Hypoxia and Temperature Regulated Morphogenesis in Candida albicans
Candida albicans is a common commensal in the human gut but in predisposed patients it can become an important human fungal pathogen. As a commensal, C. albicans adapts to low-oxygen conditions and represses its hyphal development by the transcription factor Efg1, which under normoxia activates fila...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2015-08, Vol.11 (8), p.e1005447-e1005447 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1005447 |
---|---|
container_issue | 8 |
container_start_page | e1005447 |
container_title | PLoS genetics |
container_volume | 11 |
creator | Desai, Prashant R van Wijlick, Lasse Kurtz, Dagmar Juchimiuk, Mateusz Ernst, Joachim F |
description | Candida albicans is a common commensal in the human gut but in predisposed patients it can become an important human fungal pathogen. As a commensal, C. albicans adapts to low-oxygen conditions and represses its hyphal development by the transcription factor Efg1, which under normoxia activates filamentation. The repressive hypoxic but not the normoxic function of Efg1 required its unmodified N-terminus, was prevented by phosphomimetic residues at normoxic phosphorylation sites T179 and T206 and occurred only at temperatures ≤35°C. Genome-wide binding sites for native Efg1 identified 300 hypoxia-specific target genes, which overlapped partially with hypoxic binding sites for Ace2, a known positive regulator of hypoxic filamentation. Transcriptional analyses revealed that EFG1, ACE2 and their identified targets BCR1 and BRG1 encode an interconnected regulatory hub, in which Efg1/Bcr1 act as negative and Ace2/Brg1 act as positive regulators of gene expression under hypoxia. In this circuit, the hypoxic function of Ace2 was stimulated by elevated CO2 levels. The hyperfilamentous phenotype of efg1 and bcr1 mutants depended on Ace2/Brg1 regulators and required increased expression of genes encoding Cek1 MAP kinase and its downstream target Cph1. The intricate temperature-dependent regulatory mechanisms under hypoxia suggest that C. albicans restricts hyphal morphogenesis in oxygen-poor body niches, possibly to persist as a commensal in the human host. |
doi_str_mv | 10.1371/journal.pgen.1005447 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1720614274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A430963750</galeid><doaj_id>oai_doaj_org_article_bd6e930afb0e4c0b82e0869dc5b8ceb6</doaj_id><sourcerecordid>A430963750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c698t-f9e382d1f6b6a4b7783c8b7cfab7913aa7f2b45e0638be51ef5fc357ffa8a7c73</originalsourceid><addsrcrecordid>eNqVklFrFDEQxxdRbK1-A9EFQfThzmSTbHZfhHKoPagWavU1TLKTvZS9zTbZlfbbm_Ou5Q58UPKQMPn9_zOTTJa9pGROmaQfrv0UeujmQ4v9nBIiOJePsmMqBJtJTvjjvfNR9izGa0KYqGr5NDsqykLykhTH2eLsbvC3DnLom_wK1wMGGKeA-SW2UwcjNvlXH4aVT1kwupi7Pl8k1jVJ0mlnoI_PsycWuogvdvtJ9uPzp6vF2ez84stycXo-M2VdjTNbI6uKhtpSl8C1lBUzlZbGgpY1ZQDSFpoLJCWrNAqKVljDhLQWKpBGspPs9dZ36HxUu_6jorIgJeWpo0Qst0Tj4VoNwa0h3CkPTv0J-NAqCKMzHSrdlFgzAlYT5IboqkBSlXVjhK4M6jJ5fdxlm_QaG4P9GKA7MD286d1Ktf6X4oLJohbJ4N3OIPibCeOo1i4a7Dro0U-buokglFKx6ezNFm0hleZ665Oj2eDqlDNSl0wKkqj5X6i0Glw743u0LsUPBO8PBIkZ8XZsYYpRLb9f_gf77d_Zi5-H7Ns9doXQjavou2l0vo-HIN-CJvgYA9qHp6ZEbSb-_sfVZuLVbuKT7NX-Nz2I7kec_QZMwvu4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705011157</pqid></control><display><type>article</type><title>Hypoxia and Temperature Regulated Morphogenesis in Candida albicans</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Desai, Prashant R ; van Wijlick, Lasse ; Kurtz, Dagmar ; Juchimiuk, Mateusz ; Ernst, Joachim F</creator><contributor>Butler, Geraldine</contributor><creatorcontrib>Desai, Prashant R ; van Wijlick, Lasse ; Kurtz, Dagmar ; Juchimiuk, Mateusz ; Ernst, Joachim F ; Butler, Geraldine</creatorcontrib><description>Candida albicans is a common commensal in the human gut but in predisposed patients it can become an important human fungal pathogen. As a commensal, C. albicans adapts to low-oxygen conditions and