The Role of Cell Volume in the Dynamics of Seizure, Spreading Depression, and Anoxic Depolarization

Cell volume changes are ubiquitous in normal and pathological activity of the brain. Nevertheless, we know little of how cell volume affects neuronal dynamics. We here performed the first detailed study of the effects of cell volume on neuronal dynamics. By incorporating cell swelling together with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2015-08, Vol.11 (8), p.e1004414-e1004414
Hauptverfasser: Ullah, Ghanim, Wei, Yina, Dahlem, Markus A, Wechselberger, Martin, Schiff, Steven J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1004414
container_issue 8
container_start_page e1004414
container_title PLoS computational biology
container_volume 11
creator Ullah, Ghanim
Wei, Yina
Dahlem, Markus A
Wechselberger, Martin
Schiff, Steven J
description Cell volume changes are ubiquitous in normal and pathological activity of the brain. Nevertheless, we know little of how cell volume affects neuronal dynamics. We here performed the first detailed study of the effects of cell volume on neuronal dynamics. By incorporating cell swelling together with dynamic ion concentrations and oxygen supply into Hodgkin-Huxley type spiking dynamics, we demonstrate the spontaneous transition between epileptic seizure and spreading depression states as the cell swells and contracts in response to changes in osmotic pressure. Our use of volume as an order parameter further revealed a dynamical definition for the experimentally described physiological ceiling that separates seizure from spreading depression, as well as predicted a second ceiling that demarcates spreading depression from anoxic depolarization. Our model highlights the neuroprotective role of glial K buffering against seizures and spreading depression, and provides novel insights into anoxic depolarization and the relevant cell swelling during ischemia. We argue that the dynamics of seizures, spreading depression, and anoxic depolarization lie along a continuum of the repertoire of the neuron membrane that can be understood only when the dynamic ion concentrations, oxygen homeostasis,and cell swelling in response to osmotic pressure are taken into consideration. Our results demonstrate the feasibility of a unified framework for a wide range of neuronal behaviors that may be of substantial importance in the understanding of and potentially developing universal intervention strategies for these pathological states.
doi_str_mv 10.1371/journal.pcbi.1004414
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1720485407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A430802189</galeid><doaj_id>oai_doaj_org_article_55f89beaf4db4ddba4b65aef28b65432</doaj_id><sourcerecordid>A430802189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-7f030ade28fe399867131213790b14e62005f2a1eead0099d5e54af9a3d329453</originalsourceid><addsrcrecordid>eNqVkt9v0zAQxyMEYmPwHyCIxAtIa_HPJH5Bqjp-VJpAWgev1iU5d65Su7MTtO2vx6HdtEq8ID_4dPe5r893l2WvKZlSXtKPaz8EB91029R2SgkRgoon2TGVkk9KLqunj-yj7EWMa0KSqYrn2RErWMkrpo6z5vIK8wvfYe5NPseuy3_5bthgbl3ep9DZrYONbeIYXqK9GwKe5sttQGitW-VnmMwYrXenObg2nzl_Y5vR7TsI9g76FHqZPTPQRXy1v0-yn18-X86_Tc5_fF3MZ-eTpuC8n5SGcAItssogV6oqSsopS39VpKYCC0aINAwoprcJUaqVKAUYBbzlTAnJT7K3O91t56Pe9ydqWjIiKilImYjFjmg9rPU22A2EW-3B6r8OH1YaQm-bDrWUplI1ghFtLdq2BlEXEtCwKt2Cs6T1af_aUG-wbdD1AboD0cOIs1d65X_rVGmqqEgC7_cCwV8PGHu9sbFJIwCHfhjrJpJQUiiR0Hc7dAWpNOuMT4rNiOuZ4KQijFYqUdN_UOm0mEboHRqb_AcJHw4SEtPjTb-CIUa9WF78B_v9kBU7tgk-xoDmoSuU6HF574ejx-XV--VNaW8ed_Qh6X5b-R9H6enx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705010694</pqid></control><display><type>article</type><title>The Role of Cell Volume in the Dynamics of Seizure, Spreading Depression, and Anoxic Depolarization</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ullah, Ghanim ; Wei, Yina ; Dahlem, Markus A ; Wechselberger, Martin ; Schiff, Steven J</creator><contributor>Graham, Lyle J.</contributor><creatorcontrib>Ullah, Ghanim ; Wei, Yina ; Dahlem, Markus A ; Wechselberger, Martin ; Schiff, Steven J ; Graham, Lyle J.