Hypoxia and Temperature Regulated Morphogenesis in Candida albicans

Candida albicans is a common commensal in the human gut but in predisposed patients it can become an important human fungal pathogen. As a commensal, C. albicans adapts to low-oxygen conditions and represses its hyphal development by the transcription factor Efg1, which under normoxia activates fila...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2015-08, Vol.11 (8), p.e1005447-e1005447
Hauptverfasser: Desai, Prashant R, van Wijlick, Lasse, Kurtz, Dagmar, Juchimiuk, Mateusz, Ernst, Joachim F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1005447
container_issue 8
container_start_page e1005447
container_title PLoS genetics
container_volume 11
creator Desai, Prashant R
van Wijlick, Lasse
Kurtz, Dagmar
Juchimiuk, Mateusz
Ernst, Joachim F
description Candida albicans is a common commensal in the human gut but in predisposed patients it can become an important human fungal pathogen. As a commensal, C. albicans adapts to low-oxygen conditions and represses its hyphal development by the transcription factor Efg1, which under normoxia activates filamentation. The repressive hypoxic but not the normoxic function of Efg1 required its unmodified N-terminus, was prevented by phosphomimetic residues at normoxic phosphorylation sites T179 and T206 and occurred only at temperatures ≤35°C. Genome-wide binding sites for native Efg1 identified 300 hypoxia-specific target genes, which overlapped partially with hypoxic binding sites for Ace2, a known positive regulator of hypoxic filamentation. Transcriptional analyses revealed that EFG1, ACE2 and their identified targets BCR1 and BRG1 encode an interconnected regulatory hub, in which Efg1/Bcr1 act as negative and Ace2/Brg1 act as positive regulators of gene expression under hypoxia. In this circuit, the hypoxic function of Ace2 was stimulated by elevated CO2 levels. The hyperfilamentous phenotype of efg1 and bcr1 mutants depended on Ace2/Brg1 regulators and required increased expression of genes encoding Cek1 MAP kinase and its downstream target Cph1. The intricate temperature-dependent regulatory mechanisms under hypoxia suggest that C. albicans restricts hyphal morphogenesis in oxygen-poor body niches, possibly to persist as a commensal in the human host.
doi_str_mv 10.1371/journal.pgen.1005447
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1720614274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A430963750</galeid><doaj_id>oai_doaj_org_article_bd6e930afb0e4c0b82e0869dc5b8ceb6</doaj_id><sourcerecordid>A430963750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c698t-f9e382d1f6b6a4b7783c8b7cfab7913aa7f2b45e0638be51ef5fc357ffa8a7c73</originalsourceid><addsrcrecordid>eNqVklFrFDEQxxdRbK1-A9EFQfThzmSTbHZfhHKoPagWavU1TLKTvZS9zTbZlfbbm_Ou5Q58UPKQMPn9_zOTTJa9pGROmaQfrv0UeujmQ4v9nBIiOJePsmMqBJtJTvjjvfNR9izGa0KYqGr5NDsqykLykhTH2eLsbvC3DnLom_wK1wMGGKeA-SW2UwcjNvlXH4aVT1kwupi7Pl8k1jVJ0mlnoI_PsycWuogvdvtJ9uPzp6vF2ez84stycXo-M2VdjTNbI6uKhtpSl8C1lBUzlZbGgpY1ZQDSFpoLJCWrNAqKVljDhLQWKpBGspPs9dZ36HxUu_6jorIgJeWpo0Qst0Tj4VoNwa0h3CkPTv0J-NAqCKMzHSrdlFgzAlYT5IboqkBSlXVjhK4M6jJ5fdxlm_QaG4P9GKA7MD286d1Ktf6X4oLJohbJ4N3OIPibCeOo1i4a7Dro0U-buokglFKx6ezNFm0hleZ665Oj2eDqlDNSl0wKkqj5X6i0Glw743u0LsUPBO8PBIkZ8XZsYYpRLb9f_gf77d_Zi5-H7Ns9doXQjavou2l0vo-HIN-CJvgYA9qHp6ZEbSb-_sfVZuLVbuKT7NX-Nz2I7kec_QZMwvu4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705011157</pqid></control><display><type>article</type><title>Hypoxia and Temperature Regulated Morphogenesis in Candida albicans</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Desai, Prashant R ; van Wijlick, Lasse ; Kurtz, Dagmar ; Juchimiuk, Mateusz ; Ernst, Joachim F</creator><contributor>Butler, Geraldine</contributor><creatorcontrib>Desai, Prashant R ; van Wijlick, Lasse ; Kurtz, Dagmar ; Juchimiuk, Mateusz ; Ernst, Joachim F ; Butler, Geraldine</creatorcontrib><description>Candida albicans is a common commensal in the human gut but in predisposed patients it can become an important human fungal pathogen. As a commensal, C. albicans