Neocortical Rebound Depolarization Enhances Visual Perception
Animals are constantly exposed to the time-varying visual world. Because visual perception is modulated by immediately prior visual experience, visual cortical neurons may register recent visual history into a specific form of offline activity and link it to later visual input. To examine how preced...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2015-08, Vol.13 (8), p.e1002231-e1002231 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1002231 |
---|---|
container_issue | 8 |
container_start_page | e1002231 |
container_title | PLoS biology |
container_volume | 13 |
creator | Funayama, Kenta Minamisawa, Genki Matsumoto, Nobuyoshi Ban, Hiroshi Chan, Allen W Matsuki, Norio Murphy, Timothy H Ikegaya, Yuji |
description | Animals are constantly exposed to the time-varying visual world. Because visual perception is modulated by immediately prior visual experience, visual cortical neurons may register recent visual history into a specific form of offline activity and link it to later visual input. To examine how preceding visual inputs interact with upcoming information at the single neuron level, we designed a simple stimulation protocol in which a brief, orientated flashing stimulus was subsequently coupled to visual stimuli with identical or different features. Using in vivo whole-cell patch-clamp recording and functional two-photon calcium imaging from the primary visual cortex (V1) of awake mice, we discovered that a flash of sinusoidal grating per se induces an early, transient activation as well as a long-delayed reactivation in V1 neurons. This late response, which started hundreds of milliseconds after the flash and persisted for approximately 2 s, was also observed in human V1 electroencephalogram. When another drifting grating stimulus arrived during the late response, the V1 neurons exhibited a sublinear, but apparently increased response, especially to the same grating orientation. In behavioral tests of mice and humans, the flashing stimulation enhanced the detection power of the identically orientated visual stimulation only when the second stimulation was presented during the time window of the late response. Therefore, V1 late responses likely provide a neural basis for admixing temporally separated stimuli and extracting identical features in time-varying visual environments. |
doi_str_mv | 10.1371/journal.pbio.1002231 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1720473338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A430717733</galeid><doaj_id>oai_doaj_org_article_ad87428e03a9437489a7ce19dc742b5a</doaj_id><sourcerecordid>A430717733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c667t-c2dd596812ac07f0e378e765c6214c2397cddb812c28c09d0b286ad3811342203</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhi0EomXhHyBYiQscdvFHYjsHkKpSYKWqRQV6tRx7dutV1g52UhV-PQ6bVo3EAeSDrZlnXs8XQs8JXhImyNtt6KPXzbKtXVgSjCll5AE6JGVRLoSU5cN77wP0JKXtwFRUPkYHlFNRSM4P0bszCCbEzhndzC-gDr238w_QhkZH90t3Lvj5ib_S3kCaX7rUZ-wLRAPt4HqKHq11k-DZeM_Q948n344_L07PP62Oj04XhnPRLQy1tqy4JFQbLNYYmJAgeGk4JYWhrBLG2jq7DZUGVxbXVHJtmSSEFZRiNkMv97ptE5IaK0-KCIoLwRiTmVjtCRv0VrXR7XT8qYJ26o8hxI3SQ5UNKG2lKKgEzHRVsNyHSgsDpLImm-tSZ6334299vQNrwHdRNxPRqce7K7UJ16oo82AwywKvR4EYfvSQOrVzyUDTaA-hH_LGJSZYMJ7RV3t0o3Nqzq9DVjQDro4KhgURQ30ztPwLlY-FnTPBw9pl-yTgzSQgMx3cdBvdp6RWXy_-gz37d_b8csoWe9bEkFKE9V0HCVbDCt8OUg0rrMYVzmEv7nf_Luh2Z9lvEyXqSQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705010736</pqid></control><display><type>article</type><title>Neocortical Rebound Depolarization Enhances Visual Perception</title><source>MEDLINE</source><source>Public Library of Science</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed</source><source>EZB Electronic Journals Library</source><creator>Funayama, Kenta ; Minamisawa, Genki ; Matsumoto, Nobuyoshi ; Ban, Hiroshi ; Chan, Allen W ; Matsuki, Norio ; Murphy, Timothy H ; Ikegaya, Yuji</creator><contributor>Pack, Christopher C.</contributor><creatorcontrib>Funayama, Kenta ; Minamisawa, Genki ; Matsumoto, Nobuyoshi ; Ban, Hiroshi ; Chan, Allen W ; Matsuki, Norio ; Murphy, Timothy H ; Ikegaya, Yuji ; Pack, Christopher C.</creatorcontrib><description>Animals are constantly exposed to the time-varying visual world. Because visual perception is modulated by immediately prior visual experience, visual cortical neurons may register recent visual history into a specific form of offline activity and link it to later visual input. To examine how preceding visual inputs interact with upcoming information at the single neuron level, we designed a simple stimulation protocol in which a brief, orientated flashing stimulus was subsequently coupled to visual stimuli with identical or different features. Using in vivo whole-cell patch-clamp recording and functional two-photon calcium imaging from the primary visual cortex (V1) of awake mice, we discovered that a flash of sinusoidal grating per se induces an early, transient activation as well as a long-delayed reactivation in V1 neurons. This late response, which started hundreds of milliseconds after the flash and persisted for approximately 2 s, was also observed in human V1 electroencephalogram. When another drifting grating stimulus arrived during the late response, the V1 neurons exhibited a sublinear, but apparently increased response, especially to the same grating orientation. In behavioral tests of mice and humans, the flashing stimulation enhanced the detection power of the identically orientated visual stimulation only when the second stimulation was presented during the time window of the late response. Therefore, V1 late responses likely provide a neural basis for admixing temporally separated stimuli and extracting identical features in time-varying visual environments.