Meta-Analysis of the Detection of Plant Pigment Concentrations Using Hyperspectral Remotely Sensed Data

Passive optical hyperspectral remote sensing of plant pigments offers potential for understanding plant ecophysiological processes across a range of spatial scales. Following a number of decades of research in this field, this paper undertakes a systematic meta-analysis of 85 articles to determine w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-09, Vol.10 (9), p.e0137029-e0137029
Hauptverfasser: Huang, Jingfeng, Wei, Chen, Zhang, Yao, Blackburn, George Alan, Wang, Xiuzhen, Wei, Chuanwen, Wang, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0137029
container_issue 9
container_start_page e0137029
container_title PloS one
container_volume 10
creator Huang, Jingfeng
Wei, Chen
Zhang, Yao
Blackburn, George Alan
Wang, Xiuzhen
Wei, Chuanwen
Wang, Jing
description Passive optical hyperspectral remote sensing of plant pigments offers potential for understanding plant ecophysiological processes across a range of spatial scales. Following a number of decades of research in this field, this paper undertakes a systematic meta-analysis of 85 articles to determine whether passive optical hyperspectral remote sensing techniques are sufficiently well developed to quantify individual plant pigments, which operational solutions are available for wider plant science and the areas which now require greater focus. The findings indicate that predictive relationships are strong for all pigments at the leaf scale but these decrease and become more variable across pigment types at the canopy and landscape scales. At leaf scale it is clear that specific sets of optimal wavelengths can be recommended for operational methodologies: total chlorophyll and chlorophyll a quantification is based on reflectance in the green (550-560nm) and red edge (680-750nm) regions; chlorophyll b on the red, (630-660nm), red edge (670-710nm) and the near-infrared (800-810nm); carotenoids on the 500-580nm region; and anthocyanins on the green (550-560nm), red edge (700-710nm) and near-infrared (780-790nm). For total chlorophyll the optimal wavelengths are valid across canopy and landscape scales and there is some evidence that the same applies for chlorophyll a.
doi_str_mv 10.1371/journal.pone.0137029
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1719457011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A428232954</galeid><doaj_id>oai_doaj_org_article_0acd5c107576477580987880900c5fea</doaj_id><sourcerecordid>A428232954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-11bca9e4fd9c4b21feb1ec9136c9898850e88140bc762705acedb8940214759a3</originalsourceid><addsrcrecordid>eNqNk1Fv0zAQxyMEYmPwDRBEQkLw0GI7dhy_IFUdsEpDmzbGq-U4l9RVEpfYQfTb47TZ1KA9oEg56_z7_y---KLoNUZznHD8aWP7rlX1fGtbmKOQQkQ8iU6xSMgsJSh5erQ-iV44t0GIJVmaPo9OSJqwNKPkNKq-g1ezRTDaOeNiW8Z-DfE5eNDe2HZIXNeq9fG1qRoIcWlbHWKnhm0X3znTVvHFbgud2wZNp-r4Bhrrod7Ft9A6KOJz5dXL6FmpagevxngW3X398mN5Mbu8-rZaLi5nOhXEzzDOtRJAy0JomhNcQo5BC5ykWmQiyxiCLMMU5ZqnhCOmNBR5JigimHImVHIWvT34bmvr5NgjJzHHgjKOMA7E6kAUVm3ktjON6nbSKiP3CdtVUnXe6BokUrpgGiPOeEo5ZxkSGc_CGyHNShiqfR6r9XkDxaEx9cR0utOatazsb0lZylLOgsGH0aCzv3pwXjbGaahDy8H2--_GLEmRSAL67h_08dONVKXCAUxb2lBXD6ZyQUlGEiIYDdT8ESo8BTRGhwtVmpCfCD5OBIHx8MdXqndOrm5v_p-9-jll3x-xa1C1Xztb9_vLNQXpAdSdda6D8qHJGMlhHu67IYd5kOM8BNmb4x_0ILofgOQv1C0EaA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1719457011</pqid></control><display><type>article</type><title>Meta-Analysis of the Detection of Plant Pigment Concentrations Using Hyperspectral Remotely Sensed Data</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Huang, Jingfeng ; Wei, Chen ; Zhang, Yao ; Blackburn, George Alan ; Wang, Xiuzhen ; Wei, Chuanwen ; Wang, Jing</creator><contributor>Albrectsen, Benedicte Riber</contributor><creatorcontrib>Huang, Jingfeng ; Wei, Chen ; Zhang, Yao ; Blackburn, George Alan ; Wang, Xiuzhen ; Wei, Chuanwen ; Wang, Jing ; Albrectsen, Benedicte Riber</creatorcontrib><description>Passive