</creatorcontrib><description>Cell volume changes are ubiquitous in normal and pathological activity of the brain. Nevertheless, we know little of how cell volume affects neuronal dynamics. We here performed the first detailed study of the effects of cell volume on neuronal dynamics. By incorporating cell swelling together with dynamic ion concentrations and oxygen supply into Hodgkin-Huxley type spiking dynamics, we demonstrate the spontaneous transition between epileptic seizure and spreading depression states as the cell swells and contracts in response to changes in osmotic pressure. Our use of volume as an order parameter further revealed a dynamical definition for the experimentally described physiological ceiling that separates seizure from spreading depression, as well as predicted a second ceiling that demarcates spreading depression from anoxic depolarization. Our model highlights the neuroprotective role of glial K buffering against seizures and spreading depression, and provides novel insights into anoxic depolarization and the relevant cell swelling during ischemia. We argue that the dynamics of seizures, spreading depression, and anoxic depolarization lie along a continuum of the repertoire of the neuron membrane that can be understood only when the dynamic ion concentrations, oxygen homeostasis,and cell swelling in response to osmotic pressure are taken into consideration. Our results demonstrate the feasibility of a unified framework for a wide range of neuronal behaviors that may be of substantial importance in the understanding of and potentially developing universal intervention strategies for these pathological states.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1004414</identifier><identifier>PMID: 26273829</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Behavior ; Brain - cytology ; Brain - physiopathology ; Cell interaction ; Cell Size ; Cellular Microenvironment - physiology ; Computational Biology ; Depression - physiopathology ; Depression, Mental ; Glucose ; Health aspects ; Humans ; Hypoxia - physiopathology ; Ischemia ; Models, Neurological ; Neural circuitry ; Neurons ; Neurons - cytology ; Neurons - pathology ; Observations ; Physiological aspects ; Physiology ; Seizures (Medicine) ; Seizures - physiopathology</subject><ispartof>PLoS computational biology, 2015-08, Vol.11 (8), p.e1004414-e1004414</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Ullah et al 2015 Ullah et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Ullah G, Wei Y, Dahlem MA, Wechselberger M, Schiff SJ (2015) The Role of Cell Volume in the Dynamics of Seizure, Spreading Depression, and Anoxic Depolarization. PLoS Comput Biol 11(8): e1004414. doi:10.1371/journal.pcbi.1004414</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-7f030ade28fe399867131213790b14e62005f2a1eead0099d5e54af9a3d329453</citedby><cites>FETCH-LOGICAL-c633t-7f030ade28fe399867131213790b14e62005f2a1eead0099d5e54af9a3d329453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537206/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537206/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23868,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26273829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Graham, Lyle J.</contributor><creatorcontrib>Ullah, Ghanim</creatorcontrib><creatorcontrib>Wei, Yina</creatorcontrib><creatorcontrib>Dahlem, Markus A</creatorcontrib><creatorcontrib>Wechselberger, Martin</creatorcontrib><creatorcontrib>Schiff, Steven J</creatorcontrib><title>The Role of Cell Volume in the Dynamics of Seizure, Spreading Depression, and Anoxic Depolarization</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Cell volume changes are ubiquitous in normal and pathological activity of the brain. Nevertheless, we know little of how cell volume affects neuronal dynamics. We here performed the first detailed study of the effects of cell volume on neuronal dynamics. By incorporating cell swelling together with dynamic ion concentrations and