A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types
Cancer development and progression result from somatic evolution by an accumulation of genomic alterations. The effects of those alterations on the fitness of somatic cells lead to evolutionary adaptations such as increased cell proliferation, angiogenesis, and altered anticancer drug responses. How...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2015-09, Vol.11 (9), p.e1004497-e1004497 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1004497 |
---|---|
container_issue | 9 |
container_start_page | e1004497 |
container_title | PLoS computational biology |
container_volume | 11 |
creator | Cheng, Feixiong Liu, Chuang Lin, Chen-Ching Zhao, Junfei Jia, Peilin Li, Wen-Hsiung Zhao, Zhongming |
description | Cancer development and progression result from somatic evolution by an accumulation of genomic alterations. The effects of those alterations on the fitness of somatic cells lead to evolutionary adaptations such as increased cell proliferation, angiogenesis, and altered anticancer drug responses. However, there are few general mathematical models to quantitatively examine how perturbations of a single gene shape subsequent evolution of the cancer genome. In this study, we proposed the gene gravity model to study the evolution of cancer genomes by incorporating the genome-wide transcription and somatic mutation profiles of ~3,000 tumors across 9 cancer types from The Cancer Genome Atlas into a broad gene network. We found that somatic mutations of a cancer driver gene may drive cancer genome evolution by inducing mutations in other genes. This functional consequence is often generated by the combined effect of genetic and epigenetic (e.g., chromatin regulation) alterations. By quantifying cancer genome evolution using the gene gravity model, we identified six putative cancer genes (AHNAK, COL11A1, DDX3X, FAT4, STAG2, and SYNE1). The tumor genomes harboring the nonsynonymous somatic mutations in these genes had a higher mutation density at the genome level compared to the wild-type groups. Furthermore, we provided statistical evidence that hypermutation of cancer driver genes on inactive X chromosomes is a general feature in female cancer genomes. In summary, this study sheds light on the functional consequences and evolutionary characteristics of somatic mutations during tumorigenesis by propelling adaptive cancer genome evolution, which would provide new perspectives for cancer research and therapeutics. |
doi_str_mv | 10.1371/journal.pcbi.1004497 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1720492336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A431446599</galeid><doaj_id>oai_doaj_org_article_2b6e2230cc8d4f9f8efc75d0c99ba19a</doaj_id><sourcerecordid>A431446599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c699t-2342f135ff66354c432d533a21b253e84e636724358c5d2ea6726615a03023613</originalsourceid><addsrcrecordid>eNqVkl2LEzEUhgdR3HX1H4gGvFGwNd_TeCGUstbCquCu1yHNnHRTppOazBT7781sp8tWvJFcJDl5zpuTk7coXhI8JqwkH9ahi42px1u79GOCMeeqfFScEyHYqGRi8vjB-qx4ltIa47xU8mlxRiUTlEp8XoQpmkMDaB7Nzrd79DVUUCMXImpvAV3uQt21PjQoODQzjYXY42ED6SOaouu2q_b9EXuPMf4LQMbGkBJSx_jNfgvpefHEmTrBi2G-KH5-vryZfRldfZ8vZtOrkZVKtSPKOHWECedkLpVbzmglGDOULKlgMOEgmSwpzw-yoqJg8kZKIgxmmDJJ2EXx-qC7rUPSQ6-SJiXFXFHGZCYWB6IKZq230W9M3OtgvL4LhLjSJrbe1qDpUgKlDFs7qbhTbgLOlqLCVqmlIcpkrU_Dbd1yA5WFpo2mPhE9PWn8rV6FneZC8vwRWeDtIBDDrw5Sqzc-Wahr00Do-roJEZxjijP65oCuTC7NNy5kRdvjesoZ4VwKpTI1_geVRwUbb0MDzuf4ScK7k4TMtPC7XZkuJb24_vEf7LdTlh_YOzdEcPddIVj3Rj5-ju6NrAcj57RXDzt6n3R0LvsD-Frq4A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1711544020</pqid></control><display><type>article</type><title>A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Cheng, Feixiong ; Liu, Chuang ; Lin, Chen-Ching ; Zhao, Junfei ; Jia, Peilin ; Li, Wen-Hsiung ; Zhao, Zhongming</creator><contributor>Zhou, Xianghong Jasmine</contributor><creatorcontrib>Cheng, Feixiong ; Liu, Chuang ; Lin, Chen-Ching ; Zhao, Junfei ; Jia, Peilin ; Li, Wen-Hsiung ; Zhao, Zhongming ; Zhou, Xianghong Jasmine</creatorcontrib><description>Cancer