optical hyperspectral remote sensing of plant pigments offers potential for understanding plant ecophysiological processes across a range of spatial scales. Following a number of decades of research in this field, this paper undertakes a systematic meta-analysis of 85 articles to determine whether passive optical hyperspectral remote sensing techniques are sufficiently well developed to quantify individual plant pigments, which operational solutions are available for wider plant science and the areas which now require greater focus. The findings indicate that predictive relationships are strong for all pigments at the leaf scale but these decrease and become more variable across pigment types at the canopy and landscape scales. At leaf scale it is clear that specific sets of optimal wavelengths can be recommended for operational methodologies: total chlorophyll and chlorophyll a quantification is based on reflectance in the green (550-560nm) and red edge (680-750nm) regions; chlorophyll b on the red, (630-660nm), red edge (670-710nm) and the near-infrared (800-810nm); carotenoids on the 500-580nm region; and anthocyanins on the green (550-560nm), red edge (700-710nm) and near-infrared (780-790nm). For total chlorophyll the optimal wavelengths are valid across canopy and landscape scales and there is some evidence that the same applies for chlorophyll a.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0137029</identifier><identifier>PMID: 26356842</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Anthocyanins ; Anthocyanins - metabolism ; Canopies ; Carotenoids ; Carotenoids - metabolism ; Chlorophyll ; Chlorophyll - analogs &amp; derivatives ; Chlorophyll - metabolism ; Chlorophyll A ; I.R. radiation ; Leaves ; Light ; Measurement ; Meta-analysis ; Nitrogen ; Physiological aspects ; Physiology ; Pigments ; Pigments, Biological - metabolism ; Plant Leaves - metabolism ; Plant pigments ; Plants - metabolism ; Reflectance ; Remote sensing ; Remote sensing techniques ; Remote Sensing Technology - methods ; Sensing techniques ; Spectrum Analysis - methods ; Wavelengths</subject><ispartof>PloS one, 2015-09, Vol.10 (9), p.e0137029-e0137029</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Huang et al 2015 Huang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-11bca9e4fd9c4b21feb1ec9136c9898850e88140bc762705acedb8940214759a3</citedby><cites>FETCH-LOGICAL-c692t-11bca9e4fd9c4b21feb1ec9136c9898850e88140bc762705acedb8940214759a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4565675/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4565675/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23868,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26356842$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Albrectsen, Benedicte Riber</contributor><creatorcontrib>Huang, Jingfeng</creatorcontrib><creatorcontrib>Wei, Chen</creatorcontrib><creatorcontrib>Zhang, Yao</creatorcontrib><creatorcontrib>Blackburn, George Alan</creatorcontrib><creatorcontrib>Wang, Xiuzhen</creatorcontrib><creatorcontrib>Wei, Chuanwen</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><title>Meta-Analysis of the Detection of Plant Pigment Concentrations Using Hyperspectral Remotely Sensed Data</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Passive optical hyperspectral remote sensing of plant pigments offers potential for understanding plant ecophysiological processes across a range of spatial scales. Following a number of decades of research in this field, this paper undertakes a systematic meta-analysis of 85 articles to determine whether passive optical hyperspectral remote sensing techniques are sufficiently well developed to quantify individual plant pigments, which operational solutions are available for wider plant science and the areas which now require greater focus. The findings indicate that predictive relationships are strong for all pigments at the leaf scale but these decrease