Expression Quantitative Trait Loci Information Improves Predictive Modeling of Disease Relevance of Non-Coding Genetic Variation
Disease-associated loci identified through genome-wide association studies (GWAS) frequently localize to non-coding sequence. We and others have demonstrated strong enrichment of such single nucleotide polymorphisms (SNPs) for expression quantitative trait loci (eQTLs), supporting an important role...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-10, Vol.10 (10), p.e0140758-e0140758 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0140758 |
---|---|
container_issue | 10 |
container_start_page | e0140758 |
container_title | PloS one |
container_volume | 10 |
creator | Croteau-Chonka, Damien C Rogers, Angela J Raj, Towfique McGeachie, Michael J Qiu, Weiliang Ziniti, John P Stubbs, Benjamin J Liang, Liming Martinez, Fernando D Strunk, Robert C Lemanske, Jr, Robert F Liu, Andrew H Stranger, Barbara E Carey, Vincent J Raby, Benjamin A |
description | Disease-associated loci identified through genome-wide association studies (GWAS) frequently localize to non-coding sequence. We and others have demonstrated strong enrichment of such single nucleotide polymorphisms (SNPs) for expression quantitative trait loci (eQTLs), supporting an important role for regulatory genetic variation in complex disease pathogenesis. Herein we describe our initial efforts to develop a predictive model of disease-associated variants leveraging eQTL information. We first catalogued cis-acting eQTLs (SNPs within 100 kb of target gene transcripts) by meta-analyzing four studies of three blood-derived tissues (n = 586). At a false discovery rate < 5%, we mapped eQTLs for 6,535 genes; these were enriched for disease-associated genes (P < 10(-04)), particularly those related to immune diseases and metabolic traits. Based on eQTL information and other variant annotations (distance from target gene transcript, minor allele frequency, and chromatin state), we created multivariate logistic regression models to predict SNP membership in reported GWAS. The complete model revealed independent contributions of specific annotations as strong predictors, including evidence for an eQTL (odds ratio (OR) = 1.2-2.0, P < 10(-11)) and the chromatin states of active promoters, different classes of strong or weak enhancers, or transcriptionally active regions (OR = 1.5-2.3, P < 10(-11)). This complete prediction model including eQTL association information ultimately allowed for better discrimination of SNPs with higher probabilities of GWAS membership (6.3-10.0%, compared to 3.5% for a random SNP) than the other two models excluding eQTL information. This eQTL-based prediction model of disease relevance can help systematically prioritize non-coding GWAS SNPs for further functional characterization. |
doi_str_mv | 10.1371/journal.pone.0140758 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1722648758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A431814628</galeid><doaj_id>oai_doaj_org_article_685bf48145f04d43ae29eca953601ace</doaj_id><sourcerecordid>A431814628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-81e53a1449ee628577091b6e5350d855e118425eda1303ac450660644a691b383</originalsourceid><addsrcrecordid>eNqNk19v0zAUxSMEYmPwDRBEQkLw0GLHf-K8TJrKGJUKgzH2arnOTesqsYudVOONj47TZlOL9oDykOjkd499j32T5CVGY0xy_GHlOm9VPV47C2OEKcqZeJQc44JkI54h8njv-yh5FsIKIUYE50-To4zTnFIhjpM_57drDyEYZ9PvnbKtaVVrNpBee2XadOa0Sae2cr6JcmSmzdq7DYT0m4fS6C36xZVQG7tIXZV-NAFUgPQKatgoq6EXvzo7mriyRy7AQmt0eqO82To-T55Uqg7wYnifJD8_nV9PPo9mlxfTydlspHmRtSOBgRGFKS0AeCZYnqMCz3kUGSoFY4CxoBmDUmGCiNKUIc4Rp1TxyBFBTpLXO9917YIcwgsS51kMQ8TsIjHdEaVTK7n2plH-t3TKyK3g_EIqH_deg-SCzSsqMGUVoiUlCrICtCoY4QgrDdHrdFitmzdQarCtV_WB6eEfa5Zy4TaSciR4TqLBu8HAu18dhFY2Jmioa2XBddt904yjAtGIvvkHfbi7gVqo2ICJRxrX1b2pPKMEx15irJEaP0DFp4TG6HjTKhP1g4L3BwWRaeG2XaguBDn9cfX_7OXNIft2j12CqttlcHXXX5lwCNIdqL0LwUN1HzJGsh-UuzRkPyhyGJRY9mr_gO6L7iaD_AWJPw02</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1722648758</pqid></control><display><type>article</type><title>Expression Quantitative Trait Loci Information Improves Predictive Modeling of Disease Relevance of Non-Coding Genetic Variation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Croteau-Chonka, Damien