The Role of Cell Volume in the Dynamics of Seizure, Spreading Depression, and Anoxic Depolarization
Cell volume changes are ubiquitous in normal and pathological activity of the brain. Nevertheless, we know little of how cell volume affects neuronal dynamics. We here performed the first detailed study of the effects of cell volume on neuronal dynamics. By incorporating cell swelling together with...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2015-08, Vol.11 (8), p.e1004414-e1004414 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1004414 |
---|---|
container_issue | 8 |
container_start_page | e1004414 |
container_title | PLoS computational biology |
container_volume | 11 |
creator | Ullah, Ghanim Wei, Yina Dahlem, Markus A Wechselberger, Martin Schiff, Steven J |
description | Cell volume changes are ubiquitous in normal and pathological activity of the brain. Nevertheless, we know little of how cell volume affects neuronal dynamics. We here performed the first detailed study of the effects of cell volume on neuronal dynamics. By incorporating cell swelling together with dynamic ion concentrations and oxygen supply into Hodgkin-Huxley type spiking dynamics, we demonstrate the spontaneous transition between epileptic seizure and spreading depression states as the cell swells and contracts in response to changes in osmotic pressure. Our use of volume as an order parameter further revealed a dynamical definition for the experimentally described physiological ceiling that separates seizure from spreading depression, as well as predicted a second ceiling that demarcates spreading depression from anoxic depolarization. Our model highlights the neuroprotective role of glial K buffering against seizures and spreading depression, and provides novel insights into anoxic depolarization and the relevant cell swelling during ischemia. We argue that the dynamics of seizures, spreading depression, and anoxic depolarization lie along a continuum of the repertoire of the neuron membrane that can be understood only when the dynamic ion concentrations, oxygen homeostasis,and cell swelling in response to osmotic pressure are taken into consideration. Our results demonstrate the feasibility of a unified framework for a wide range of neuronal behaviors that may be of substantial importance in the understanding of and potentially developing universal intervention strategies for these pathological states. |
doi_str_mv | 10.1371/journal.pcbi.1004414 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1720485407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A430802189</galeid><doaj_id>oai_doaj_org_article_55f89beaf4db4ddba4b65aef28b65432</doaj_id><sourcerecordid>A430802189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-7f030ade28fe399867131213790b14e62005f2a1eead0099d5e54af9a3d329453</originalsourceid><addsrcrecordid>eNqVkt9v0zAQxyMEYmPwHyCIxAtIa_HPJH5Bqjp-VJpAWgev1iU5d65Su7MTtO2vx6HdtEq8ID_4dPe5r893l2WvKZlSXtKPaz8EB91029R2SgkRgoon2TGVkk9KLqunj-yj7EWMa0KSqYrn2RErWMkrpo6z5vIK8wvfYe5NPseuy3_5bthgbl3ep9DZrYONbeIYXqK9GwKe5sttQGitW-VnmMwYrXenObg2nzl_Y5vR7TsI9g76FHqZPTPQRXy1v0-yn18-X86_Tc5_fF3MZ-eTpuC8n5SGcAItssogV6oqSsopS39VpKYCC0aINAwoprcJUaqVKAUYBbzlTAnJT7K3O91t56Pe9ydqWjIiKilImYjFjmg9rPU22A2EW-3B6r8OH1YaQm-bDrWUplI1ghFtLdq2BlEXEtCwKt2Cs6T1af_aUG-wbdD1AboD0cOIs1d65X_rVGmqqEgC7_cCwV8PGHu9sbFJIwCHfhjrJpJQUiiR0Hc7dAWpNOuMT4rNiOuZ4KQijFYqUdN_UOm0mEboHRqb_AcJHw4SEtPjTb-CIUa9WF78B_v9kBU7tgk-xoDmoSuU6HF574ejx-XV--VNaW8ed_Qh6X5b-R9H6enx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705010694</pqid></control><display><type>article</type><title>The Role of Cell Volume in the Dynamics of Seizure, Spreading Depression, and Anoxic Depolarization</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ullah, Ghanim ; Wei, Yina ; Dahlem, Markus A ; Wechselberger, Martin ; Schiff, Steven J</creator><contributor>Graham, Lyle J.</contributor><creatorcontrib>Ullah, Ghanim ; Wei, Yina ; Dahlem, Markus A ; Wechselberger, Martin ; Schiff, Steven J ; Graham, Lyle J.</creatorcontrib><description>Cell volume changes are ubiquitous in normal and pathological activity of the brain. Nevertheless, we know little of how cell volume affects neuronal dynamics. We here performed the first detailed study of the effects of cell volume on neuronal dynamics. By incorporating cell swelling together with dynamic ion concentrations and oxygen supply into Hodgkin-Huxley type spiking dynamics, we demonstrate the spontaneous transition between epileptic seizure and spreading depression states as the cell swells and contracts in response to changes in osmotic pressure. Our use of volume as an order parameter further revealed a dynamical definition for the experimentally described physiological ceiling that separates seizure from spreading depression, as well as predicted a second ceiling that demarcates spreading depression from anoxic depolarization. Our model highlights the neuroprotective role of glial K buffering against seizures and spreading depression, and provides novel insights into anoxic depolarization and the relevant cell swelling during ischemia. We argue that the dynamics of seizures, spreading depression, and anoxic depolarization lie along a continuum of the repertoire of the neuron membrane that can be understood only when the dynamic ion concentrations, oxygen homeostasis,and cell swelling in response to osmotic pressure are taken into consideration. Our results demonstrate the feasibility of a unified framework for a wide range of neuronal behaviors that may be of substantial importance in the understanding of and potentially developing universal intervention strategies for these pathological states.