Influence of Software Tool and Methodological Aspects of Total Metabolic Tumor Volume Calculation on Baseline [18F]FDG PET to Predict Survival in Hodgkin Lymphoma

To investigate the respective influence of software tool and total metabolic tumor volume (TMTV0) calculation method on prognostic stratification of baseline 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography ([18F]FDG-PET) in newly diagnosed Hodgkin lymphoma (HL). 59 patients with newly d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-10, Vol.10 (10), p.e0140830-e0140830
Hauptverfasser: Kanoun, Salim, Tal, Ilan, Berriolo-Riedinger, Alina, Rossi, Cédric, Riedinger, Jean-Marc, Vrigneaud, Jean-Marc, Legrand, Louis, Humbert, Olivier, Casasnovas, Olivier, Brunotte, François, Cochet, Alexandre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0140830
container_issue 10
container_start_page e0140830
container_title PloS one
container_volume 10
creator Kanoun, Salim
Tal, Ilan
Berriolo-Riedinger, Alina
Rossi, Cédric
Riedinger, Jean-Marc
Vrigneaud, Jean-Marc
Legrand, Louis
Humbert, Olivier
Casasnovas, Olivier
Brunotte, François
Cochet, Alexandre
description To investigate the respective influence of software tool and total metabolic tumor volume (TMTV0) calculation method on prognostic stratification of baseline 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography ([18F]FDG-PET) in newly diagnosed Hodgkin lymphoma (HL). 59 patients with newly diagnosed HL were retrospectively included. [18F]FDG-PET was performed before any treatment. Four sets of TMTV0 were calculated with Beth Israel (BI) software: based on an absolute threshold selecting voxel with standardized uptake value (SUV) >2.5 (TMTV02.5), applying a per-lesion threshold of 41% of the SUV max (TMTV041) and using a per-patient adapted threshold based on SUV max of the liver (>125% and >140% of SUV max of the liver background; TMTV0125 and TMTV0140). TMTV041 was also determined with commercial software for comparison of software tools. ROC curves were used to determine the optimal threshold for each TMTV0 to predict treatment failure. Median follow-up was 39 months. There was an excellent correlation between TMTV041 determined with BI and with the commercial software (r = 0.96, p
doi_str_mv 10.1371/journal.pone.0140830
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1722648657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A431814600</galeid><doaj_id>oai_doaj_org_article_b2f38c70aee14c5cbd0790504604cc89</doaj_id><sourcerecordid>A431814600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-8362b76bb81cb363940497f35747decded160322c41b0cd9f10ef5c88a8af9cd3</originalsourceid><addsrcrecordid>eNqNk99vFCEQxzdGY2v1PzBKYmL04U5Y2F32xaTW_rikpo09-2IMYYG948runMBW--_4l8q116Zn-mAggQyf-Q4MM1n2kuAxoRX5sIDB99KNl9CbMSYMc4ofZdukpvmozDF9fG-_lT0LYYFxQXlZPs228pJVtC7wdvZn0rduML0yCFp0Bm38Jb1BUwCHZK_RFxPnoMHBzCrp0G5YGhXDip1CTIZ0LhtwVqHp0IFH5-CGzqA96dTgZLTQozQ_yWCc7Q36TvjBj4PPh-h0f4oioFNvtFURnQ3-0l4mPdujI9Czi7QeX3XLOXTyefaklS6YF-t1J_t2sD_dOxodnxxO9naPR6oqeBxxWuZNVTYNJ6qhJa0ZZnXV0qJilTZKG01KTPNcMdJgpeuWYNMWinPJZVsrTXey1ze6SwdBrNMbBKnylC5eFlUiJjeEBrkQS2876a8ESCuuDeBnQvpolTOiyVvKVYWlMYSpQjUaVzUuMCsxU4rXSevjOtrQdEYr00cv3Ybo5klv52IGlyIp8IrSJPBuLeDh52BCFJ0NyjgnewPD9b1ZXtR1zRL65h_04detqZlMD7B9CymuWomKXUYJJykyTtT4ASoNbTqrUi22Ntk3HN5vOCQmmt9xJocQxOTs6_-zJ-eb7Nt77NxIF-chVd-q5sImyG5A5SEEb9q7JBMsVq10mw2xaiWxbqXk9ur-B9053fYO_Qs9SxmM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1722648657</pqid></control><display><type>article</type><title>Influence