and become more variable across pigment types at the canopy and landscape scales. At leaf scale it is clear that specific sets of optimal wavelengths can be recommended for operational methodologies: total chlorophyll and chlorophyll a quantification is based on reflectance in the green (550-560nm) and red edge (680-750nm) regions; chlorophyll b on the red, (630-660nm), red edge (670-710nm) and the near-infrared (800-810nm); carotenoids on the 500-580nm region; and anthocyanins on the green (550-560nm), red edge (700-710nm) and near-infrared (780-790nm). For total chlorophyll the optimal wavelengths are valid across canopy and landscape scales and there is some evidence that the same applies for chlorophyll a.</description><subject>Anthocyanins</subject><subject>Anthocyanins - metabolism</subject><subject>Canopies</subject><subject>Carotenoids</subject><subject>Carotenoids - metabolism</subject><subject>Chlorophyll</subject><subject>Chlorophyll - analogs &amp; derivatives</subject><subject>Chlorophyll - metabolism</subject><subject>Chlorophyll A</subject><subject>I.R. radiation</subject><subject>Leaves</subject><subject>Light</subject><subject>Measurement</subject><subject>Meta-analysis</subject><subject>Nitrogen</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Pigments</subject><subject>Pigments, Biological - metabolism</subject><subject>Plant Leaves - metabolism</subject><subject>Plant pigments</subject><subject>Plants - metabolism</subject><subject>Reflectance</subject><subject>Remote sensing</subject><subject>Remote sensing techniques</subject><subject>Remote Sensing Technology - methods</subject><subject>Sensing techniques</subject><subject>Spectrum Analysis - methods</subject><subject>Wavelengths</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1Fv0zAQxyMEYmPwDRBEQkLw0GI7dhy_IFUdsEpDmzbGq-U4l9RVEpfYQfTb47TZ1KA9oEg56_z7_y---KLoNUZznHD8aWP7rlX1fGtbmKOQQkQ8iU6xSMgsJSh5erQ-iV44t0GIJVmaPo9OSJqwNKPkNKq-g1ezRTDaOeNiW8Z-DfE5eNDe2HZIXNeq9fG1qRoIcWlbHWKnhm0X3znTVvHFbgud2wZNp-r4Bhrrod7Ft9A6KOJz5dXL6FmpagevxngW3X398mN5Mbu8-rZaLi5nOhXEzzDOtRJAy0JomhNcQo5BC5ykWmQiyxiCLMMU5ZqnhCOmNBR5JigimHImVHIWvT34bmvr5NgjJzHHgjKOMA7E6kAUVm3ktjON6nbSKiP3CdtVUnXe6BokUrpgGiPOeEo5ZxkSGc_CGyHNShiqfR6r9XkDxaEx9cR0utOatazsb0lZylLOgsGH0aCzv3pwXjbGaahDy8H2--_GLEmRSAL67h_08dONVKXCAUxb2lBXD6ZyQUlGEiIYDdT8ESo8BTRGhwtVmpCfCD5OBIHx8MdXqndOrm5v_p-9-jll3x-xa1C1Xztb9_vLNQXpAdSdda6D8qHJGMlhHu67IYd5kOM8BNmb4x_0ILofgOQv1C0EaA</recordid><startdate>20150910</startdate><enddate>20150910</enddate><creator>Huang, Jingfeng</creator><creator>Wei, Chen</creator><creator>Zhang, Yao</creator><creator>Blackburn, George Alan</creator><creator>Wang, Xiuzhen</creator><creator>Wei, Chuanwen</creator><creator>Wang, Jing</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150910</creationdate><title>Meta-Analysis of the Detection of Plant Pigment Concentrations Using Hyperspectral Remotely Sensed Data</title><author>Huang, Jingfeng ; Wei, Chen ; Zhang, Yao ; Blackburn, George Alan ; Wang, Xiuzhen ; Wei, Chuanwen ; Wang, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-11bca9e4fd9c4b21feb1ec9136c9898850e88140bc762705acedb8940214759a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anthocyanins</topic><topic>Anthocyanins - metabolism</topic><topic>Canopies</topic><topic>Carotenoids</topic><topic>Carotenoids - metabolism</topic><topic>Chlorophyll</topic><topic>Chlorophyll - analogs &amp; derivatives</topic><topic>Chlorophyll - metabolism</topic><topic>Chlorophyll A</topic><topic>I.R. radiation</topic><topic>Leaves</topic><topic>Light</topic><topic>Measurement</topic><topic>Meta-analysis</topic><topic>Nitrogen</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Pigments</topic><topic>Pigments, Biological - metabolism</topic><topic>Plant Leaves - metabolism</topic><topic>Plant pigments</topic><topic>Plants - metabolism</topic><topic>Reflectance</topic><topic>Remote sensing</topic><topic>Remote sensing techniques</topic><topic>Remote Sensing