development and progression result from somatic evolution by an accumulation of genomic alterations. The effects of those alterations on the fitness of somatic cells lead to evolutionary adaptations such as increased cell proliferation, angiogenesis, and altered anticancer drug responses. However, there are few general mathematical models to quantitatively examine how perturbations of a single gene shape subsequent evolution of the cancer genome. In this study, we proposed the gene gravity model to study the evolution of cancer genomes by incorporating the genome-wide transcription and somatic mutation profiles of ~3,000 tumors across 9 cancer types from The Cancer Genome Atlas into a broad gene network. We found that somatic mutations of a cancer driver gene may drive cancer genome evolution by inducing mutations in other genes. This functional consequence is often generated by the combined effect of genetic and epigenetic (e.g., chromatin regulation) alterations. By quantifying cancer genome evolution using the gene gravity model, we identified six putative cancer genes (AHNAK, COL11A1, DDX3X, FAT4, STAG2, and SYNE1). The tumor genomes harboring the nonsynonymous somatic mutations in these genes had a higher mutation density at the genome level compared to the wild-type groups. Furthermore, we provided statistical evidence that hypermutation of cancer driver genes on inactive X chromosomes is a general feature in female cancer genomes. In summary, this study sheds light on the functional consequences and evolutionary characteristics of somatic mutations during tumorigenesis by propelling adaptive cancer genome evolution, which would provide new perspectives for cancer research and therapeutics.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1004497</identifier><identifier>PMID: 26352260</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Breast cancer ; Censuses ; Chromosomes ; Databases, Genetic ; Deoxyribonucleic acid ; DNA ; DNA repair ; Epigenetics ; Female ; Gene expression ; Gene mutations ; Genetic aspects ; Genetic transcription ; Genome, Human - genetics ; Genomes ; Genomics - methods ; Humans ; Kinases ; Male ; Mathematical models ; Medical research ; Models, Genetic ; Mutation ; Mutation - genetics ; Neoplasms - genetics ; Observations ; Pilot projects ; RNA polymerase ; Studies ; Tumorigenesis ; Tumors</subject><ispartof>PLoS computational biology, 2015-09, Vol.11 (9), p.e1004497-e1004497</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Cheng et al 2015 Cheng et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Cheng F, Liu C, Lin C-C, Zhao J, Jia P, Li W-H, et al. (2015) A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types. PLoS Comput Biol 11(9): e1004497. doi:10.1371/journal.pcbi.1004497</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c699t-2342f135ff66354c432d533a21b253e84e636724358c5d2ea6726615a03023613</citedby><cites>FETCH-LOGICAL-c699t-2342f135ff66354c432d533a21b253e84e636724358c5d2ea6726615a03023613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4564226/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4564226/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26352260$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhou, Xianghong Jasmine</contributor><creatorcontrib>Cheng, Feixiong</creatorcontrib><creatorcontrib>Liu, Chuang</creatorcontrib><creatorcontrib>Lin, Chen-Ching</creatorcontrib><creatorcontrib>Zhao, Junfei</creatorcontrib><creatorcontrib>Jia, Peilin</creatorcontrib><creatorcontrib>Li, Wen-Hsiung</creatorcontrib><creatorcontrib>Zhao, Zhongming</creatorcontrib><title>A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Cancer development and progression result from somatic evolution by an accumulation of genomic alterations. The effects of those alterations on the fitness of somatic cells lead to evolutionary adaptations such as increased cell proliferation, angiogenesis, and altered anticancer drug responses. However, there are few general mathematical models to quantitatively examine how perturbations of a single gene shape subsequent evolution of the