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.1002231</identifier><identifier>PMID: 26274866</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Animals ; Electroencephalography ; Female ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Neocortex ; Neocortex - physiology ; Neurons ; Neurons - physiology ; Patch-Clamp Techniques ; Photic Stimulation - methods ; Physiological aspects ; Visual Cortex - physiology ; Visual perception ; Visual Perception - physiology</subject><ispartof>PLoS biology, 2015-08, Vol.13 (8), p.e1002231-e1002231</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Funayama et al 2015 Funayama et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Funayama K, Minamisawa G, Matsumoto N, Ban H, Chan AW, Matsuki N, et al. (2015) Neocortical Rebound Depolarization Enhances Visual Perception. PLoS Biol 13(8): e1002231. doi:10.1371/journal.pbio.1002231</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c667t-c2dd596812ac07f0e378e765c6214c2397cddb812c28c09d0b286ad3811342203</citedby><cites>FETCH-LOGICAL-c667t-c2dd596812ac07f0e378e765c6214c2397cddb812c28c09d0b286ad3811342203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537103/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537103/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23870,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26274866$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Pack, Christopher C.</contributor><creatorcontrib>Funayama, Kenta</creatorcontrib><creatorcontrib>Minamisawa, Genki</creatorcontrib><creatorcontrib>Matsumoto, Nobuyoshi</creatorcontrib><creatorcontrib>Ban, Hiroshi</creatorcontrib><creatorcontrib>Chan, Allen W</creatorcontrib><creatorcontrib>Matsuki, Norio</creatorcontrib><creatorcontrib>Murphy, Timothy H</creatorcontrib><creatorcontrib>Ikegaya, Yuji</creatorcontrib><title>Neocortical Rebound Depolarization Enhances Visual Perception</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Animals are constantly exposed to the time-varying visual world. Because visual perception is modulated by immediately prior visual experience, visual cortical neurons may register recent visual history into a specific form of offline activity and link it to later visual input. To examine how preceding visual inputs interact with upcoming information at the single neuron level, we designed a simple stimulation protocol in which a brief, orientated flashing stimulus was subsequently coupled to visual stimuli with identical or different features. Using in vivo whole-cell patch-clamp recording and functional two-photon calcium imaging from the primary visual cortex (V1) of awake mice, we discovered that a flash of sinusoidal grating per se induces an early, transient activation as well as a long-delayed reactivation in V1 neurons. This late response, which started hundreds of milliseconds after the flash and persisted for approximately 2 s, was also observed in human V1 electroencephalogram. When another drifting grating stimulus arrived during the late response, the V1 neurons exhibited a sublinear, but apparently increased response, especially to the same grating orientation. In behavioral tests of mice and humans, the flashing stimulation enhanced the detection power of the identically orientated visual stimulation only when the second stimulation was presented during the time window of the late response. Therefore, V1 late responses likely provide a neural basis for admixing temporally separated stimuli and extracting identical features in time-varying visual environments.</description><subject>Adult</subject><subject>Animals</subject><subject>Electroencephalography</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neocortex</subject><subject>Neocortex - physiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Patch-Clamp Techniques</subject><subject>Photic Stimulation - methods</subject><subject>Physiological aspects</subject><subject>Visual Cortex - physiology</subject><subject>Visual perception</subject><subject>Visual Perception - physiology</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhi0EomXhHyBYiQscdvFHYjsHkKpSYKWqRQV6tRx7dutV1g52UhV-PQ6bVo3EAeSDrZlnXs8XQs8JXhImyNtt6KPXzbKtXVgSjCll5AE6JGVRLoSU5cN77wP0JKXtwFRUPkYHlFNRSM4P0bszCCbEzhndzC-gDr238w_QhkZH90t3Lvj5ib_S3kCaX7rUZ-wLRAPt4HqKHq11k-DZeM_Q948n344_L07PP62Oj04XhnPRLQy1tqy4JFQbLNYYmJAgeGk4JYWhrBLG2jq7DZUGVxbXVHJtmSSEFZRiNkMv97ptE5IaK0-KCIoLwRiTmVjtCRv0VrXR7XT8qYJ26o8hxI3SQ5UNKG2lKKgEzHRVsNyHSgsDpLImm-tSZ6334299vQNrwHdRNxPRqce7K7UJ16oo82AwywKvR4EYfvSQOrVzyUDTaA-hH_LGJSZYMJ7RV3t0o3Nqzq9DVjQDro4KhgURQ30ztPwLlY-FnTPBw9pl-yTgzSQgMx3cdBvdp6RWXy_-gz37d_b8csoWe9bEkFKE9V0HCVbDCt8OUg0rrMYVzmEv7nf_Luh2Z9lvEyXqSQ</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Funayama, Kenta</creator><creator>Minamisawa, Genki</creator><creator>Matsumoto, Nobuyoshi</creator><creator>Ban, Hiroshi</creator><creator>Chan, Allen