Evaluating the Performance of Fine-Mapping Strategies at Common Variant GWAS Loci
The growing availability of high-quality genomic annotation has increased the potential for mechanistic insights when the specific variants driving common genome-wide association signals are accurately localized. A range of fine-mapping strategies have been advocated, and specific successes reported...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2015-09, Vol.11 (9), p.e1005535-e1005535 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1005535 |
---|---|
container_issue | 9 |
container_start_page | e1005535 |
container_title | PLoS genetics |
container_volume | 11 |
creator | van de Bunt, Martijn Cortes, Adrian Brown, Matthew A Morris, Andrew P McCarthy, Mark I |
description | The growing availability of high-quality genomic annotation has increased the potential for mechanistic insights when the specific variants driving common genome-wide association signals are accurately localized. A range of fine-mapping strategies have been advocated, and specific successes reported, but the overall performance of such approaches, in the face of the extensive linkage disequilibrium that characterizes the human genome, is not well understood. Using simulations based on sequence data from the 1000 Genomes Project, we quantify the extent to which fine-mapping, here conducted using an approximate Bayesian approach, can be expected to lead to useful improvements in causal variant localization. We show that resolution is highly variable between loci, and that performance is severely degraded as the statistical power to detect association is reduced. We confirm that, where causal variants are shared between ancestry groups, further improvements in performance can be obtained in a trans-ethnic fine-mapping design. Finally, using empirical data from a recently published genome-wide association study for ankylosing spondylitis, we provide empirical confirmation of the behaviour of the approximate Bayesian approach and demonstrate that seven of twenty-six loci can be fine-mapped to fewer than ten variants. |
doi_str_mv | 10.1371/journal.pgen.1005535 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1720625938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A431533746</galeid><doaj_id>oai_doaj_org_article_45a3f408a3564d5e9754d0648e9ae6ed</doaj_id><sourcerecordid>A431533746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c764t-7393d78ab3c643614dfd4003d7a48ee6a3ed1982e1e3f377718e2a55fb4a3a503</originalsourceid><addsrcrecordid>eNqVklFv0zAQxyMEYmPwDRBEQkLw0GLHdpy8TKqqbVQqDCiMR-uaXFJXiV1iZ4Jvj0O7qZF4APnhrLvf_f3X-aLoOSVTyiR9t7V9Z6CZ7mo0U0qIEEw8iE5piBPJCX94dD-Jnji3JYSJLJePo5Mk5SRlSXYafb64haYHr00d-w3Gn7CrbNeCKTC2VXypDU4-wG431Fe-A4-1RheDj-e2ba2Jb6DTYHx89X22ipe20E-jRxU0Dp8d4ln07fLi6_z9ZHl9tZjPlpNCptxPJMtZKTNYsyLlLKW8rEoeHJYSeIaYAsOS5lmCFFnFpJQ0wwSEqNYcGAjCzqKXe91dY506TMMpKhOSJiJnWSAWe6K0sFW7TrfQ_VIWtPqTsF2toPO6aFBxAaziJAMmUl4KzKXgJUmDkxwwxTJonR9e69ctlgWaMIxmJDquGL1Rtb0NyhnjMg8Cbw4Cnf3Ro_Oq1a7ApgGDth9804xIycjg-9UerSFY06ayQbEYcDXjjArGJE8DNf0LFU6JrS6swUqH_Kjh7aghMB5_-hp659Ri9eU_2I__zl7fjNnXR-wGofEbZ5vea2vcGOR7sOiscx1W96OmRA37f_fjath_ddj_0Pbi-Jvum-4Wnv0G3qX9wA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718077308</pqid></control><display><type>article</type><title>Evaluating the Performance of Fine-Mapping Strategies at Common Variant GWAS Loci</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>van de Bunt, Martijn ; Cortes, Adrian ; Brown, Matthew A ; Morris, Andrew P ; McCarthy, Mark I</creator><creatorcontrib>van de Bunt, Martijn ; Cortes, Adrian ; Brown, Matthew A ; Morris, Andrew P ; McCarthy, Mark I ; IGAS Consortium</creatorcontrib><description>The growing availability of high-quality genomic annotation has increased the potential for mechanistic insights when the specific variants driving common genome-wide association signals are accurately localized. A range of fine-mapping strategies have been advocated, and specific successes reported, but the overall performance of such approaches, in the face of the extensive linkage disequilibrium that characterizes the human genome, is not well understood. Using simulations based on sequence data from the 1000 Genomes Project, we quantify the extent to which fine-mapping, here conducted using an approximate Bayesian approach, can be expected to lead to useful improvements in causal variant localization. We show that resolution is highly variable between loci, and that performance is severely degraded as the statistical power to detect association is reduced. We confirm that, where causal variants are shared between ancestry groups, further improvements in performance can be obtained in a trans-ethnic fine-mapping design. Finally, using empirical data from a recently published genome-wide association study for ankylosing spondylitis, we provide empirical confirmation of the behaviour of the approximate Bayesian approach and demonstrate that seven of twenty-six loci can be fine-mapped to fewer than ten variants.