represses its hyphal development by the transcription factor Efg1, which under normoxia activates filamentation. The repressive hypoxic but not the normoxic function of Efg1 required its unmodified N-terminus, was prevented by phosphomimetic residues at normoxic phosphorylation sites T179 and T206 and occurred only at temperatures ≤35°C. Genome-wide binding sites for native Efg1 identified 300 hypoxia-specific target genes, which overlapped partially with hypoxic binding sites for Ace2, a known positive regulator of hypoxic filamentation. Transcriptional analyses revealed that EFG1, ACE2 and their identified targets BCR1 and BRG1 encode an interconnected regulatory hub, in which Efg1/Bcr1 act as negative and Ace2/Brg1 act as positive regulators of gene expression under hypoxia. In this circuit, the hypoxic function of Ace2 was stimulated by elevated CO2 levels. The hyperfilamentous phenotype of efg1 and bcr1 mutants depended on Ace2/Brg1 regulators and required increased expression of genes encoding Cek1 MAP kinase and its downstream target Cph1. The intricate temperature-dependent regulatory mechanisms under hypoxia suggest that C. albicans restricts hyphal morphogenesis in oxygen-poor body niches, possibly to persist as a commensal in the human host.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1005447</identifier><identifier>PMID: 26274602</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation, Physiological ; Base Sequence ; Candida albicans ; Candida albicans - growth & development ; Candida albicans - metabolism ; DNA-Binding Proteins - physiology ; Experiments ; Fungal Proteins - metabolism ; Fungal Proteins - physiology ; Gene expression ; Gene Expression Regulation, Fungal ; Gene Ontology ; Genes, Fungal ; Genetic aspects ; Genomes ; Health aspects ; Hyphae - growth & development ; Hyphae - metabolism ; Hypoxia ; Kinases ; Mitogen-Activated Protein Kinase 3 - metabolism ; Morphogenesis ; Observations ; Oxygen - metabolism ; Phosphorylation ; Protein Binding ; Proteins ; Signal Transduction ; Temperature ; Transcription Factors - physiology ; Transcription, Genetic</subject><ispartof>PLoS genetics, 2015-08, Vol.11 (8), p.e1005447-e1005447</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Desai et al 2015 Desai et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: . PLoS Genet 11(8): e1005447. doi:10.1371/journal.pgen.1005447</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c698t-f9e382d1f6b6a4b7783c8b7cfab7913aa7f2b45e0638be51ef5fc357ffa8a7c73</citedby><cites>FETCH-LOGICAL-c698t-f9e382d1f6b6a4b7783c8b7cfab7913aa7f2b45e0638be51ef5fc357ffa8a7c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537295/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537295/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26274602$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Butler, Geraldine</contributor><creatorcontrib>Desai, Prashant R</creatorcontrib><creatorcontrib>van Wijlick, Lasse</creatorcontrib><creatorcontrib>Kurtz, Dagmar</creatorcontrib><creatorcontrib>Juchimiuk, Mateusz</creatorcontrib><creatorcontrib>Ernst, Joachim F</creatorcontrib><title>Hypoxia and Temperature Regulated Morphogenesis in Candida albicans</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Candida albicans is a common commensal in the human gut but in predisposed patients it can become an important human fungal pathogen. As a commensal, C. albicans adapts to low-oxygen conditions and represses its hyphal development by the transcription factor Efg1, which under normoxia activates filamentation. The repressive hypoxic but not the normoxic function of Efg1 required its unmodified N-terminus, was prevented by phosphomimetic residues at normoxic phosphorylation sites T179 and T206 and occurred only at temperatures ≤35°C. Genome-wide binding sites for native Efg1 identified 300 hypoxia-specific target genes, which overlapped partially with hypoxic binding sites for Ace2, a known positive regulator of hypoxic filamentation. Transcriptional analyses revealed that