Technology - methods</topic><topic>Sensing techniques</topic><topic>Spectrum Analysis - methods</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jingfeng</creatorcontrib><creatorcontrib>Wei, Chen</creatorcontrib><creatorcontrib>Zhang, Yao</creatorcontrib><creatorcontrib>Blackburn, George Alan</creatorcontrib><creatorcontrib>Wang, Xiuzhen</creatorcontrib><creatorcontrib>Wei, Chuanwen</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jingfeng</au><au>Wei, Chen</au><au>Zhang, Yao</au><au>Blackburn, George Alan</au><au>Wang, Xiuzhen</au><au>Wei, Chuanwen</au><au>Wang, Jing</au><au>Albrectsen, Benedicte Riber</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meta-Analysis of the Detection of Plant Pigment Concentrations Using Hyperspectral Remotely Sensed Data</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-09-10</date><risdate>2015</risdate><volume>10</volume><issue>9</issue><spage>e0137029</spage><epage>e0137029</epage><pages>e0137029-e0137029</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Passive optical hyperspectral remote sensing of plant pigments offers potential for understanding plant ecophysiological processes across a range of spatial scales. Following a number of decades of research in this field, this paper undertakes a systematic meta-analysis of 85 articles to determine whether passive optical hyperspectral remote sensing techniques are sufficiently well developed to quantify individual plant pigments, which operational solutions are available for wider plant science and the areas which now require greater focus. The findings indicate that predictive relationships are strong for all pigments at the leaf scale but these decrease and become more variable across pigment types at the canopy and landscape scales. At leaf scale it is clear that specific sets of optimal wavelengths can be recommended for operational methodologies: total chlorophyll and chlorophyll a quantification is based on reflectance in the green (550-560nm) and red edge (680-750nm) regions; chlorophyll b on the red, (630-660nm), red edge (670-710nm) and the near-infrared (800-810nm); carotenoids on the 500-580nm region; and anthocyanins on the green (550-560nm), red edge (700-710nm) and near-infrared (780-790nm). For total chlorophyll the optimal wavelengths are valid across canopy and landscape scales and there is some evidence that the same applies for chlorophyll a.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26356842</pmid><doi>10.1371/journal.pone.0137029</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-09, Vol.10 (9), p.e0137029-e0137029
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1719457011
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Anthocyanins
Anthocyanins - metabolism
Canopies
Carotenoids
Carotenoids - metabolism
Chlorophyll
Chlorophyll - analogs & derivatives
Chlorophyll - metabolism
Chlorophyll A
I.R. radiation
Leaves
Light
Measurement
Meta-analysis
Nitrogen
Physiological aspects
Physiology
Pigments
Pigments, Biological - metabolism
Plant Leaves - metabolism
Plant pigments
Plants - metabolism
Reflectance
Remote sensing
Remote sensing techniques
Remote Sensing Technology - methods
Sensing techniques
Spectrum Analysis - methods
Wavelengths
title Meta-Analysis of the Detection of Plant Pigment Concentrations Using Hyperspectral Remotely Sensed Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meta-Analysis%20of%20the%20Detection%20of%20Plant%20Pigment%20Concentrations%20Using%20Hyperspectral%20Remotely%20Sensed%20Data&rft.jtitle=PloS%20one&rft.au=Huang,%20Jingfeng&rft.date=2015-09-10&rft.volume=10&rft.issue=9&rft.spage=e0137029&rft.epage=e0137029&rft.pages=e0137029-e0137029&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0137029&rft_dat=%3Cgale_plos_%3EA428232954%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1719457011&rft_id=info:pmid/26356842&rft_galeid=A428232954&rft_doaj_id=oai_doaj_org_article_0acd5c107576477580987880900c5fea&rfr_iscdi=true