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1004414</identifier><identifier>PMID: 26273829</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Behavior ; Brain - cytology ; Brain - physiopathology ; Cell interaction ; Cell Size ; Cellular Microenvironment - physiology ; Computational Biology ; Depression - physiopathology ; Depression, Mental ; Glucose ; Health aspects ; Humans ; Hypoxia - physiopathology ; Ischemia ; Models, Neurological ; Neural circuitry ; Neurons ; Neurons - cytology ; Neurons - pathology ; Observations ; Physiological aspects ; Physiology ; Seizures (Medicine) ; Seizures - physiopathology</subject><ispartof>PLoS computational biology, 2015-08, Vol.11 (8), p.e1004414-e1004414</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Ullah et al 2015 Ullah et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Ullah G, Wei Y, Dahlem MA, Wechselberger M, Schiff SJ (2015) The Role of Cell Volume in the Dynamics of Seizure, Spreading Depression, and Anoxic Depolarization. PLoS Comput Biol 11(8): e1004414. doi:10.1371/journal.pcbi.1004414</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-7f030ade28fe399867131213790b14e62005f2a1eead0099d5e54af9a3d329453</citedby><cites>FETCH-LOGICAL-c633t-7f030ade28fe399867131213790b14e62005f2a1eead0099d5e54af9a3d329453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537206/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537206/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23868,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26273829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Graham, Lyle J.</contributor><creatorcontrib>Ullah, Ghanim</creatorcontrib><creatorcontrib>Wei, Yina</creatorcontrib><creatorcontrib>Dahlem, Markus A</creatorcontrib><creatorcontrib>Wechselberger, Martin</creatorcontrib><creatorcontrib>Schiff, Steven J</creatorcontrib><title>The Role of Cell Volume in the Dynamics of Seizure, Spreading Depression, and Anoxic Depolarization</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Cell volume changes are ubiquitous in normal and pathological activity of the brain. Nevertheless, we know little of how cell volume affects neuronal dynamics. We here performed the first detailed study of the effects of cell volume on neuronal dynamics. By incorporating cell swelling together with dynamic ion concentrations and oxygen supply into Hodgkin-Huxley type spiking dynamics, we demonstrate the spontaneous transition between epileptic seizure and spreading depression states as the cell swells and contracts in response to changes in osmotic pressure. Our use of volume as an order parameter further revealed a dynamical definition for the experimentally described physiological ceiling that separates seizure from spreading depression, as well as predicted a second ceiling that demarcates spreading depression from anoxic depolarization. Our model highlights the neuroprotective role of glial K buffering against seizures and spreading depression, and provides novel insights into anoxic depolarization and the relevant cell swelling during ischemia. We argue that the dynamics of seizures, spreading depression, and anoxic depolarization lie along a continuum of the repertoire of the neuron membrane that can be understood only when the dynamic ion concentrations, oxygen homeostasis,and cell swelling in response to osmotic pressure are taken into consideration. Our results demonstrate the feasibility of a unified framework for a wide range of neuronal behaviors that may be of substantial importance in the understanding of and potentially developing universal intervention strategies for these pathological states.</description><subject>Behavior</subject><subject>Brain - cytology</subject><subject>Brain - physiopathology</subject><subject>Cell interaction</subject><subject>Cell Size</subject><subject>Cellular Microenvironment - physiology</subject><subject>Computational Biology</subject><subject>Depression - physiopathology</subject><subject>Depression, Mental</subject><subject>Glucose</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Hypoxia - physiopathology</subject><subject>Ischemia</subject><subject>Models, Neurological</subject><subject>Neural circuitry</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - pathology</subject><subject>Observations</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Seizures (Medicine)</subject><subject>Seizures - physiopathology</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkt9v0zAQxyMEYmPwHyCIxAtIa_HPJH5Bqjp-VJpAWgev1iU5d65Su7MTtO2vx6HdtEq8ID_4dPe5r893l2WvKZlSXtKPaz8EB91029R2SgkRgoon2TGVkk9KLqunj-yj7EWMa0KSqYrn2RErWMkrpo6z5vIK8wvfYe5NPseuy3_5bthgbl3ep9DZrYONbeIYXqK9GwKe5sttQGitW-VnmMwYrXenObg2nzl_Y5vR7TsI9g76FHqZPTPQRXy1v0-yn18-X86_Tc5_fF3MZ-eTpuC8n5SGcAItssogV6oqSsopS39VpKYCC0aINAwoprcJUaqVKAUYBbzlTAnJT7K3O91t56Pe9ydqWjIiKilImYjFjmg9rPU22A2EW-3B6r8OH1YaQm-bDrWUplI1ghFtLdq2BlEXEtCwKt2Cs6T1af_aUG-wbdD1AboD0cOIs1d65X_rVGmqqEgC7_cCwV8PGHu9sbFJIwCHfhjrJpJQUiiR0Hc7dAWpNOuMT4rNiOuZ4KQijFYqUdN_UOm0mEboHRqb_AcJHw4SEtPjTb-CIUa9WF78B_v9kBU7tgk-xoDmoSuU6HF574ejx-XV--VNaW8ed_Qh6X5b-R9H6enx</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Ullah, Ghanim</creator><creator>Wei, Yina</creator><creator>Dahlem, Markus