C ; Rogers, Angela J ; Raj, Towfique ; McGeachie, Michael J ; Qiu, Weiliang ; Ziniti, John P ; Stubbs, Benjamin J ; Liang, Liming ; Martinez, Fernando D ; Strunk, Robert C ; Lemanske, Jr, Robert F ; Liu, Andrew H ; Stranger, Barbara E ; Carey, Vincent J ; Raby, Benjamin A</creator><contributor>Mersha, Tesfaye B</contributor><creatorcontrib>Croteau-Chonka, Damien C ; Rogers, Angela J ; Raj, Towfique ; McGeachie, Michael J ; Qiu, Weiliang ; Ziniti, John P ; Stubbs, Benjamin J ; Liang, Liming ; Martinez, Fernando D ; Strunk, Robert C ; Lemanske, Jr, Robert F ; Liu, Andrew H ; Stranger, Barbara E ; Carey, Vincent J ; Raby, Benjamin A ; Mersha, Tesfaye B</creatorcontrib><description>Disease-associated loci identified through genome-wide association studies (GWAS) frequently localize to non-coding sequence. We and others have demonstrated strong enrichment of such single nucleotide polymorphisms (SNPs) for expression quantitative trait loci (eQTLs), supporting an important role for regulatory genetic variation in complex disease pathogenesis. Herein we describe our initial efforts to develop a predictive model of disease-associated variants leveraging eQTL information. We first catalogued cis-acting eQTLs (SNPs within 100 kb of target gene transcripts) by meta-analyzing four studies of three blood-derived tissues (n = 586). At a false discovery rate < 5%, we mapped eQTLs for 6,535 genes; these were enriched for disease-associated genes (P < 10(-04)), particularly those related to immune diseases and metabolic traits. Based on eQTL information and other variant annotations (distance from target gene transcript, minor allele frequency, and chromatin state), we created multivariate logistic regression models to predict SNP membership in reported GWAS. The complete model revealed independent contributions of specific annotations as strong predictors, including evidence for an eQTL (odds ratio (OR) = 1.2-2.0, P < 10(-11)) and the chromatin states of active promoters, different classes of strong or weak enhancers, or transcriptionally active regions (OR = 1.5-2.3, P < 10(-11)). This complete prediction model including eQTL association information ultimately allowed for better discrimination of SNPs with higher probabilities of GWAS membership (6.3-10.0%, compared to 3.5% for a random SNP) than the other two models excluding eQTL information. This eQTL-based prediction model of disease relevance can help systematically prioritize non-coding GWAS SNPs for further functional characterization.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0140758</identifier><identifier>PMID: 26474488</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alleles ; Annotations ; Asthma ; Bioinformatics ; Blood ; Chromatin ; Chromosomes ; Critical care ; Disease ; Enhancers ; Female ; Gene expression ; Gene Expression Regulation ; Gene Frequency ; Genes ; Genetic diversity ; Genetic variation ; Genome-wide association studies ; Genome-Wide Association Study ; Genomes ; Hospitals ; Humans ; Immune System Diseases - genetics ; Immunological diseases ; Immunology ; Male ; Medical schools ; Medicine ; Meta-analysis ; Metabolic Diseases - genetics ; Models, Genetic ; Nucleotide sequence ; Pathogenesis ; Pediatrics ; Polymorphism, Single Nucleotide ; Population genetics ; Prediction models ; Predictive Value of Tests ; Principal components analysis ; Public health ; Quantitative Trait Loci ; Regression analysis ; Regression models ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Studies ; Transcription ; Womens health</subject><ispartof>PloS one, 2015-10, Vol.10 (10), p.e0140758-e0140758</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Croteau-Chonka et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Croteau-Chonka et al 2015 Croteau-Chonka et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-81e53a1449ee628577091b6e5350d855e118425eda1303ac450660644a691b383</citedby><cites>FETCH-LOGICAL-c692t-81e53a1449ee628577091b6e5350d855e118425eda1303ac450660644a691b383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608673/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608673/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26474488$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mersha, Tesfaye