oxygen supply into Hodgkin-Huxley type spiking dynamics, we demonstrate the spontaneous transition between epileptic seizure and spreading depression states as the cell swells and contracts in response to changes in osmotic pressure. Our use of volume as an order parameter further revealed a dynamical definition for the experimentally described physiological ceiling that separates seizure from spreading depression, as well as predicted a second ceiling that demarcates spreading depression from anoxic depolarization. Our model highlights the neuroprotective role of glial K buffering against seizures and spreading depression, and provides novel insights into anoxic depolarization and the relevant cell swelling during ischemia. We argue that the dynamics of seizures, spreading depression, and anoxic depolarization lie along a continuum of the repertoire of the neuron membrane that can be understood only when the dynamic ion concentrations, oxygen homeostasis,and cell swelling in response to osmotic pressure are taken into consideration. Our results demonstrate the feasibility of a unified framework for a wide range of neuronal behaviors that may be of substantial importance in the understanding of and potentially developing universal intervention strategies for these pathological states.</description><subject>Behavior</subject><subject>Brain - cytology</subject><subject>Brain - physiopathology</subject><subject>Cell interaction</subject><subject>Cell Size</subject><subject>Cellular Microenvironment - physiology</subject><subject>Computational Biology</subject><subject>Depression - physiopathology</subject><subject>Depression, Mental</subject><subject>Glucose</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Hypoxia - physiopathology</subject><subject>Ischemia</subject><subject>Models, Neurological</subject><subject>Neural circuitry</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - pathology</subject><subject>Observations</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Seizures (Medicine)</subject><subject>Seizures - physiopathology</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkt9v0zAQxyMEYmPwHyCIxAtIa_HPJH5Bqjp-VJpAWgev1iU5d65Su7MTtO2vx6HdtEq8ID_4dPe5r893l2WvKZlSXtKPaz8EB91029R2SgkRgoon2TGVkk9KLqunj-yj7EWMa0KSqYrn2RErWMkrpo6z5vIK8wvfYe5NPseuy3_5bthgbl3ep9DZrYONbeIYXqK9GwKe5sttQGitW-VnmMwYrXenObg2nzl_Y5vR7TsI9g76FHqZPTPQRXy1v0-yn18-X86_Tc5_fF3MZ-eTpuC8n5SGcAItssogV6oqSsopS39VpKYCC0aINAwoprcJUaqVKAUYBbzlTAnJT7K3O91t56Pe9ydqWjIiKilImYjFjmg9rPU22A2EW-3B6r8OH1YaQm-bDrWUplI1ghFtLdq2BlEXEtCwKt2Cs6T1af_aUG-wbdD1AboD0cOIs1d65X_rVGmqqEgC7_cCwV8PGHu9sbFJIwCHfhjrJpJQUiiR0Hc7dAWpNOuMT4rNiOuZ4KQijFYqUdN_UOm0mEboHRqb_AcJHw4SEtPjTb-CIUa9WF78B_v9kBU7tgk-xoDmoSuU6HF574ejx-XV--VNaW8ed_Qh6X5b-R9H6enx</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Ullah, Ghanim</creator><creator>Wei, Yina</creator><creator>Dahlem, Markus A</creator><creator>Wechselberger, Martin</creator><creator>Schiff, Steven J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150801</creationdate><title>The Role of Cell Volume in the Dynamics of Seizure, Spreading Depression, and Anoxic Depolarization</title><author>Ullah, Ghanim ; Wei, Yina ; Dahlem, Markus A ; Wechselberger, Martin ; Schiff, Steven J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-7f030ade28fe399867131213790b14e62005f2a1eead0099d5e54af9a3d329453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Behavior</topic><topic>Brain - cytology</topic><topic>Brain - physiopathology</topic><topic>Cell interaction</topic><topic>Cell Size</topic><topic>Cellular Microenvironment - physiology</topic><topic>Computational Biology</topic><topic>Depression - physiopathology</topic><topic>Depression, Mental</topic><topic>Glucose</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Hypoxia - physiopathology</topic><topic>Ischemia</topic><topic>Models, Neurological</topic><topic>Neural circuitry</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - pathology</topic><topic>Observations</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Seizures (Medicine)</topic><topic>Seizures - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ullah, Ghanim</creatorcontrib><creatorcontrib>Wei, Yina</creatorcontrib><creatorcontrib>Dahlem, Markus A</creatorcontrib><creatorcontrib>Wechselberger, Martin</creatorcontrib><creatorcontrib>Schiff, Steven J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ullah, Ghanim</au><au>Wei, Yina</au><au>Dahlem, Markus A</au><au>Wechselberger, Martin</au><au>Schiff, Steven J</au><au>Graham, Lyle J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Cell Volume in the Dynamics of Seizure, Spreading Depression, and Anoxic Depolarization</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2015-08-01</date><risdate>2015</risdate><volume>11</volume><issue>8</issue><spage>e1004414</spage><epage>e1004414</epage><pages>e1004414-e1004414</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Cell volume changes are ubiquitous in normal and pathological activity of the brain. Nevertheless, we know little of how cell volume affects neuronal dynamics. We here performed the first detailed study of the effects of cell volume on neuronal dynamics. By incorporating cell swelling together with dynamic ion concentrations and oxygen supply into Hodgkin-Huxley type spiking dynamics, we demonstrate the spontaneous transition between epileptic seizure and spreading depression states as the cell swells and contracts in response to changes in osmotic pressure. Our use of volume as an order parameter further revealed a dynamical definition for the experimentally described physiological ceiling that separates seizure from spreading depression, as well as predicted a second ceiling that demarcates spreading depression from anoxic depolarization. Our model highlights the neuroprotective role of glial K buffering against seizures and spreading depression, and provides novel insights into anoxic depolarization and the relevant cell swelling during ischemia. We argue that the dynamics of seizures, spreading depression, and anoxic depolarization lie along a continuum of the repertoire of the neuron membrane that can be understood only when the dynamic ion concentrations, oxygen homeostasis,and cell swelling in response to osmotic pressure are taken into consideration. Our results demonstrate the feasibility of a unified framework for a wide range of neuronal behaviors that may be of substantial importance in the understanding of and potentially developing universal intervention strategies for these pathological states.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26273829</pmid><doi>10.1371/journal.pcbi.1004414</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2015-08, Vol.11 (8), p.e1004414-e1004414
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1720485407
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Behavior
Brain - cytology
Brain - physiopathology
Cell interaction
Cell Size
Cellular Microenvironment - physiology
Computational Biology
Depression - physiopathology
Depression, Mental
Glucose
Health aspects
Humans
Hypoxia - physiopathology
Ischemia
Models, Neurological
Neural circuitry
Neurons
Neurons - cytology
Neurons - pathology
Observations
Physiological aspects
Physiology
Seizures (Medicine)
Seizures - physiopathology
title The Role of Cell Volume in the Dynamics of Seizure, Spreading Depression, and Anoxic Depolarization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A46%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Cell%20Volume%20in%20the%20Dynamics%20of%20Seizure,%20Spreading%20Depression,%20and%20Anoxic%20Depolarization&rft.jtitle=PLoS%20computational%20biology&rft.au=Ullah,%20Ghanim&rft.date=2015-08-01&rft.volume=11&rft.issue=8&rft.spage=e1004414&rft.epage=e1004414&rft.pages=e1004414-e1004414&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1004414&rft_dat=%3Cgale_plos_%3EA430802189%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705010694&rft_id=info:pmid/26273829&rft_galeid=A430802189&rft_doaj_id=oai_doaj_org_article_55f89beaf4db4ddba4b65aef28b65432&rfr_iscdi=true