A</creator><creator>Wechselberger, Martin</creator><creator>Schiff, Steven J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150801</creationdate><title>The Role of Cell Volume in the Dynamics of Seizure, Spreading Depression, and Anoxic Depolarization</title><author>Ullah, Ghanim ; Wei, Yina ; Dahlem, Markus A ; Wechselberger, Martin ; Schiff, Steven J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-7f030ade28fe399867131213790b14e62005f2a1eead0099d5e54af9a3d329453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Behavior</topic><topic>Brain - cytology</topic><topic>Brain - physiopathology</topic><topic>Cell interaction</topic><topic>Cell Size</topic><topic>Cellular Microenvironment - physiology</topic><topic>Computational Biology</topic><topic>Depression - physiopathology</topic><topic>Depression, Mental</topic><topic>Glucose</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Hypoxia - physiopathology</topic><topic>Ischemia</topic><topic>Models, Neurological</topic><topic>Neural circuitry</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - pathology</topic><topic>Observations</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Seizures (Medicine)</topic><topic>Seizures - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ullah, Ghanim</creatorcontrib><creatorcontrib>Wei, Yina</creatorcontrib><creatorcontrib>Dahlem, Markus A</creatorcontrib><creatorcontrib>Wechselberger, Martin</creatorcontrib><creatorcontrib>Schiff, Steven J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ullah, Ghanim</au><au>Wei, Yina</au><au>Dahlem, Markus A</au><au>Wechselberger, Martin</au><au>Schiff, Steven J</au><au>Graham, Lyle J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Cell Volume in the Dynamics of Seizure, Spreading Depression, and Anoxic Depolarization</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2015-08-01</date><risdate>2015</risdate><volume>11</volume><issue>8</issue><spage>e1004414</spage><epage>e1004414</epage><pages>e1004414-e1004414</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Cell volume changes are ubiquitous in normal and pathological activity of the brain. Nevertheless, we know little of how cell volume affects neuronal dynamics. We here performed the first detailed study of the effects of cell volume on neuronal dynamics. By incorporating cell swelling together with dynamic ion concentrations and oxygen supply into Hodgkin-Huxley type spiking dynamics, we demonstrate the spontaneous transition between epileptic seizure and spreading depression states as the cell swells and contracts in response to changes in osmotic pressure. Our use of volume as an order parameter further revealed a dynamical definition for the experimentally described physiological ceiling that separates seizure from spreading depression, as well as predicted a second ceiling that demarcates spreading depression from anoxic depolarization. Our model highlights the neuroprotective role of glial K buffering against seizures and spreading depression, and provides novel insights into anoxic depolarization and the relevant cell swelling during ischemia. We argue that the dynamics of seizures, spreading depression, and anoxic depolarization lie along a continuum of the repertoire of the neuron membrane that can be understood only when the dynamic ion concentrations, oxygen homeostasis,and cell swelling in response to osmotic pressure are taken into consideration. Our results demonstrate the feasibility of a unified framework for a wide range of neuronal behaviors that may be of substantial importance in the understanding of and potentially developing universal intervention strategies for these pathological states.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26273829</pmid><doi>10.1371/journal.pcbi.1004414</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2015-08, Vol.11 (8), p.e1004414-e1004414 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1720485407 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Behavior Brain - cytology Brain - physiopathology Cell interaction Cell Size Cellular Microenvironment - physiology Computational Biology Depression - physiopathology Depression, Mental Glucose Health aspects Humans Hypoxia - physiopathology Ischemia Models, Neurological Neural circuitry Neurons Neurons - cytology Neurons - pathology Observations Physiological aspects Physiology Seizures (Medicine) Seizures - physiopathology |
title | The Role of Cell Volume in the Dynamics of Seizure, Spreading Depression, and Anoxic Depolarization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A46%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Cell%20Volume%20in%20the%20Dynamics%20of%20Seizure,%20Spreading%20Depression,%20and%20Anoxic%20Depolarization&rft.jtitle=PLoS%20computational%20biology&rft.au=Ullah,%20Ghanim&rft.date=2015-08-01&rft.volume=11&rft.issue=8&rft.spage=e1004414&rft.epage=e1004414&rft.pages=e1004414-e1004414&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1004414&rft_dat=%3Cgale_plos_%3EA430802189%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705010694&rft_id=info:pmid/26273829&rft_galeid=A430802189&rft_doaj_id=oai_doaj_org_article_55f89beaf4db4ddba4b65aef28b65432&rfr_iscdi=true |