adapts to low-oxygen conditions and represses its hyphal development by the transcription factor Efg1, which under normoxia activates filamentation. The repressive hypoxic but not the normoxic function of Efg1 required its unmodified N-terminus, was prevented by phosphomimetic residues at normoxic phosphorylation sites T179 and T206 and occurred only at temperatures ≤35°C. Genome-wide binding sites for native Efg1 identified 300 hypoxia-specific target genes, which overlapped partially with hypoxic binding sites for Ace2, a known positive regulator of hypoxic filamentation. Transcriptional analyses revealed that EFG1, ACE2 and their identified targets BCR1 and BRG1 encode an interconnected regulatory hub, in which Efg1/Bcr1 act as negative and Ace2/Brg1 act as positive regulators of gene expression under hypoxia. In this circuit, the hypoxic function of Ace2 was stimulated by elevated CO2 levels. The hyperfilamentous phenotype of efg1 and bcr1 mutants depended on Ace2/Brg1 regulators and required increased expression of genes encoding Cek1 MAP kinase and its downstream target Cph1. The intricate temperature-dependent regulatory mechanisms under hypoxia suggest that C. albicans restricts hyphal morphogenesis in oxygen-poor body niches, possibly to persist as a commensal in the human host.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1005447</identifier><identifier>PMID: 26274602</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation, Physiological ; Base Sequence ; Candida albicans ; Candida albicans - growth &amp; development ; Candida albicans - metabolism ; DNA-Binding Proteins - physiology ; Experiments ; Fungal Proteins - metabolism ; Fungal Proteins - physiology ; Gene expression ; Gene Expression Regulation, Fungal ; Gene Ontology ; Genes, Fungal ; Genetic aspects ; Genomes ; Health aspects ; Hyphae - growth &amp; development ; Hyphae - metabolism ; Hypoxia ; Kinases ; Mitogen-Activated Protein Kinase 3 - metabolism ; Morphogenesis ; Observations ; Oxygen - metabolism ; Phosphorylation ; Protein Binding ; Proteins ; Signal Transduction ; Temperature ; Transcription Factors - physiology ; Transcription, Genetic</subject><ispartof>PLoS genetics, 2015-08, Vol.11 (8), p.e1005447-e1005447</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Desai et al 2015 Desai et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: . PLoS Genet 11(8): e1005447. doi:10.1371/journal.pgen.1005447</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c698t-f9e382d1f6b6a4b7783c8b7cfab7913aa7f2b45e0638be51ef5fc357ffa8a7c73</citedby><cites>FETCH-LOGICAL-c698t-f9e382d1f6b6a4b7783c8b7cfab7913aa7f2b45e0638be51ef5fc357ffa8a7c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537295/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537295/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26274602$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Butler, Geraldine</contributor><creatorcontrib>Desai, Prashant R</creatorcontrib><creatorcontrib>van Wijlick, Lasse</creatorcontrib><creatorcontrib>Kurtz, Dagmar</creatorcontrib><creatorcontrib>Juchimiuk, Mateusz</creatorcontrib><creatorcontrib>Ernst, Joachim F</creatorcontrib><title>Hypoxia and Temperature Regulated Morphogenesis in Candida albicans</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Candida albicans is a common commensal in the human gut but in predisposed patients it can become an important human fungal pathogen. As a commensal, C. albicans adapts to low-oxygen conditions and represses its hyphal development by the transcription factor Efg1, which under normoxia activates filamentation. The repressive hypoxic but not the normoxic function of Efg1 required its unmodified N-terminus, was prevented by phosphomimetic residues at normoxic phosphorylation sites T179 and T206 and occurred only at temperatures ≤35°C. Genome-wide binding sites for native Efg1 identified 300 hypoxia-specific target genes, which overlapped partially with hypoxic binding sites for Ace2, a known positive regulator of hypoxic filamentation. Transcriptional