cancer genome. In this study, we proposed the gene gravity model to study the evolution of cancer genomes by incorporating the genome-wide transcription and somatic mutation profiles of ~3,000 tumors across 9 cancer types from The Cancer Genome Atlas into a broad gene network. We found that somatic mutations of a cancer driver gene may drive cancer genome evolution by inducing mutations in other genes. This functional consequence is often generated by the combined effect of genetic and epigenetic (e.g., chromatin regulation) alterations. By quantifying cancer genome evolution using the gene gravity model, we identified six putative cancer genes (AHNAK, COL11A1, DDX3X, FAT4, STAG2, and SYNE1). The tumor genomes harboring the nonsynonymous somatic mutations in these genes had a higher mutation density at the genome level compared to the wild-type groups. Furthermore, we provided statistical evidence that hypermutation of cancer driver genes on inactive X chromosomes is a general feature in female cancer genomes. In summary, this study sheds light on the functional consequences and evolutionary characteristics of somatic mutations during tumorigenesis by propelling adaptive cancer genome evolution, which would provide new perspectives for cancer research and therapeutics.</description><subject>Breast cancer</subject><subject>Censuses</subject><subject>Chromosomes</subject><subject>Databases, Genetic</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA repair</subject><subject>Epigenetics</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene mutations</subject><subject>Genetic aspects</subject><subject>Genetic transcription</subject><subject>Genome, Human - genetics</subject><subject>Genomes</subject><subject>Genomics - methods</subject><subject>Humans</subject><subject>Kinases</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Medical research</subject><subject>Models, Genetic</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Neoplasms - genetics</subject><subject>Observations</subject><subject>Pilot projects</subject><subject>RNA polymerase</subject><subject>Studies</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl2LEzEUhgdR3HX1H4gGvFGwNd_TeCGUstbCquCu1yHNnHRTppOazBT7781sp8tWvJFcJDl5zpuTk7coXhI8JqwkH9ahi42px1u79GOCMeeqfFScEyHYqGRi8vjB-qx4ltIa47xU8mlxRiUTlEp8XoQpmkMDaB7Nzrd79DVUUCMXImpvAV3uQt21PjQoODQzjYXY42ED6SOaouu2q_b9EXuPMf4LQMbGkBJSx_jNfgvpefHEmTrBi2G-KH5-vryZfRldfZ8vZtOrkZVKtSPKOHWECedkLpVbzmglGDOULKlgMOEgmSwpzw-yoqJg8kZKIgxmmDJJ2EXx-qC7rUPSQ6-SJiXFXFHGZCYWB6IKZq230W9M3OtgvL4LhLjSJrbe1qDpUgKlDFs7qbhTbgLOlqLCVqmlIcpkrU_Dbd1yA5WFpo2mPhE9PWn8rV6FneZC8vwRWeDtIBDDrw5Sqzc-Wahr00Do-roJEZxjijP65oCuTC7NNy5kRdvjesoZ4VwKpTI1_geVRwUbb0MDzuf4ScK7k4TMtPC7XZkuJb24_vEf7LdTlh_YOzdEcPddIVj3Rj5-ju6NrAcj57RXDzt6n3R0LvsD-Frq4A</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Cheng, Feixiong</creator><creator>Liu, Chuang</creator><creator>Lin, Chen-Ching</creator><creator>Zhao, Junfei</creator><creator>Jia, Peilin</creator><creator>Li, Wen-Hsiung</creator><creator>Zhao, Zhongming</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150901</creationdate><title>A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types</title><author>Cheng, Feixiong ; Liu, Chuang ; Lin, Chen-Ching ; Zhao, Junfei ; Jia, Peilin ; Li, Wen-Hsiung ; Zhao, Zhongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c699t-2342f135ff66354c432d533a21b253e84e636724358c5d2ea6726615a03023613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Breast cancer</topic><topic>Censuses</topic><topic>Chromosomes</topic><topic>Databases, Genetic</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA repair</topic><topic>Epigenetics</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene mutations</topic><topic>Genetic aspects</topic><topic>Genetic transcription</topic><topic>Genome, Human - genetics</topic><topic>Genomes</topic><topic>Genomics - methods</topic><topic>Humans</topic><topic>Kinases</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Medical research</topic><topic>Models, Genetic</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Neoplasms - genetics</topic><topic>Observations</topic><topic>Pilot projects</topic><topic>RNA polymerase</topic><topic>Studies</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Feixiong</creatorcontrib><creatorcontrib>Liu, Chuang</creatorcontrib><creatorcontrib>Lin, Chen-Ching</creatorcontrib><creatorcontrib>Zhao, Junfei</creatorcontrib><creatorcontrib>Jia, Peilin</creatorcontrib><creatorcontrib>Li, Wen-Hsiung</creatorcontrib><creatorcontrib>Zhao, Zhongming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Feixiong</au><au>Liu, Chuang</au><au>Lin, Chen-Ching</au><au>Zhao, Junfei</au><au>Jia, Peilin</au><au>Li, Wen-Hsiung</au><au>Zhao, Zhongming</au><au>Zhou, Xianghong Jasmine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>11</volume><issue>9</issue><spage>e1004497</spage><epage>e1004497</epage><pages>e1004497-e1004497</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Cancer development and progression result from somatic evolution by an accumulation of genomic alterations. The effects of those alterations on the fitness of somatic cells lead to evolutionary adaptations such as increased cell proliferation, angiogenesis, and altered anticancer drug responses. However, there are few general mathematical models to quantitatively examine how perturbations of a single gene shape subsequent evolution of the cancer genome. In this study, we proposed the gene gravity model to study the evolution of cancer genomes by incorporating the genome-wide transcription and somatic mutation profiles of ~3,000 tumors across 9 cancer types from The Cancer Genome Atlas into a broad gene network. We found that somatic mutations of a cancer driver gene may drive cancer genome evolution by inducing mutations in other genes. This functional consequence is often generated by the combined effect of genetic and epigenetic (e.g., chromatin regulation) alterations. By quantifying cancer genome evolution using the gene gravity model, we identified six putative cancer genes (AHNAK, COL11A1, DDX3X, FAT4, STAG2, and SYNE1). The tumor genomes harboring the nonsynonymous somatic mutations in these genes had a higher mutation density at the genome level compared to the wild-type groups. Furthermore, we provided statistical evidence that hypermutation of cancer driver genes on inactive X chromosomes is a general feature in female cancer genomes. In summary, this study sheds light on the functional consequences and evolutionary characteristics of somatic mutations during tumorigenesis by propelling adaptive cancer genome evolution, which would provide new perspectives for cancer research and therapeutics.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26352260</pmid><doi>10.1371/journal.pcbi.1004497</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2015-09, Vol.11 (9), p.e1004497-e1004497 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1720492336 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Breast cancer Censuses Chromosomes Databases, Genetic Deoxyribonucleic acid DNA DNA repair Epigenetics Female Gene expression Gene mutations Genetic aspects Genetic transcription Genome, Human - genetics Genomes Genomics - methods Humans Kinases Male Mathematical models Medical research Models, Genetic Mutation Mutation - genetics Neoplasms - genetics Observations Pilot projects RNA polymerase Studies Tumorigenesis Tumors |
title | A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A30%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Gene%20Gravity%20Model%20for%20the%20Evolution%20of%20Cancer%20Genomes:%20A%20Study%20of%203,000%20Cancer%20Genomes%20across%209%20Cancer%20Types&rft.jtitle=PLoS%20computational%20biology&rft.au=Cheng,%20Feixiong&rft.date=2015-09-01&rft.volume=11&rft.issue=9&rft.spage=e1004497&rft.epage=e1004497&rft.pages=e1004497-e1004497&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1004497&rft_dat=%3Cgale_plos_%3EA431446599%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1711544020&rft_id=info:pmid/26352260&rft_galeid=A431446599&rft_doaj_id=oai_doaj_org_article_2b6e2230cc8d4f9f8efc75d0c99ba19a&rfr_iscdi=true |