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1005535</identifier><identifier>PMID: 26406328</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bayes Theorem ; Chromosome Mapping ; Computer Simulation ; Consortia ; Funding ; Gene expression ; Genealogy ; Genome, Human ; Genome-wide association studies ; Genome-Wide Association Study ; Genomes ; Human Genome Project ; Humans ; Linkage Disequilibrium ; Localization ; Observations ; Polymorphism, Single Nucleotide - genetics ; Probability ; Simulation ; Studies</subject><ispartof>PLoS genetics, 2015-09, Vol.11 (9), p.e1005535-e1005535</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 van de Bunt et al 2015 van de Bunt et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: van de Bunt M, Cortes A, IGAS Consortium, Brown MA, Morris AP, McCarthy MI (2015) Evaluating the Performance of Fine-Mapping Strategies at Common Variant GWAS Loci. PLoS Genet 11(9): e1005535. doi:10.1371/journal.pgen.1005535</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c764t-7393d78ab3c643614dfd4003d7a48ee6a3ed1982e1e3f377718e2a55fb4a3a503</citedby><cites>FETCH-LOGICAL-c764t-7393d78ab3c643614dfd4003d7a48ee6a3ed1982e1e3f377718e2a55fb4a3a503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4583479/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4583479/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26406328$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van de Bunt, Martijn</creatorcontrib><creatorcontrib>Cortes, Adrian</creatorcontrib><creatorcontrib>Brown, Matthew A</creatorcontrib><creatorcontrib>Morris, Andrew P</creatorcontrib><creatorcontrib>McCarthy, Mark I</creatorcontrib><creatorcontrib>IGAS Consortium</creatorcontrib><title>Evaluating the Performance of Fine-Mapping Strategies at Common Variant GWAS Loci</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The growing availability of high-quality genomic annotation has increased the potential for mechanistic insights when the specific variants driving common genome-wide association signals are accurately localized. A range of fine-mapping strategies have been advocated, and specific successes reported, but the overall performance of such approaches, in the face of the extensive linkage disequilibrium that characterizes the human genome, is not well understood. Using simulations based on sequence data from the 1000 Genomes Project, we quantify the extent to which fine-mapping, here conducted using an approximate Bayesian approach, can be expected to lead to useful improvements in causal variant localization. We show that resolution is highly variable between loci, and that performance is severely degraded as the statistical power to detect association is reduced. We confirm that, where causal variants are shared between ancestry groups, further improvements in performance can be obtained in a trans-ethnic fine-mapping design. Finally, using empirical data from a recently published genome-wide association study for ankylosing spondylitis, we provide empirical confirmation of the behaviour of the approximate Bayesian approach and demonstrate that seven of twenty-six loci can be fine-mapped to fewer than ten variants.</description><subject>Bayes Theorem</subject><subject>Chromosome Mapping</subject><subject>Computer Simulation</subject><subject>Consortia</subject><subject>Funding</subject><subject>Gene expression</subject><subject>Genealogy</subject><subject>Genome, Human</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Human Genome Project</subject><subject>Humans</subject><subject>Linkage Disequilibrium</subject><subject>Localization</subject><subject>Observations</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Probability</subject><subject>Simulation</subject><subject>Studies</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVklFv0zAQxyMEYmPwDRBEQkLw0GLHdpy8TKqqbVQqDCiMR-uaXFJXiV1iZ4Jvj0O7qZF4APnhrLvf_f3X-aLoOSVTyiR9t7V9Z6CZ7mo0U0qIEEw8iE5piBPJCX94dD-Jnji3JYSJLJePo5Mk5SRlSXYafb64haYHr00d-w3Gn7CrbNeCKTC2VXypDU4-wG431Fe-A4-1RheDj-e2ba2Jb6DTYHx89X22ipe20E-jRxU0Dp8d4ln07fLi6_z9ZHl9tZjPlpNCptxPJMtZKTNYsyLlLKW8rEoeHJYSeIaYAsOS5lmCFFnFpJQ0wwSEqNYcGAjCzqKXe91dY506TMMpKhOSJiJnWSAWe6K0sFW7TrfQ_VIWtPqTsF2toPO6aFBxAaziJAMmUl4KzKXgJUmDkxwwxTJonR9e69ctlgWaMIxmJDquGL1Rtb0NyhnjMg8Cbw4Cnf3Ro_Oq1a7ApgGDth9804xIycjg-9UerSFY06ayQbEYcDXjjArGJE8DNf0LFU6JrS6swUqH_Kjh7aghMB5_-hp659Ri9eU_2I__zl7fjNnXR-wGofEbZ5vea2vcGOR7sOiscx1W96OmRA37f_fjath_ddj_0Pbi-Jvum-4Wnv0G3qX9wA</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>van