EFG1, ACE2 and their identified targets BCR1 and BRG1 encode an interconnected regulatory hub, in which Efg1/Bcr1 act as negative and Ace2/Brg1 act as positive regulators of gene expression under hypoxia. In this circuit, the hypoxic function of Ace2 was stimulated by elevated CO2 levels. The hyperfilamentous phenotype of efg1 and bcr1 mutants depended on Ace2/Brg1 regulators and required increased expression of genes encoding Cek1 MAP kinase and its downstream target Cph1. The intricate temperature-dependent regulatory mechanisms under hypoxia suggest that C. albicans restricts hyphal morphogenesis in oxygen-poor body niches, possibly to persist as a commensal in the human host.</description><subject>Adaptation, Physiological</subject><subject>Base Sequence</subject><subject>Candida albicans</subject><subject>Candida albicans - growth & development</subject><subject>Candida albicans - metabolism</subject><subject>DNA-Binding Proteins - physiology</subject><subject>Experiments</subject><subject>Fungal Proteins - metabolism</subject><subject>Fungal Proteins - physiology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Gene Ontology</subject><subject>Genes, Fungal</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Health aspects</subject><subject>Hyphae - growth & development</subject><subject>Hyphae - metabolism</subject><subject>Hypoxia</subject><subject>Kinases</subject><subject>Mitogen-Activated Protein Kinase 3 - metabolism</subject><subject>Morphogenesis</subject><subject>Observations</subject><subject>Oxygen - metabolism</subject><subject>Phosphorylation</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Signal Transduction</subject><subject>Temperature</subject><subject>Transcription Factors - physiology</subject><subject>Transcription, Genetic</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVklFrFDEQxxdRbK1-A9EFQfThzmSTbHZfhHKoPagWavU1TLKTvZS9zTbZlfbbm_Ou5Q58UPKQMPn9_zOTTJa9pGROmaQfrv0UeujmQ4v9nBIiOJePsmMqBJtJTvjjvfNR9izGa0KYqGr5NDsqykLykhTH2eLsbvC3DnLom_wK1wMGGKeA-SW2UwcjNvlXH4aVT1kwupi7Pl8k1jVJ0mlnoI_PsycWuogvdvtJ9uPzp6vF2ez84stycXo-M2VdjTNbI6uKhtpSl8C1lBUzlZbGgpY1ZQDSFpoLJCWrNAqKVljDhLQWKpBGspPs9dZ36HxUu_6jorIgJeWpo0Qst0Tj4VoNwa0h3CkPTv0J-NAqCKMzHSrdlFgzAlYT5IboqkBSlXVjhK4M6jJ5fdxlm_QaG4P9GKA7MD286d1Ktf6X4oLJohbJ4N3OIPibCeOo1i4a7Dro0U-buokglFKx6ezNFm0hleZ665Oj2eDqlDNSl0wKkqj5X6i0Glw743u0LsUPBO8PBIkZ8XZsYYpRLb9f_gf77d_Zi5-H7Ns9doXQjavou2l0vo-HIN-CJvgYA9qHp6ZEbSb-_sfVZuLVbuKT7NX-Nz2I7kec_QZMwvu4</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Desai, Prashant R</creator><creator>van Wijlick, Lasse</creator><creator>Kurtz, Dagmar</creator><creator>Juchimiuk, Mateusz</creator><creator>Ernst, Joachim F</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150801</creationdate><title>Hypoxia and Temperature Regulated Morphogenesis in Candida albicans</title><author>Desai, Prashant R ; van Wijlick, Lasse ; Kurtz, Dagmar ; Juchimiuk, Mateusz ; Ernst, Joachim F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c698t-f9e382d1f6b6a4b7783c8b7cfab7913aa7f2b45e0638be51ef5fc357ffa8a7c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptation, Physiological</topic><topic>Base Sequence</topic><topic>Candida albicans</topic><topic>Candida albicans - growth & development</topic><topic>Candida albicans - metabolism</topic><topic>DNA-Binding Proteins - physiology</topic><topic>Experiments</topic><topic>Fungal Proteins - metabolism</topic><topic>Fungal Proteins - physiology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Gene Ontology</topic><topic>Genes, Fungal</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Health aspects</topic><topic>Hyphae - growth & development</topic><topic>Hyphae - metabolism</topic><topic>Hypoxia</topic><topic>Kinases</topic><topic>Mitogen-Activated Protein Kinase 3 - metabolism</topic><topic>Morphogenesis</topic><topic>Observations</topic><topic>Oxygen - metabolism</topic><topic>Phosphorylation</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Signal Transduction</topic><topic>Temperature</topic><topic>Transcription