Neocortical Rebound Depolarization Enhances Visual Perception

Animals are constantly exposed to the time-varying visual world. Because visual perception is modulated by immediately prior visual experience, visual cortical neurons may register recent visual history into a specific form of offline activity and link it to later visual input. To examine how preced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2015-08, Vol.13 (8), p.e1002231-e1002231
Hauptverfasser: Funayama, Kenta, Minamisawa, Genki, Matsumoto, Nobuyoshi, Ban, Hiroshi, Chan, Allen W, Matsuki, Norio, Murphy, Timothy H, Ikegaya, Yuji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1002231
container_issue 8
container_start_page e1002231
container_title PLoS biology
container_volume 13
creator Funayama, Kenta
Minamisawa, Genki
Matsumoto, Nobuyoshi
Ban, Hiroshi
Chan, Allen W
Matsuki, Norio
Murphy, Timothy H
Ikegaya, Yuji
description Animals are constantly exposed to the time-varying visual world. Because visual perception is modulated by immediately prior visual experience, visual cortical neurons may register recent visual history into a specific form of offline activity and link it to later visual input. To examine how preceding visual inputs interact with upcoming information at the single neuron level, we designed a simple stimulation protocol in which a brief, orientated flashing stimulus was subsequently coupled to visual stimuli with identical or different features. Using in vivo whole-cell patch-clamp recording and functional two-photon calcium imaging from the primary visual cortex (V1) of awake mice, we discovered that a flash of sinusoidal grating per se induces an early, transient activation as well as a long-delayed reactivation in V1 neurons. This late response, which started hundreds of milliseconds after the flash and persisted for approximately 2 s, was also observed in human V1 electroencephalogram. When another drifting grating stimulus arrived during the late response, the V1 neurons exhibited a sublinear, but apparently increased response, especially to the same grating orientation. In behavioral tests of mice and humans, the flashing stimulation enhanced the detection power of the identically orientated visual stimulation only when the second stimulation was presented during the time window of the late response. Therefore, V1 late responses likely provide a neural basis for admixing temporally separated stimuli and extracting identical features in time-varying visual environments.
doi_str_mv 10.1371/journal.pbio.1002231
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1720473338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A430717733</galeid><doaj_id>oai_doaj_org_article_ad87428e03a9437489a7ce19dc742b5a</doaj_id><sourcerecordid>A430717733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c667t-c2dd596812ac07f0e378e765c6214c2397cddb812c28c09d0b286ad3811342203</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhi0EomXhHyBYiQscdvFHYjsHkKpSYKWqRQV6tRx7dutV1g52UhV-PQ6bVo3EAeSDrZlnXs8XQs8JXhImyNtt6KPXzbKtXVgSjCll5AE6JGVRLoSU5cN77wP0JKXtwFRUPkYHlFNRSM4P0bszCCbEzhndzC-gDr238w_QhkZH90t3Lvj5ib_S3kCaX7rUZ-wLRAPt4HqKHq11k-DZeM_Q948n344_L07PP62Oj04XhnPRLQy1tqy4JFQbLNYYmJAgeGk4JYWhrBLG2jq7DZUGVxbXVHJtmSSEFZRiNkMv97ptE5IaK0-KCIoLwRiTmVjtCRv0VrXR7XT8qYJ26o8hxI3SQ5UNKG2lKKgEzHRVsNyHSgsDpLImm-tSZ6334299vQNrwHdRNxPRqce7K7UJ16oo82AwywKvR4EYfvSQOrVzyUDTaA-hH_LGJSZYMJ7RV3t0o3Nqzq9DVjQDro4KhgURQ30ztPwLlY-FnTPBw9pl-yTgzSQgMx3cdBvdp6RWXy_-gz37d_b8csoWe9bEkFKE9V0HCVbDCt8OUg0rrMYVzmEv7nf_Luh2Z9lvEyXqSQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705010736</pqid></control><display><type>article</type><title>Neocortical Rebound Depolarization Enhances Visual Perception</title><source>MEDLINE</source><source>Public Library of Science</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed</source><source>EZB Electronic Journals Library</source><creator>Funayama, Kenta ; Minamisawa, Genki ; Matsumoto, Nobuyoshi ; Ban, Hiroshi ; Chan, Allen W ; Matsuki, Norio ; Murphy, Timothy H ; Ikegaya, Yuji</creator><contributor>Pack, Christopher C.</contributor><creatorcontrib>Funayama, Kenta ; Minamisawa, Genki ; Matsumoto, Nobuyoshi ; Ban, Hiroshi ; Chan, Allen W ; Matsuki, Norio ; Murphy, Timothy H ; Ikegaya, Yuji ; Pack, Christopher C.</creatorcontrib><description>Animals are constantly exposed to the time-varying visual world. Because visual perception is modulated by immediately prior visual experience, visual cortical neurons may register recent visual history into a specific form of offline activity and link it to later visual input. To examine how preceding visual inputs interact with upcoming information at the single neuron level, we designed a simple stimulation protocol in which a brief, orientated flashing stimulus was subsequently coupled to visual stimuli with identical or different features. Using in vivo whole-cell patch-clamp recording and functional two-photon calcium imaging from the primary visual cortex (V1) of awake mice, we discovered that a flash of sinusoidal grating per se induces an early, transient activation as well as a long-delayed reactivation in V1 neurons. This late response, which started hundreds of milliseconds after the flash and persisted for approximately 2 s, was also observed in human V1 electroencephalogram. When another drifting grating stimulus arrived during the late response, the V1 neurons exhibited a sublinear, but apparently increased response, especially to the same grating orientation. In behavioral tests of mice and humans, the flashing stimulation enhanced the detection power of the identically orientated visual stimulation only when the second stimulation was presented during the time window of the late response. Therefore, V1 late responses likely provide a neural basis for admixing temporally separated stimuli and extracting identical features in time-varying visual environments.