analyses revealed that EFG1, ACE2 and their identified targets BCR1 and BRG1 encode an interconnected regulatory hub, in which Efg1/Bcr1 act as negative and Ace2/Brg1 act as positive regulators of gene expression under hypoxia. In this circuit, the hypoxic function of Ace2 was stimulated by elevated CO2 levels. The hyperfilamentous phenotype of efg1 and bcr1 mutants depended on Ace2/Brg1 regulators and required increased expression of genes encoding Cek1 MAP kinase and its downstream target Cph1. The intricate temperature-dependent regulatory mechanisms under hypoxia suggest that C. albicans restricts hyphal morphogenesis in oxygen-poor body niches, possibly to persist as a commensal in the human host.</description><subject>Adaptation, Physiological</subject><subject>Base Sequence</subject><subject>Candida albicans</subject><subject>Candida albicans - growth &amp; development</subject><subject>Candida albicans - metabolism</subject><subject>DNA-Binding Proteins - physiology</subject><subject>Experiments</subject><subject>Fungal Proteins - metabolism</subject><subject>Fungal Proteins - physiology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Gene Ontology</subject><subject>Genes, Fungal</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Health aspects</subject><subject>Hyphae - growth &amp; development</subject><subject>Hyphae - metabolism</subject><subject>Hypoxia</subject><subject>Kinases</subject><subject>Mitogen-Activated Protein Kinase 3 - metabolism</subject><subject>Morphogenesis</subject><subject>Observations</subject><subject>Oxygen - metabolism</subject><subject>Phosphorylation</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Signal Transduction</subject><subject>Temperature</subject><subject>Transcription Factors - physiology</subject><subject>Transcription, Genetic</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVklFrFDEQxxdRbK1-A9EFQfThzmSTbHZfhHKoPagWavU1TLKTvZS9zTbZlfbbm_Ou5Q58UPKQMPn9_zOTTJa9pGROmaQfrv0UeujmQ4v9nBIiOJePsmMqBJtJTvjjvfNR9izGa0KYqGr5NDsqykLykhTH2eLsbvC3DnLom_wK1wMGGKeA-SW2UwcjNvlXH4aVT1kwupi7Pl8k1jVJ0mlnoI_PsycWuogvdvtJ9uPzp6vF2ez84stycXo-M2VdjTNbI6uKhtpSl8C1lBUzlZbGgpY1ZQDSFpoLJCWrNAqKVljDhLQWKpBGspPs9dZ36HxUu_6jorIgJeWpo0Qst0Tj4VoNwa0h3CkPTv0J-NAqCKMzHSrdlFgzAlYT5IboqkBSlXVjhK4M6jJ5fdxlm_QaG4P9GKA7MD286d1Ktf6X4oLJohbJ4N3OIPibCeOo1i4a7Dro0U-buokglFKx6ezNFm0hleZ665Oj2eDqlDNSl0wKkqj5X6i0Glw743u0LsUPBO8PBIkZ8XZsYYpRLb9f_gf77d_Zi5-H7Ns9doXQjavou2l0vo-HIN-CJvgYA9qHp6ZEbSb-_sfVZuLVbuKT7NX-Nz2I7kec_QZMwvu4</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Desai, Prashant R</creator><creator>van Wijlick, Lasse</creator><creator>Kurtz, Dagmar</creator><creator>Juchimiuk, Mateusz</creator><creator>Ernst, Joachim F</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150801</creationdate><title>Hypoxia and Temperature Regulated Morphogenesis in Candida albicans</title><author>Desai, Prashant R ; van Wijlick, Lasse ; Kurtz, Dagmar ; Juchimiuk, Mateusz ; Ernst, Joachim F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c698t-f9e382d1f6b6a4b7783c8b7cfab7913aa7f2b45e0638be51ef5fc357ffa8a7c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptation, Physiological</topic><topic>Base Sequence</topic><topic>Candida albicans</topic><topic>Candida albicans - growth &amp; development</topic><topic>Candida albicans - metabolism</topic><topic>DNA-Binding Proteins - physiology</topic><topic>Experiments</topic><topic>Fungal Proteins - metabolism</topic><topic>Fungal Proteins - physiology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Gene Ontology</topic><topic>Genes, Fungal</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Health aspects</topic><topic>Hyphae - growth &amp; development</topic><topic>Hyphae - metabolism</topic><topic>Hypoxia</topic><topic>Kinases</topic><topic>Mitogen-Activated Protein Kinase 3 - metabolism</topic><topic>Morphogenesis</topic><topic>Observations</topic><topic>Oxygen - metabolism</topic><topic>Phosphorylation</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Signal