Factors - physiology</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desai, Prashant R</creatorcontrib><creatorcontrib>van Wijlick, Lasse</creatorcontrib><creatorcontrib>Kurtz, Dagmar</creatorcontrib><creatorcontrib>Juchimiuk, Mateusz</creatorcontrib><creatorcontrib>Ernst, Joachim F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desai, Prashant R</au><au>van Wijlick, Lasse</au><au>Kurtz, Dagmar</au><au>Juchimiuk, Mateusz</au><au>Ernst, Joachim F</au><au>Butler, Geraldine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypoxia and Temperature Regulated Morphogenesis in Candida albicans</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2015-08-01</date><risdate>2015</risdate><volume>11</volume><issue>8</issue><spage>e1005447</spage><epage>e1005447</epage><pages>e1005447-e1005447</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Candida albicans is a common commensal in the human gut but in predisposed patients it can become an important human fungal pathogen. As a commensal, C. albicans adapts to low-oxygen conditions and represses its hyphal development by the transcription factor Efg1, which under normoxia activates filamentation. The repressive hypoxic but not the normoxic function of Efg1 required its unmodified N-terminus, was prevented by phosphomimetic residues at normoxic phosphorylation sites T179 and T206 and occurred only at temperatures ≤35°C. Genome-wide binding sites for native Efg1 identified 300 hypoxia-specific target genes, which overlapped partially with hypoxic binding sites for Ace2, a known positive regulator of hypoxic filamentation. Transcriptional analyses revealed that EFG1, ACE2 and their identified targets BCR1 and BRG1 encode an interconnected regulatory hub, in which Efg1/Bcr1 act as negative and Ace2/Brg1 act as positive regulators of gene expression under hypoxia. In this circuit, the hypoxic function of Ace2 was stimulated by elevated CO2 levels. The hyperfilamentous phenotype of efg1 and bcr1 mutants depended on Ace2/Brg1 regulators and required increased expression of genes encoding Cek1 MAP kinase and its downstream target Cph1. The intricate temperature-dependent regulatory mechanisms under hypoxia suggest that C. albicans restricts hyphal morphogenesis in oxygen-poor body niches, possibly to persist as a commensal in the human host.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26274602</pmid><doi>10.1371/journal.pgen.1005447</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2015-08, Vol.11 (8), p.e1005447-e1005447 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1720614274 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central |
subjects | Adaptation, Physiological Base Sequence Candida albicans Candida albicans - growth & development Candida albicans - metabolism DNA-Binding Proteins - physiology Experiments Fungal Proteins - metabolism Fungal Proteins - physiology Gene expression Gene Expression Regulation, Fungal Gene Ontology Genes, Fungal Genetic aspects Genomes Health aspects Hyphae - growth & development Hyphae - metabolism Hypoxia Kinases Mitogen-Activated Protein Kinase 3 - metabolism Morphogenesis Observations Oxygen - metabolism Phosphorylation Protein Binding Proteins Signal Transduction Temperature Transcription Factors - physiology Transcription, Genetic |
title | Hypoxia and Temperature Regulated Morphogenesis in Candida albicans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A06%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypoxia%20and%20Temperature%20Regulated%20Morphogenesis%20in%20Candida%20albicans&rft.jtitle=PLoS%20genetics&rft.au=Desai,%20Prashant%20R&rft.date=2015-08-01&rft.volume=11&rft.issue=8&rft.spage=e1005447&rft.epage=e1005447&rft.pages=e1005447-e1005447&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1005447&rft_dat=%3Cgale_plos_%3EA430963750%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705011157&rft_id=info:pmid/26274602&rft_galeid=A430963750&rft_doaj_id=oai_doaj_org_article_bd6e930afb0e4c0b82e0869dc5b8ceb6&rfr_iscdi=true |