W</creator><creator>Matsuki, Norio</creator><creator>Murphy, Timothy H</creator><creator>Ikegaya, Yuji</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>20150801</creationdate><title>Neocortical Rebound Depolarization Enhances Visual Perception</title><author>Funayama, Kenta ; Minamisawa, Genki ; Matsumoto, Nobuyoshi ; Ban, Hiroshi ; Chan, Allen W ; Matsuki, Norio ; Murphy, Timothy H ; Ikegaya, Yuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c667t-c2dd596812ac07f0e378e765c6214c2397cddb812c28c09d0b286ad3811342203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adult</topic><topic>Animals</topic><topic>Electroencephalography</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neocortex</topic><topic>Neocortex - physiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Patch-Clamp Techniques</topic><topic>Photic Stimulation - methods</topic><topic>Physiological aspects</topic><topic>Visual Cortex - physiology</topic><topic>Visual perception</topic><topic>Visual Perception - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Funayama, Kenta</creatorcontrib><creatorcontrib>Minamisawa, Genki</creatorcontrib><creatorcontrib>Matsumoto, Nobuyoshi</creatorcontrib><creatorcontrib>Ban, Hiroshi</creatorcontrib><creatorcontrib>Chan, Allen W</creatorcontrib><creatorcontrib>Matsuki, Norio</creatorcontrib><creatorcontrib>Murphy, Timothy H</creatorcontrib><creatorcontrib>Ikegaya, Yuji</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Funayama, Kenta</au><au>Minamisawa, Genki</au><au>Matsumoto, Nobuyoshi</au><au>Ban, Hiroshi</au><au>Chan, Allen W</au><au>Matsuki, Norio</au><au>Murphy, Timothy H</au><au>Ikegaya, Yuji</au><au>Pack, Christopher C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neocortical Rebound Depolarization Enhances Visual Perception</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2015-08-01</date><risdate>2015</risdate><volume>13</volume><issue>8</issue><spage>e1002231</spage><epage>e1002231</epage><pages>e1002231-e1002231</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Animals are constantly exposed to the time-varying visual world. Because visual perception is modulated by immediately prior visual experience, visual cortical neurons may register recent visual history into a specific form of offline activity and link it to later visual input. To examine how preceding visual inputs interact with upcoming information at the single neuron level, we designed a simple stimulation protocol in which a brief, orientated flashing stimulus was subsequently coupled to visual stimuli with identical or different features. Using in vivo whole-cell patch-clamp recording and functional two-photon calcium imaging from the primary visual cortex (V1) of awake mice, we discovered that a flash of sinusoidal grating per se induces an early, transient activation as well as a long-delayed reactivation in V1 neurons. This late response, which started hundreds of milliseconds after the flash and persisted for approximately 2 s, was also observed in human V1 electroencephalogram. When another drifting grating stimulus arrived during the late response, the V1 neurons exhibited a sublinear, but apparently increased response, especially to the same grating orientation. In behavioral tests of mice and humans, the flashing stimulation enhanced the detection power of the identically orientated visual stimulation only when the second stimulation was presented during the time window of the late response. Therefore, V1 late responses likely provide a neural basis for admixing temporally separated stimuli and extracting identical features in time-varying visual environments.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26274866</pmid><doi>10.1371/journal.pbio.1002231</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2015-08, Vol.13 (8), p.e1002231-e1002231 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_1720473338 |
source | MEDLINE; Public Library of Science; DOAJ Directory of Open Access Journals; PubMed; EZB Electronic Journals Library |
subjects | Adult Animals Electroencephalography Female Humans Male Mice Mice, Inbred C57BL Neocortex Neocortex - physiology Neurons Neurons - physiology Patch-Clamp Techniques Photic Stimulation - methods Physiological aspects Visual Cortex - physiology Visual perception Visual Perception - physiology |
title | Neocortical Rebound Depolarization Enhances Visual Perception |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A40%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neocortical%20Rebound%20Depolarization%20Enhances%20Visual%20Perception&rft.jtitle=PLoS%20biology&rft.au=Funayama,%20Kenta&rft.date=2015-08-01&rft.volume=13&rft.issue=8&rft.spage=e1002231&rft.epage=e1002231&rft.pages=e1002231-e1002231&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.1002231&rft_dat=%3Cgale_plos_%3EA430717733%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705010736&rft_id=info:pmid/26274866&rft_galeid=A430717733&rft_doaj_id=oai_doaj_org_article_ad87428e03a9437489a7ce19dc742b5a&rfr_iscdi=true |