B</contributor><creatorcontrib>Croteau-Chonka, Damien C</creatorcontrib><creatorcontrib>Rogers, Angela J</creatorcontrib><creatorcontrib>Raj, Towfique</creatorcontrib><creatorcontrib>McGeachie, Michael J</creatorcontrib><creatorcontrib>Qiu, Weiliang</creatorcontrib><creatorcontrib>Ziniti, John P</creatorcontrib><creatorcontrib>Stubbs, Benjamin J</creatorcontrib><creatorcontrib>Liang, Liming</creatorcontrib><creatorcontrib>Martinez, Fernando D</creatorcontrib><creatorcontrib>Strunk, Robert C</creatorcontrib><creatorcontrib>Lemanske, Jr, Robert F</creatorcontrib><creatorcontrib>Liu, Andrew H</creatorcontrib><creatorcontrib>Stranger, Barbara E</creatorcontrib><creatorcontrib>Carey, Vincent J</creatorcontrib><creatorcontrib>Raby, Benjamin A</creatorcontrib><title>Expression Quantitative Trait Loci Information Improves Predictive Modeling of Disease Relevance of Non-Coding Genetic Variation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Disease-associated loci identified through genome-wide association studies (GWAS) frequently localize to non-coding sequence. We and others have demonstrated strong enrichment of such single nucleotide polymorphisms (SNPs) for expression quantitative trait loci (eQTLs), supporting an important role for regulatory genetic variation in complex disease pathogenesis. Herein we describe our initial efforts to develop a predictive model of disease-associated variants leveraging eQTL information. We first catalogued cis-acting eQTLs (SNPs within 100 kb of target gene transcripts) by meta-analyzing four studies of three blood-derived tissues (n = 586). At a false discovery rate < 5%, we mapped eQTLs for 6,535 genes; these were enriched for disease-associated genes (P < 10(-04)), particularly those related to immune diseases and metabolic traits. Based on eQTL information and other variant annotations (distance from target gene transcript, minor allele frequency, and chromatin state), we created multivariate logistic regression models to predict SNP membership in reported GWAS. The complete model revealed independent contributions of specific annotations as strong predictors, including evidence for an eQTL (odds ratio (OR) = 1.2-2.0, P < 10(-11)) and the chromatin states of active promoters, different classes of strong or weak enhancers, or transcriptionally active regions (OR = 1.5-2.3, P < 10(-11)). This complete prediction model including eQTL association information ultimately allowed for better discrimination of SNPs with higher probabilities of GWAS membership (6.3-10.0%, compared to 3.5% for a random SNP) than the other two models excluding eQTL information. This eQTL-based prediction model of disease relevance can help systematically prioritize non-coding GWAS SNPs for further functional characterization.</description><subject>Alleles</subject><subject>Annotations</subject><subject>Asthma</subject><subject>Bioinformatics</subject><subject>Blood</subject><subject>Chromatin</subject><subject>Chromosomes</subject><subject>Critical care</subject><subject>Disease</subject><subject>Enhancers</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Gene Frequency</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>Genetic variation</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Immune System Diseases - genetics</subject><subject>Immunological diseases</subject><subject>Immunology</subject><subject>Male</subject><subject>Medical schools</subject><subject>Medicine</subject><subject>Meta-analysis</subject><subject>Metabolic Diseases - genetics</subject><subject>Models, Genetic</subject><subject>Nucleotide sequence</subject><subject>Pathogenesis</subject><subject>Pediatrics</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Population genetics</subject><subject>Prediction models</subject><subject>Predictive Value of Tests</subject><subject>Principal components analysis</subject><subject>Public health</subject><subject>Quantitative Trait Loci</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Studies</subject><subject>Transcription</subject><subject>Womens