Transduction</topic><topic>Temperature</topic><topic>Transcription Factors - physiology</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desai, Prashant R</creatorcontrib><creatorcontrib>van Wijlick, Lasse</creatorcontrib><creatorcontrib>Kurtz, Dagmar</creatorcontrib><creatorcontrib>Juchimiuk, Mateusz</creatorcontrib><creatorcontrib>Ernst, Joachim F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desai, Prashant R</au><au>van Wijlick, Lasse</au><au>Kurtz, Dagmar</au><au>Juchimiuk, Mateusz</au><au>Ernst, Joachim F</au><au>Butler, Geraldine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypoxia and Temperature Regulated Morphogenesis in Candida albicans</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2015-08-01</date><risdate>2015</risdate><volume>11</volume><issue>8</issue><spage>e1005447</spage><epage>e1005447</epage><pages>e1005447-e1005447</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Candida albicans is a common commensal in the human gut but in predisposed patients it can become an important human fungal pathogen. As a commensal, C. albicans adapts to low-oxygen conditions and represses its hyphal development by the transcription factor Efg1, which under normoxia activates filamentation. The repressive hypoxic but not the normoxic function of Efg1 required its unmodified N-terminus, was prevented by phosphomimetic residues at normoxic phosphorylation sites T179 and T206 and occurred only at temperatures ≤35°C. Genome-wide binding sites for native Efg1 identified 300 hypoxia-specific target genes, which overlapped partially with hypoxic binding sites for Ace2, a known positive regulator of hypoxic filamentation. Transcriptional analyses revealed that EFG1, ACE2 and their identified targets BCR1 and BRG1 encode an interconnected regulatory hub, in which Efg1/Bcr1 act as negative and Ace2/Brg1 act as positive regulators of gene expression under hypoxia. In this circuit, the hypoxic function of Ace2 was stimulated by elevated CO2 levels. The hyperfilamentous phenotype of efg1 and bcr1 mutants depended on Ace2/Brg1 regulators and required increased expression of genes encoding Cek1 MAP kinase and its downstream target Cph1. The intricate temperature-dependent regulatory mechanisms under hypoxia suggest that C. albicans restricts hyphal morphogenesis in oxygen-poor body niches, possibly to persist as a commensal in the human host.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26274602</pmid><doi>10.1371/journal.pgen.1005447</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2015-08, Vol.11 (8), p.e1005447-e1005447
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1720614274
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central
subjects Adaptation, Physiological
Base Sequence
Candida albicans
Candida albicans - growth & development
Candida albicans - metabolism
DNA-Binding Proteins - physiology
Experiments
Fungal Proteins - metabolism
Fungal Proteins - physiology
Gene expression
Gene Expression Regulation, Fungal
Gene Ontology
Genes, Fungal
Genetic aspects
Genomes
Health aspects
Hyphae - growth & development
Hyphae - metabolism
Hypoxia
Kinases
Mitogen-Activated Protein Kinase 3 - metabolism
Morphogenesis
Observations
Oxygen - metabolism
Phosphorylation
Protein Binding
Proteins
Signal Transduction
Temperature
Transcription Factors - physiology
Transcription, Genetic
title Hypoxia and Temperature Regulated Morphogenesis in Candida albicans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A06%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypoxia%20and%20Temperature%20Regulated%20Morphogenesis%20in%20Candida%20albicans&rft.jtitle=PLoS%20genetics&rft.au=Desai,%20Prashant%20R&rft.date=2015-08-01&rft.volume=11&rft.issue=8&rft.spage=e1005447&rft.epage=e1005447&rft.pages=e1005447-e1005447&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1005447&rft_dat=%3Cgale_plos_%3EA430963750%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705011157&rft_id=info:pmid/26274602&rft_galeid=A430963750&rft_doaj_id=oai_doaj_org_article_bd6e930afb0e4c0b82e0869dc5b8ceb6&rfr_iscdi=true