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.1002231</identifier><identifier>PMID: 26274866</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Animals ; Electroencephalography ; Female ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Neocortex ; Neocortex - physiology ; Neurons ; Neurons - physiology ; Patch-Clamp Techniques ; Photic Stimulation - methods ; Physiological aspects ; Visual Cortex - physiology ; Visual perception ; Visual Perception - physiology</subject><ispartof>PLoS biology, 2015-08, Vol.13 (8), p.e1002231-e1002231</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Funayama et al 2015 Funayama et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Funayama K, Minamisawa G, Matsumoto N, Ban H, Chan AW, Matsuki N, et al. (2015) Neocortical Rebound Depolarization Enhances Visual Perception. PLoS Biol 13(8): e1002231. doi:10.1371/journal.pbio.1002231</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c667t-c2dd596812ac07f0e378e765c6214c2397cddb812c28c09d0b286ad3811342203</citedby><cites>FETCH-LOGICAL-c667t-c2dd596812ac07f0e378e765c6214c2397cddb812c28c09d0b286ad3811342203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537103/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537103/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23870,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26274866$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Pack, Christopher C.</contributor><creatorcontrib>Funayama, Kenta</creatorcontrib><creatorcontrib>Minamisawa, Genki</creatorcontrib><creatorcontrib>Matsumoto, Nobuyoshi</creatorcontrib><creatorcontrib>Ban, Hiroshi</creatorcontrib><creatorcontrib>Chan, Allen W</creatorcontrib><creatorcontrib>Matsuki, Norio</creatorcontrib><creatorcontrib>Murphy, Timothy H</creatorcontrib><creatorcontrib>Ikegaya, Yuji</creatorcontrib><title>Neocortical Rebound Depolarization Enhances Visual Perception</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Animals are constantly exposed to the time-varying visual world. Because visual perception is modulated by immediately prior visual experience, visual cortical neurons may register recent visual history into a specific form of offline activity and link it to later visual input. To examine how preceding visual inputs interact with upcoming information at the single neuron level, we designed a simple stimulation protocol in which a brief, orientated flashing stimulus was subsequently coupled to visual stimuli with identical or different features. Using in vivo whole-cell patch-clamp recording and functional two-photon calcium imaging from the primary visual cortex (V1) of awake mice, we discovered that a flash of sinusoidal grating per se induces an early, transient activation as well as a long-delayed reactivation in V1 neurons. This late response, which started hundreds of milliseconds after the flash and persisted for approximately 2 s, was also observed in human V1 electroencephalogram. When another drifting grating stimulus arrived during the late response, the V1 neurons exhibited a sublinear, but apparently increased response, especially to the same grating orientation. In behavioral tests of mice and humans, the flashing stimulation enhanced the detection power of the identically orientated visual stimulation only when the second stimulation was presented during the time window of the late response. Therefore, V1 late responses likely provide a neural basis for admixing temporally separated stimuli and extracting identical features in time-varying visual environments.</description><subject>Adult</subject><subject>Animals</subject><subject>Electroencephalography</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neocortex</subject><subject>Neocortex - physiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Patch-Clamp Techniques</subject><subject>Photic Stimulation - methods</subject><subject>Physiological aspects</subject><subject>Visual Cortex - physiology</subject><subject>Visual perception</subject><subject>Visual Perception - physiology</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhi0EomXhHyBYiQscdvFHYjsHkKpSYKWqRQV6tRx7dutV1g52UhV-PQ6bVo3EAeSDrZlnXs8XQs8JXhImyNtt6KPXzbKtXVgSjCll5AE6JGVRLoSU5cN77wP0JKXtwFRUPkYHlFNRSM4P0bszCCbEzhndzC-gDr238w_QhkZH90t3Lvj5ib_S3kCaX7rUZ-wLRAPt4HqKHq11k-DZeM_Q948n344_L07PP62Oj04XhnPRLQy1tqy4JFQbLNYYmJAgeGk4JYWhrBLG2jq7DZUGVxbXVHJtmSSEFZRiNkMv97ptE5IaK0-KCIoLwRiTmVjtCRv0VrXR7XT8qYJ26o8hxI3SQ5UNKG2lKKgEzHRVsNyHSgsDpLImm-tSZ6334299vQNrwHdRNxPRqce7K7UJ16oo82AwywKvR4EYfvSQOrVzyUDTaA-hH_LGJSZYMJ7RV3t0o3Nqzq9DVjQDro4KhgURQ30ztPwLlY-FnTPBw9pl-yTgzSQgMx3cdBvdp6RWXy_-gz37d_b8csoWe9bEkFKE9V0HCVbDCt8OUg0rrMYVzmEv7nf_Luh2Z9lvEyXqSQ</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Funayama, Kenta</creator><creator>Minamisawa, Genki</creator><creator>Matsumoto, Nobuyoshi</creator><creator>Ban, Hiroshi</creator><creator>Chan, Allen