of Software Tool and Methodological Aspects of Total Metabolic Tumor Volume Calculation on Baseline [18F]FDG PET to Predict Survival in Hodgkin Lymphoma</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kanoun, Salim ; Tal, Ilan ; Berriolo-Riedinger, Alina ; Rossi, Cédric ; Riedinger, Jean-Marc ; Vrigneaud, Jean-Marc ; Legrand, Louis ; Humbert, Olivier ; Casasnovas, Olivier ; Brunotte, François ; Cochet, Alexandre</creator><contributor>Chen, Chin-Tu</contributor><creatorcontrib>Kanoun, Salim ; Tal, Ilan ; Berriolo-Riedinger, Alina ; Rossi, Cédric ; Riedinger, Jean-Marc ; Vrigneaud, Jean-Marc ; Legrand, Louis ; Humbert, Olivier ; Casasnovas, Olivier ; Brunotte, François ; Cochet, Alexandre ; Chen, Chin-Tu</creatorcontrib><description>To investigate the respective influence of software tool and total metabolic tumor volume (TMTV0) calculation method on prognostic stratification of baseline 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography ([18F]FDG-PET) in newly diagnosed Hodgkin lymphoma (HL). 59 patients with newly diagnosed HL were retrospectively included. [18F]FDG-PET was performed before any treatment. Four sets of TMTV0 were calculated with Beth Israel (BI) software: based on an absolute threshold selecting voxel with standardized uptake value (SUV) &gt;2.5 (TMTV02.5), applying a per-lesion threshold of 41% of the SUV max (TMTV041) and using a per-patient adapted threshold based on SUV max of the liver (&gt;125% and &gt;140% of SUV max of the liver background; TMTV0125 and TMTV0140). TMTV041 was also determined with commercial software for comparison of software tools. ROC curves were used to determine the optimal threshold for each TMTV0 to predict treatment failure. Median follow-up was 39 months. There was an excellent correlation between TMTV041 determined with BI and with the commercial software (r = 0.96, p&lt;0.0001). The median TMTV0 value for TMTV041, TMTV02.5, TMTV0125 and TMTV0140 were respectively 160 (used as reference), 210 ([28;154] p = 0.005), 183 ([-4;114] p = 0.06) and 143 ml ([-58;64] p = 0.9). The respective optimal TMTV0 threshold and area under curve (AUC) for prediction of progression free survival (PFS) were respectively: 313 ml and 0.70, 432 ml and 0.68, 450 ml and 0.68, 330 ml and 0.68. There was no significant difference between ROC curves. High TMTV0 value was predictive of poor PFS in all methodologies: 4-years PFS was 83% vs 42% (p = 0.006) for TMTV02.5, 83% vs 41% (p = 0.003) for TMTV041, 85% vs 40% (p&lt;0.001) for TMTV0125 and 83% vs 42% (p = 0.004) for TMTV0140. In newly diagnosed HL, baseline metabolic tumor volume values were significantly influenced by the choice of the method used for determination of volume. However, no significant differences were found in term of prognosis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0140830</identifier><identifier>PMID: 26473950</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adolescent ; Adult ; Aged ; Chemotherapy ; Computer programs ; Consent ; Diagnosis ; Disease-Free Survival ; Female ; Fluorine isotopes ; Follow-Up Studies ; Glucose ; Glucose-6-Phosphate - administration &amp; dosage ; Glucose-6-Phosphate - analogs &amp; derivatives ; Hematology ; Hodgkin Disease - diagnostic imaging ; Hodgkin Disease - mortality ; Hodgkin's disease ; Hodgkin's lymphoma ; Humans ; Image Processing, Computer-Assisted - methods ; Liver ; Lymphoma ; Male ; Mathematical analysis ; Measurement ; Medical diagnosis ; Medical imaging ; Medical prognosis ; Metabolism ; Methods ; Middle Aged ; Non-Hodgkin's lymphomas ; Nuclear medicine ; Patient outcomes ; Patients ; PET imaging ; Positron emission ; Positron emission tomography ; Predictions ; Predictive Value of Tests ; Prognosis ; Radiography ; Software ; Software development tools ; Studies ; Survival ; Survival Rate ; Technology application ; Tomography ; Tumors</subject><ispartof>PloS one, 2015-10, Vol.10 (10), p.e0140830-e0140830</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Kanoun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Kanoun et al 2015 Kanoun et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-8362b76bb81cb363940497f35747decded160322c41b0cd9f10ef5c88a8af9cd3</citedby><cites>FETCH-LOGICAL-c758t-8362b76bb81cb363940497f35747decded160322c41b0cd9f10ef5c88a8af9cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608733/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608733/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26473950$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chen, Chin-Tu</contributor><creatorcontrib>Kanoun, Salim</creatorcontrib><creatorcontrib>Tal, Ilan</creatorcontrib><creatorcontrib>Berriolo-Riedinger, Alina</creatorcontrib><creatorcontrib>Rossi, Cédric</creatorcontrib><creatorcontrib>Riedinger, Jean-Marc</creatorcontrib><creatorcontrib>Vrigneaud, Jean-Marc</creatorcontrib><creatorcontrib>Legrand, Louis</creatorcontrib><creatorcontrib>Humbert, Olivier</creatorcontrib><creatorcontrib>Casasnovas, Olivier</creatorcontrib><creatorcontrib>Brunotte, François</creatorcontrib><creatorcontrib>Cochet, Alexandre</creatorcontrib><title>Influence of Software Tool and Methodological Aspects of Total Metabolic Tumor Volume Calculation on Baseline [18F]FDG PET to Predict Survival in Hodgkin Lymphoma</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>To investigate the respective influence of software tool and total metabolic tumor volume (TMTV0) calculation method on prognostic stratification of baseline 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography ([18F]FDG-PET) in newly diagnosed Hodgkin lymphoma (HL). 59 patients with newly diagnosed HL were retrospectively included. [18F]FDG-PET was performed before any treatment. Four sets of TMTV0 were calculated with Beth Israel (BI) software: based on an absolute threshold selecting voxel with standardized uptake value (SUV) &gt;2.5 (TMTV02.5), applying a per-lesion threshold of 41% of the SUV max (TMTV041) and using a per-patient adapted threshold based on SUV max of the liver (&gt;125% and &gt;140% of SUV max of the liver background; TMTV0125 and TMTV0140). TMTV041 was also determined with commercial software for comparison of software tools. ROC curves were used to determine the optimal threshold for each TMTV0 to predict treatment failure. Median follow-up was 39 months. There was an excellent correlation between TMTV041 determined with BI and with the commercial software (r = 0.96, p&lt;0.0001). The median TMTV0 value for TMTV041, TMTV02.5, TMTV0125 and TMTV0140 were respectively 160 (used as reference), 210 ([28;154] p = 0.005), 183 ([-4;114] p = 0.06) and 143 ml ([-58;64] p = 0.9). The respective optimal TMTV0 threshold and area under curve (AUC) for prediction of progression free survival (PFS) were respectively: 313 ml and 0.70, 432 ml and 0.68, 450 ml and 0.68, 330 ml and 0.68. There was no significant difference between ROC curves. High TMTV0 value was predictive of poor PFS in all methodologies: 4-years PFS was 83% vs 42% (p = 0.006) for TMTV02.5, 83% vs 41% (p = 0.003) for TMTV041, 85% vs 40% (p&lt;0.001) for TMTV0125 and 83% vs 42% (p = 0.004) for TMTV0140. In newly diagnosed HL, baseline metabolic tumor volume values were significantly influenced by the choice of the method used for determination of volume. However, no significant differences were found in term of prognosis.