health</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk19v0zAUxSMEYmPwDRBEQkLw0GLHf-K8TJrKGJUKgzH2arnOTesqsYudVOONj47TZlOL9oDykOjkd499j32T5CVGY0xy_GHlOm9VPV47C2OEKcqZeJQc44JkI54h8njv-yh5FsIKIUYE50-To4zTnFIhjpM_57drDyEYZ9PvnbKtaVVrNpBee2XadOa0Sae2cr6JcmSmzdq7DYT0m4fS6C36xZVQG7tIXZV-NAFUgPQKatgoq6EXvzo7mriyRy7AQmt0eqO82To-T55Uqg7wYnifJD8_nV9PPo9mlxfTydlspHmRtSOBgRGFKS0AeCZYnqMCz3kUGSoFY4CxoBmDUmGCiNKUIc4Rp1TxyBFBTpLXO9917YIcwgsS51kMQ8TsIjHdEaVTK7n2plH-t3TKyK3g_EIqH_deg-SCzSsqMGUVoiUlCrICtCoY4QgrDdHrdFitmzdQarCtV_WB6eEfa5Zy4TaSciR4TqLBu8HAu18dhFY2Jmioa2XBddt904yjAtGIvvkHfbi7gVqo2ICJRxrX1b2pPKMEx15irJEaP0DFp4TG6HjTKhP1g4L3BwWRaeG2XaguBDn9cfX_7OXNIft2j12CqttlcHXXX5lwCNIdqL0LwUN1HzJGsh-UuzRkPyhyGJRY9mr_gO6L7iaD_AWJPw02</recordid><startdate>20151016</startdate><enddate>20151016</enddate><creator>Croteau-Chonka, Damien C</creator><creator>Rogers, Angela J</creator><creator>Raj, Towfique</creator><creator>McGeachie, Michael J</creator><creator>Qiu, Weiliang</creator><creator>Ziniti, John P</creator><creator>Stubbs, Benjamin J</creator><creator>Liang, Liming</creator><creator>Martinez, Fernando D</creator><creator>Strunk, Robert C</creator><creator>Lemanske, Jr, Robert F</creator><creator>Liu, Andrew H</creator><creator>Stranger, Barbara E</creator><creator>Carey, Vincent J</creator><creator>Raby, Benjamin A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151016</creationdate><title>Expression Quantitative Trait Loci Information Improves Predictive Modeling of Disease Relevance of Non-Coding Genetic Variation</title><author>Croteau-Chonka, Damien C ; Rogers, Angela J ; Raj, Towfique ; McGeachie, Michael J ; Qiu, Weiliang ; Ziniti, John P ; Stubbs, Benjamin J ; Liang, Liming ; Martinez, Fernando D ; Strunk, Robert C ; Lemanske, Jr, Robert F ; Liu, Andrew H ; Stranger, Barbara E ; Carey, Vincent J ; Raby, Benjamin A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-81e53a1449ee628577091b6e5350d855e118425eda1303ac450660644a691b383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alleles</topic><topic>Annotations</topic><topic>Asthma</topic><topic>Bioinformatics</topic><topic>Blood</topic><topic>Chromatin</topic><topic>Chromosomes</topic><topic>Critical care</topic><topic>Disease</topic><topic>Enhancers</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Gene Frequency</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>Genetic variation</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Immune System Diseases - genetics</topic><topic>Immunological diseases</topic><topic>Immunology</topic><topic>Male</topic><topic>Medical schools</topic><topic>Medicine</topic><topic>Meta-analysis</topic><topic>Metabolic Diseases - genetics</topic><topic>Models, Genetic</topic><topic>Nucleotide sequence</topic><topic>Pathogenesis</topic><topic>Pediatrics</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Population genetics</topic><topic>Prediction models</topic><topic>Predictive Value of Tests</topic><topic>Principal components analysis</topic><topic>Public health</topic><topic>Quantitative Trait Loci</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Studies</topic><topic>Transcription</topic><topic>Womens health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Croteau-Chonka, Damien C</creatorcontrib><creatorcontrib>Rogers, Angela J</creatorcontrib><creatorcontrib>Raj, Towfique</creatorcontrib><creatorcontrib>McGeachie, Michael J</creatorcontrib><creatorcontrib>Qiu, Weiliang</creatorcontrib><creatorcontrib>Ziniti, John P</creatorcontrib><creatorcontrib>Stubbs, Benjamin J</creatorcontrib><creatorcontrib>Liang, Liming</creatorcontrib><creatorcontrib>Martinez, Fernando D</creatorcontrib><creatorcontrib>Strunk, Robert C</creatorcontrib><creatorcontrib>Lemanske, Jr, Robert F</creatorcontrib><creatorcontrib>Liu, Andrew H</creatorcontrib><creatorcontrib>Stranger, Barbara E</creatorcontrib><creatorcontrib>Carey, Vincent J</creatorcontrib><creatorcontrib>Raby, Benjamin A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Croteau-Chonka, Damien C</au><au>Rogers, Angela J</au><au>Raj, Towfique</au><au>McGeachie, Michael J</au><au>Qiu, Weiliang</au><au>Ziniti, John P</au><au>Stubbs, Benjamin J</au><au>Liang, Liming</au><au>Martinez, Fernando D</au><au>Strunk, Robert C</au><au>Lemanske, Jr, Robert F</au><au>Liu, Andrew H</au><au>Stranger, Barbara E</au><au>Carey, Vincent J</au><au>Raby, Benjamin A</au><au>Mersha, Tesfaye