>Qiu, Weiliang</au><au>Ziniti, John P</au><au>Stubbs, Benjamin J</au><au>Liang, Liming</au><au>Martinez, Fernando D</au><au>Strunk, Robert C</au><au>Lemanske, Jr, Robert F</au><au>Liu, Andrew H</au><au>Stranger, Barbara E</au><au>Carey, Vincent J</au><au>Raby, Benjamin A</au><au>Mersha, Tesfaye B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expression Quantitative Trait Loci Information Improves Predictive Modeling of Disease Relevance of Non-Coding Genetic Variation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-10-16</date><risdate>2015</risdate><volume>10</volume><issue>10</issue><spage>e0140758</spage><epage>e0140758</epage><pages>e0140758-e0140758</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Disease-associated loci identified through genome-wide association studies (GWAS) frequently localize to non-coding sequence. We and others have demonstrated strong enrichment of such single nucleotide polymorphisms (SNPs) for expression quantitative trait loci (eQTLs), supporting an important role for regulatory genetic variation in complex disease pathogenesis. Herein we describe our initial efforts to develop a predictive model of disease-associated variants leveraging eQTL information. We first catalogued cis-acting eQTLs (SNPs within 100 kb of target gene transcripts) by meta-analyzing four studies of three blood-derived tissues (n = 586). At a false discovery rate &lt; 5%, we mapped eQTLs for 6,535 genes; these were enriched for disease-associated genes (P &lt; 10(-04)), particularly those related to immune diseases and metabolic traits. Based on eQTL information and other variant annotations (distance from target gene transcript, minor allele frequency, and chromatin state), we created multivariate logistic regression models to predict SNP membership in reported GWAS. The complete model revealed independent contributions of specific annotations as strong predictors, including evidence for an eQTL (odds ratio (OR) = 1.2-2.0, P &lt; 10(-11)) and the chromatin states of active promoters, different classes of strong or weak enhancers, or transcriptionally active regions (OR = 1.5-2.3, P &lt; 10(-11)). This complete prediction model including eQTL association information ultimately allowed for better discrimination of SNPs with higher probabilities of GWAS membership (6.3-10.0%, compared to 3.5% for a random SNP) than the other two models excluding eQTL information. This eQTL-based prediction model of disease relevance can help systematically prioritize non-coding GWAS SNPs for further functional characterization.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26474488</pmid><doi>10.1371/journal.pone.0140758</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-10, Vol.10 (10), p.e0140758-e0140758
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1722648758
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Alleles
Annotations
Asthma
Bioinformatics
Blood
Chromatin
Chromosomes
Critical care
Disease
Enhancers
Female
Gene expression
Gene Expression Regulation
Gene Frequency
Genes
Genetic diversity
Genetic variation
Genome-wide association studies
Genome-Wide Association Study
Genomes
Hospitals
Humans
Immune System Diseases - genetics
Immunological diseases
Immunology
Male
Medical schools
Medicine
Meta-analysis
Metabolic Diseases - genetics
Models, Genetic
Nucleotide sequence
Pathogenesis
Pediatrics
Polymorphism, Single Nucleotide
Population genetics
Prediction models
Predictive Value of Tests
Principal components analysis
Public health
Quantitative Trait Loci
Regression analysis
Regression models
Single nucleotide polymorphisms
Single-nucleotide polymorphism
Studies
Transcription
Womens health
title Expression Quantitative Trait Loci Information Improves Predictive Modeling of Disease Relevance of Non-Coding Genetic Variation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A01%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expression%20Quantitative%20Trait%20Loci%20Information%20Improves%20Predictive%20Modeling%20of%20Disease%20Relevance%20of%20Non-Coding%20Genetic%20Variation&rft.jtitle=PloS%20one&rft.au=Croteau-Chonka,%20Damien%20C&rft.date=2015-10-16&rft.volume=10&rft.issue=10&rft.spage=e0140758&rft.epage=e0140758&rft.pages=e0140758-e0140758&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0140758&rft_dat=%3Cgale_plos_%3EA431814628%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1722648758&rft_id=info:pmid/26474488&rft_galeid=A431814628&rft_doaj_id=oai_doaj_org_article_685bf48145f04d43ae29eca953601ace&rfr_iscdi=true