de Bunt, Martijn</creator><creator>Cortes, Adrian</creator><creator>Brown, Matthew A</creator><creator>Morris, Andrew P</creator><creator>McCarthy, Mark I</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150901</creationdate><title>Evaluating the Performance of Fine-Mapping Strategies at Common Variant GWAS Loci</title><author>van de Bunt, Martijn ; Cortes, Adrian ; Brown, Matthew A ; Morris, Andrew P ; McCarthy, Mark I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c764t-7393d78ab3c643614dfd4003d7a48ee6a3ed1982e1e3f377718e2a55fb4a3a503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bayes Theorem</topic><topic>Chromosome Mapping</topic><topic>Computer Simulation</topic><topic>Consortia</topic><topic>Funding</topic><topic>Gene expression</topic><topic>Genealogy</topic><topic>Genome, Human</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Human Genome Project</topic><topic>Humans</topic><topic>Linkage Disequilibrium</topic><topic>Localization</topic><topic>Observations</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Probability</topic><topic>Simulation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van de Bunt, Martijn</creatorcontrib><creatorcontrib>Cortes, Adrian</creatorcontrib><creatorcontrib>Brown, Matthew A</creatorcontrib><creatorcontrib>Morris, Andrew P</creatorcontrib><creatorcontrib>McCarthy, Mark I</creatorcontrib><creatorcontrib>IGAS Consortium</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van de Bunt, Martijn</au><au>Cortes, Adrian</au><au>Brown, Matthew A</au><au>Morris, Andrew P</au><au>McCarthy, Mark I</au><aucorp>IGAS Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the Performance of Fine-Mapping Strategies at Common Variant GWAS Loci</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>11</volume><issue>9</issue><spage>e1005535</spage><epage>e1005535</epage><pages>e1005535-e1005535</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The growing availability of high-quality genomic annotation has increased the potential for mechanistic insights when the specific variants driving common genome-wide association signals are accurately localized. A range of fine-mapping strategies have been advocated, and specific successes reported, but the overall performance of such approaches, in the face of the extensive linkage disequilibrium that characterizes the human genome, is not well understood. Using simulations based on sequence data from the 1000 Genomes Project, we quantify the extent to which fine-mapping, here conducted using an approximate Bayesian approach, can be expected to lead to useful improvements in causal variant localization. We show that resolution is highly variable between loci, and that performance is severely degraded as the statistical power to detect association is reduced. We confirm that, where causal variants are shared between ancestry groups, further improvements in performance can be obtained in a trans-ethnic fine-mapping design. Finally, using empirical data from a recently published genome-wide association study for ankylosing spondylitis, we provide empirical confirmation of the behaviour of the approximate Bayesian approach and demonstrate that seven of twenty-six loci can be fine-mapped to fewer than ten variants.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26406328</pmid><doi>10.1371/journal.pgen.1005535</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2015-09, Vol.11 (9), p.e1005535-e1005535 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1720625938 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Bayes Theorem Chromosome Mapping Computer Simulation Consortia Funding Gene expression Genealogy Genome, Human Genome-wide association studies Genome-Wide Association Study Genomes Human Genome Project Humans Linkage Disequilibrium Localization Observations Polymorphism, Single Nucleotide - genetics Probability Simulation Studies |
title | Evaluating the Performance of Fine-Mapping Strategies at Common Variant GWAS Loci |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A57%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20Performance%20of%20Fine-Mapping%20Strategies%20at%20Common%20Variant%20GWAS%20Loci&rft.jtitle=PLoS%20genetics&rft.au=van%20de%20Bunt,%20Martijn&rft.aucorp=IGAS%20Consortium&rft.date=2015-09-01&rft.volume=11&rft.issue=9&rft.spage=e1005535&rft.epage=e1005535&rft.pages=e1005535-e1005535&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1005535&rft_dat=%3Cgale_plos_%3EA431533746%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718077308&rft_id=info:pmid/26406328&rft_galeid=A431533746&rft_doaj_id=oai_doaj_org_article_45a3f408a3564d5e9754d0648e9ae6ed&rfr_iscdi=true |