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Chemotherapy</subject><subject>Computer programs</subject><subject>Consent</subject><subject>Diagnosis</subject><subject>Disease-Free Survival</subject><subject>Female</subject><subject>Fluorine isotopes</subject><subject>Follow-Up Studies</subject><subject>Glucose</subject><subject>Glucose-6-Phosphate - administration &amp; dosage</subject><subject>Glucose-6-Phosphate - analogs &amp; derivatives</subject><subject>Hematology</subject><subject>Hodgkin Disease - diagnostic imaging</subject><subject>Hodgkin Disease - mortality</subject><subject>Hodgkin's disease</subject><subject>Hodgkin's lymphoma</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Liver</subject><subject>Lymphoma</subject><subject>Male</subject><subject>Mathematical analysis</subject><subject>Measurement</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Medical prognosis</subject><subject>Metabolism</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Non-Hodgkin's lymphomas</subject><subject>Nuclear medicine</subject><subject>Patient outcomes</subject><subject>Patients</subject><subject>PET imaging</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Predictions</subject><subject>Predictive Value of Tests</subject><subject>Prognosis</subject><subject>Radiography</subject><subject>Software</subject><subject>Software development tools</subject><subject>Studies</subject><subject>Survival</subject><subject>Survival Rate</subject><subject>Technology application</subject><subject>Tomography</subject><subject>Tumors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99vFCEQxzdGY2v1PzBKYmL04U5Y2F32xaTW_rikpo09-2IMYYG948runMBW--_4l8q116Zn-mAggQyf-Q4MM1n2kuAxoRX5sIDB99KNl9CbMSYMc4ofZdukpvmozDF9fG-_lT0LYYFxQXlZPs228pJVtC7wdvZn0rduML0yCFp0Bm38Jb1BUwCHZK_RFxPnoMHBzCrp0G5YGhXDip1CTIZ0LhtwVqHp0IFH5-CGzqA96dTgZLTQozQ_yWCc7Q36TvjBj4PPh-h0f4oioFNvtFURnQ3-0l4mPdujI9Czi7QeX3XLOXTyefaklS6YF-t1J_t2sD_dOxodnxxO9naPR6oqeBxxWuZNVTYNJ6qhJa0ZZnXV0qJilTZKG01KTPNcMdJgpeuWYNMWinPJZVsrTXey1ze6SwdBrNMbBKnylC5eFlUiJjeEBrkQS2876a8ESCuuDeBnQvpolTOiyVvKVYWlMYSpQjUaVzUuMCsxU4rXSevjOtrQdEYr00cv3Ybo5klv52IGlyIp8IrSJPBuLeDh52BCFJ0NyjgnewPD9b1ZXtR1zRL65h_04detqZlMD7B9CymuWomKXUYJJykyTtT4ASoNbTqrUi22Ntk3HN5vOCQmmt9xJocQxOTs6_-zJ-eb7Nt77NxIF-chVd-q5sImyG5A5SEEb9q7JBMsVq10mw2xaiWxbqXk9ur-B9053fYO_Qs9SxmM</recordid><startdate>20151016</startdate><enddate>20151016</enddate><creator>Kanoun, Salim</creator><creator>Tal, Ilan</creator><creator>Berriolo-Riedinger, Alina</creator><creator>Rossi, Cédric</creator><creator>Riedinger, Jean-Marc</creator><creator>Vrigneaud, Jean-Marc</creator><creator>Legrand, Louis</creator><creator>Humbert, Olivier</creator><creator>Casasnovas, Olivier</creator><creator>Brunotte, François</creator><creator>Cochet, Alexandre</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151016</creationdate><title>Influence of Software Tool and Methodological Aspects of Total Metabolic Tumor Volume Calculation on Baseline [18F]FDG PET to Predict Survival in Hodgkin Lymphoma</title><author>Kanoun, Salim ; Tal, Ilan ; Berriolo-Riedinger, Alina ; Rossi, Cédric ; Riedinger, Jean-Marc ; Vrigneaud, Jean-Marc ; Legrand, Louis ; Humbert, Olivier ; Casasnovas, Olivier ; Brunotte, François ; Cochet, Alexandre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-8362b76bb81cb363940497f35747decded160322c41b0cd9f10ef5c88a8af9cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Chemotherapy</topic><topic>Computer programs</topic><topic>Consent</topic><topic>Diagnosis</topic><topic>Disease-Free Survival</topic><topic>Female</topic><topic>Fluorine isotopes</topic><topic>Follow-Up Studies</topic><topic>Glucose</topic><topic>Glucose-6-Phosphate - administration &amp; dosage</topic><topic>Glucose-6-Phosphate - analogs &amp; derivatives</topic><topic>Hematology</topic><topic>Hodgkin Disease - diagnostic imaging</topic><topic>Hodgkin Disease - mortality</topic><topic>Hodgkin's disease</topic><topic>Hodgkin's lymphoma</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Liver</topic><topic>Lymphoma</topic><topic>Male</topic><topic>Mathematical analysis</topic><topic>Measurement</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Medical prognosis</topic><topic>Metabolism</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Non-Hodgkin's lymphomas</topic><topic>Nuclear medicine</topic><topic>Patient outcomes</topic><topic>Patients</topic><topic>PET imaging</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Predictions</topic><topic>Predictive Value of Tests</topic><topic>Prognosis</topic><topic>Radiography</topic><topic>Software</topic><topic>Software development tools</topic><topic>Studies</topic><topic>Survival</topic><topic>Survival Rate</topic><topic>Technology application</topic><topic>Tomography</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanoun, Salim</creatorcontrib><creatorcontrib>Tal, Ilan</creatorcontrib><creatorcontrib>Berriolo-Riedinger, Alina</creatorcontrib><creatorcontrib>Rossi, Cédric</creatorcontrib><creatorcontrib>Riedinger, Jean-Marc</creatorcontrib><creatorcontrib>Vrigneaud, Jean-Marc</creatorcontrib><creatorcontrib>Legrand, Louis</creatorcontrib><creatorcontrib>Humbert, Olivier</creatorcontrib><creatorcontrib>Casasnovas, Olivier</creatorcontrib><creatorcontrib>Brunotte, François</creatorcontrib><creatorcontrib>Cochet, Alexandre</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanoun, Salim</au><au>Tal, Ilan</au><au>Berriolo-Riedinger, Alina</au><au>Rossi, Cédric</au><au>Riedinger, Jean-Marc</au><au>Vrigneaud, Jean-Marc</au><au>Legrand, Louis</au><au>Humbert, Olivier</au><au>Casasnovas, Olivier</au><au>Brunotte, François</au><au>Cochet, Alexandre</au><au>Chen, Chin-Tu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Software Tool and Methodological Aspects of Total Metabolic Tumor Volume Calculation on Baseline [18F]FDG PET to Predict Survival in Hodgkin Lymphoma</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-10-16</date><risdate>2015</risdate><volume>10</volume><issue>10</issue><spage>e0140830</spage><epage>e0140830</epage><pages>e0140830-e0140830</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>To investigate the respective influence of software tool and total metabolic tumor volume (TMTV0) calculation method on prognostic stratification of baseline 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography ([18F]FDG-PET) in newly diagnosed Hodgkin lymphoma (HL). 