B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expression Quantitative Trait Loci Information Improves Predictive Modeling of Disease Relevance of Non-Coding Genetic Variation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-10-16</date><risdate>2015</risdate><volume>10</volume><issue>10</issue><spage>e0140758</spage><epage>e0140758</epage><pages>e0140758-e0140758</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Disease-associated loci identified through genome-wide association studies (GWAS) frequently localize to non-coding sequence. We and others have demonstrated strong enrichment of such single nucleotide polymorphisms (SNPs) for expression quantitative trait loci (eQTLs), supporting an important role for regulatory genetic variation in complex disease pathogenesis. Herein we describe our initial efforts to develop a predictive model of disease-associated variants leveraging eQTL information. We first catalogued cis-acting eQTLs (SNPs within 100 kb of target gene transcripts) by meta-analyzing four studies of three blood-derived tissues (n = 586). At a false discovery rate < 5%, we mapped eQTLs for 6,535 genes; these were enriched for disease-associated genes (P < 10(-04)), particularly those related to immune diseases and metabolic traits. Based on eQTL information and other variant annotations (distance from target gene transcript, minor allele frequency, and chromatin state), we created multivariate logistic regression models to predict SNP membership in reported GWAS. The complete model revealed independent contributions of specific annotations as strong predictors, including evidence for an eQTL (odds ratio (OR) = 1.2-2.0, P < 10(-11)) and the chromatin states of active promoters, different classes of strong or weak enhancers, or transcriptionally active regions (OR = 1.5-2.3, P < 10(-11)). This complete prediction model including eQTL association information ultimately allowed for better discrimination of SNPs with higher probabilities of GWAS membership (6.3-10.0%, compared to 3.5% for a random SNP) than the other two models excluding eQTL information. This eQTL-based prediction model of disease relevance can help systematically prioritize non-coding GWAS SNPs for further functional characterization.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26474488</pmid><doi>10.1371/journal.pone.0140758</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-10, Vol.10 (10), p.e0140758-e0140758 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1722648758 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Alleles Annotations Asthma Bioinformatics Blood Chromatin Chromosomes Critical care Disease Enhancers Female Gene expression Gene Expression Regulation Gene Frequency Genes Genetic diversity Genetic variation Genome-wide association studies Genome-Wide Association Study Genomes Hospitals Humans Immune System Diseases - genetics Immunological diseases Immunology Male Medical schools Medicine Meta-analysis Metabolic Diseases - genetics Models, Genetic Nucleotide sequence Pathogenesis Pediatrics Polymorphism, Single Nucleotide Population genetics Prediction models Predictive Value of Tests Principal components analysis Public health Quantitative Trait Loci Regression analysis Regression models Single nucleotide polymorphisms Single-nucleotide polymorphism Studies Transcription Womens health |
title | Expression Quantitative Trait Loci Information Improves Predictive Modeling of Disease Relevance of Non-Coding Genetic Variation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A01%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expression%20Quantitative%20Trait%20Loci%20Information%20Improves%20Predictive%20Modeling%20of%20Disease%20Relevance%20of%20Non-Coding%20Genetic%20Variation&rft.jtitle=PloS%20one&rft.au=Croteau-Chonka,%20Damien%20C&rft.date=2015-10-16&rft.volume=10&rft.issue=10&rft.spage=e0140758&rft.epage=e0140758&rft.pages=e0140758-e0140758&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0140758&rft_dat=%3Cgale_plos_%3EA431814628%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1722648758&rft_id=info:pmid/26474488&rft_galeid=A431814628&rft_doaj_id=oai_doaj_org_article_685bf48145f04d43ae29eca953601ace&rfr_iscdi=true |