W</creator><creator>Matsuki, Norio</creator><creator>Murphy, Timothy H</creator><creator>Ikegaya, Yuji</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>20150801</creationdate><title>Neocortical Rebound Depolarization Enhances Visual Perception</title><author>Funayama, Kenta ; Minamisawa, Genki ; Matsumoto, Nobuyoshi ; Ban, Hiroshi ; Chan, Allen W ; Matsuki, Norio ; Murphy, Timothy H ; Ikegaya, Yuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c667t-c2dd596812ac07f0e378e765c6214c2397cddb812c28c09d0b286ad3811342203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adult</topic><topic>Animals</topic><topic>Electroencephalography</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neocortex</topic><topic>Neocortex - physiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Patch-Clamp Techniques</topic><topic>Photic Stimulation - methods</topic><topic>Physiological aspects</topic><topic>Visual Cortex - physiology</topic><topic>Visual perception</topic><topic>Visual Perception - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Funayama, Kenta</creatorcontrib><creatorcontrib>Minamisawa, Genki</creatorcontrib><creatorcontrib>Matsumoto, Nobuyoshi</creatorcontrib><creatorcontrib>Ban, Hiroshi</creatorcontrib><creatorcontrib>Chan, Allen W</creatorcontrib><creatorcontrib>Matsuki, Norio</creatorcontrib><creatorcontrib>Murphy, Timothy H</creatorcontrib><creatorcontrib>Ikegaya, Yuji</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Funayama, Kenta</au><au>Minamisawa, Genki</au><au>Matsumoto, Nobuyoshi</au><au>Ban, Hiroshi</au><au>Chan, Allen W</au><au>Matsuki, Norio</au><au>Murphy, Timothy H</au><au>Ikegaya, Yuji</au><au>Pack, Christopher C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neocortical Rebound Depolarization Enhances Visual Perception</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2015-08-01</date><risdate>2015</risdate><volume>13</volume><issue>8</issue><spage>e1002231</spage><epage>e1002231</epage><pages>e1002231-e1002231</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Animals are constantly exposed to the time-varying visual world. Because visual perception is modulated by immediately prior visual experience, visual cortical neurons may register recent visual history into a specific form of offline activity and link it to later visual input. To examine how preceding visual inputs interact with upcoming information at the single neuron level, we designed a simple stimulation protocol in which a brief, orientated flashing stimulus was subsequently coupled to visual stimuli with identical or different features. Using in vivo whole-cell patch-clamp recording and functional two-photon calcium imaging from the primary visual cortex (V1) of awake mice, we discovered that a flash of sinusoidal grating per se induces an early, transient activation as well as a long-delayed reactivation in V1 neurons. This late response, which started hundreds of milliseconds after the flash and persisted for approximately 2 s, was also observed in human V1 electroencephalogram. When another drifting grating stimulus arrived during the late response, the V1 neurons exhibited a sublinear, but apparently increased response, especially to the same grating orientation. In behavioral tests of mice and humans, the flashing stimulation enhanced the detection power of the identically orientated visual stimulation only when the second stimulation was presented during the time window of the late response. Therefore, V1 late responses likely provide a neural basis for admixing temporally separated stimuli and extracting identical features in time-varying visual environments.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26274866</pmid><doi>10.1371/journal.pbio.1002231</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2015-08, Vol.13 (8), p.e1002231-e1002231
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_1720473338
source MEDLINE; Public Library of Science; DOAJ Directory of Open Access Journals; PubMed; EZB Electronic Journals Library
subjects Adult
Animals
Electroencephalography
Female
Humans
Male
Mice
Mice, Inbred C57BL
Neocortex
Neocortex - physiology
Neurons
Neurons - physiology
Patch-Clamp Techniques
Photic Stimulation - methods
Physiological aspects
Visual Cortex - physiology
Visual perception
Visual Perception - physiology
title Neocortical Rebound Depolarization Enhances Visual Perception
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A40%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neocortical%20Rebound%20Depolarization%20Enhances%20Visual%20Perception&rft.jtitle=PLoS%20biology&rft.au=Funayama,%20Kenta&rft.date=2015-08-01&rft.volume=13&rft.issue=8&rft.spage=e1002231&rft.epage=e1002231&rft.pages=e1002231-e1002231&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.1002231&rft_dat=%3Cgale_plos_%3EA430717733%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705010736&rft_id=info:pmid/26274866&rft_galeid=A430717733&rft_doaj_id=oai_doaj_org_article_ad87428e03a9437489a7ce19dc742b5a&rfr_iscdi=true