59 patients with newly diagnosed HL were retrospectively included. [18F]FDG-PET was performed before any treatment. Four sets of TMTV0 were calculated with Beth Israel (BI) software: based on an absolute threshold selecting voxel with standardized uptake value (SUV) &gt;2.5 (TMTV02.5), applying a per-lesion threshold of 41% of the SUV max (TMTV041) and using a per-patient adapted threshold based on SUV max of the liver (&gt;125% and &gt;140% of SUV max of the liver background; TMTV0125 and TMTV0140). TMTV041 was also determined with commercial software for comparison of software tools. ROC curves were used to determine the optimal threshold for each TMTV0 to predict treatment failure. Median follow-up was 39 months. There was an excellent correlation between TMTV041 determined with BI and with the commercial software (r = 0.96, p&lt;0.0001). The median TMTV0 value for TMTV041, TMTV02.5, TMTV0125 and TMTV0140 were respectively 160 (used as reference), 210 ([28;154] p = 0.005), 183 ([-4;114] p = 0.06) and 143 ml ([-58;64] p = 0.9). The respective optimal TMTV0 threshold and area under curve (AUC) for prediction of progression free survival (PFS) were respectively: 313 ml and 0.70, 432 ml and 0.68, 450 ml and 0.68, 330 ml and 0.68. There was no significant difference between ROC curves. High TMTV0 value was predictive of poor PFS in all methodologies: 4-years PFS was 83% vs 42% (p = 0.006) for TMTV02.5, 83% vs 41% (p = 0.003) for TMTV041, 85% vs 40% (p&lt;0.001) for TMTV0125 and 83% vs 42% (p = 0.004) for TMTV0140. In newly diagnosed HL, baseline metabolic tumor volume values were significantly influenced by the choice of the method used for determination of volume. However, no significant differences were found in term of prognosis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26473950</pmid><doi>10.1371/journal.pone.0140830</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-10, Vol.10 (10), p.e0140830-e0140830
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1722648657
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adolescent
Adult
Aged
Chemotherapy
Computer programs
Consent
Diagnosis
Disease-Free Survival
Female
Fluorine isotopes
Follow-Up Studies
Glucose
Glucose-6-Phosphate - administration & dosage
Glucose-6-Phosphate - analogs & derivatives
Hematology
Hodgkin Disease - diagnostic imaging
Hodgkin Disease - mortality
Hodgkin's disease
Hodgkin's lymphoma
Humans
Image Processing, Computer-Assisted - methods
Liver
Lymphoma
Male
Mathematical analysis
Measurement
Medical diagnosis
Medical imaging
Medical prognosis
Metabolism
Methods
Middle Aged
Non-Hodgkin's lymphomas
Nuclear medicine
Patient outcomes
Patients
PET imaging
Positron emission
Positron emission tomography
Predictions
Predictive Value of Tests
Prognosis
Radiography
Software
Software development tools
Studies
Survival
Survival Rate
Technology application
Tomography
Tumors
title Influence of Software Tool and Methodological Aspects of Total Metabolic Tumor Volume Calculation on Baseline [18F]FDG PET to Predict Survival in Hodgkin Lymphoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A25%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Software%20Tool%20and%20Methodological%20Aspects%20of%20Total%20Metabolic%20Tumor%20Volume%20Calculation%20on%20Baseline%20%5B18F%5DFDG%20PET%20to%20Predict%20Survival%20in%20Hodgkin%20Lymphoma&rft.jtitle=PloS%20one&rft.au=Kanoun,%20Salim&rft.date=2015-10-16&rft.volume=10&rft.issue=10&rft.spage=e0140830&rft.epage=e0140830&rft.pages=e0140830-e0140830&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0140830&rft_dat=%3Cgale_plos_%3EA431814600%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1722648657&rft_id=info:pmid/26473950&rft_galeid=A431814600&rft_doaj_id=oai_doaj_org_article_b2f38c70aee14c5cbd0790504604cc89&rfr_iscdi=true