Mice Lacking beta2-Integrin Function Remain Glucose Tolerant in Spite of Insulin Resistance, Neutrophil Infiltration and Inflammation

Beta2-integrins are important in leukocyte trafficking and function, and are regulated through the binding of cytoplasmic proteins, such as kindlin-3, to their intracellular domain. Here, we investigate the involvement of beta2-integrins in the regulation of metabolic disease using mice where the ki...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-09, Vol.10 (9), p.e0138872-e0138872
Hauptverfasser: Meakin, Paul J, Morrison, Vicky L, Sneddon, Claire C, Savinko, Terhi, Uotila, Liisa, Jalicy, Susan M, Gabriel, Jennie L, Kang, Li, Ashford, Michael L J, Fagerholm, Susanna C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0138872
container_issue 9
container_start_page e0138872
container_title PloS one
container_volume 10
creator Meakin, Paul J
Morrison, Vicky L
Sneddon, Claire C
Savinko, Terhi
Uotila, Liisa
Jalicy, Susan M
Gabriel, Jennie L
Kang, Li
Ashford, Michael L J
Fagerholm, Susanna C
description Beta2-integrins are important in leukocyte trafficking and function, and are regulated through the binding of cytoplasmic proteins, such as kindlin-3, to their intracellular domain. Here, we investigate the involvement of beta2-integrins in the regulation of metabolic disease using mice where the kindlin-3 binding site in the beta2-integrin cytoplasmic tail has been mutated (TTT/AAA-beta2-integrin knock-in (KI) mice), leading to expressed but dysfunctional beta2-integrins and significant neutrophilia in vivo. Beta2-integrin KI mice fed on a high fat diet showed normal weight gain, and normal accumulation of macrophages and lymphocytes in white adipose tissue (WAT) and liver, but increased neutrophil numbers especially in WAT. In addition, beta2-integrin KI mice fed on a high fat diet showed significantly increased peripheral insulin resistance in response to high-fat feeding. However, this was associated with improved glucose disposal following glucose load. Interestingly, beta2-integrin KI neutrophils produced more elastase in vitro, in response to stimulation. Beta2-integrin KI mice displayed variability of tissue inflammatory status, with liver and WAT exhibiting little or no difference in inflammation compared to high fat fed controls, whereas skeletal muscle demonstrated a raised inflammatory profile in association with higher elastase levels and diminished signalling through the IRS1-PKB pathway. In conclusion, although expression of dysfunctional beta2-integrins increased neutrophil production and infiltration into tissue, skeletal muscle was the most affected tissue exhibiting evidence of higher neutrophil activity and insulin resistance. Thus, beta2-integrins modulate glucose homeostasis during high fat feeding predominantly through actions on skeletal muscle to affect metabolic phenotype in vivo.
doi_str_mv 10.1371/journal.pone.0138872
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1719319575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A429828197</galeid><doaj_id>oai_doaj_org_article_a247e63f017248f79d5c40cb84987b44</doaj_id><sourcerecordid>A429828197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-b978dd056b76c676c0b7c371dc00571844885e144fdc3eada5e76c50af380dc63</originalsourceid><addsrcrecordid>eNqNk1GL1DAQx4so3nn6DUQLgii4a9KmTfoiHId3Lqwe3J2-hjSd7mZNkzVJRT-A39t0t3ds5R6khCaT3_wnM8kkyXOM5jin-P3G9s4IPd9aA3OEc8Zo9iA5xlWezcoM5Q8P5kfJE-83CBU5K8vHyVFWElTQMj9O_nxWEtKlkN-VWaU1BJHNFibAyimTnvdGBmVNegWdiOsL3UvrIb2xGpwwIY22660KkNo2XRjfazWwXvkgjIR36Rfog7PbtdJxu1U6OLHTE6YZDFp03c7wNHnUCu3h2fg_Sb6ef7w5-zRbXl4szk6XM1lWWZjVFWVNg4qypqUs40A1lbEWjYypUcwIYawATEjbyBxEIwqIUIFEmzPUyDI_SV7udbfaej5W0HNMY6VwVdAiEos90Vix4VunOuF-cysU3xmsW3HhgpIauMgIhTJvEaYZYS2tmkISJGtGKkZrQqLWhzFaX3fQSDAxfz0Rne4YteYr-5OTguWY0SjwZhRw9kcPPvBOeQlaCwO2352bIUqrbDj3q3_Q-7MbqZWICSjT2hhXDqL8lGQVyxiuhrDze6j4NdApGZ9bvEmYOrydOEQmwK-wEr33fHF99f_s5bcp-_qAXYPQYe2t7ocn46cg2YPSWe8dtHdFxogP3XJbDT50Cx-7Jbq9OLygO6fb9sj_Aj9yEBw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1719319575</pqid></control><display><type>article</type><title>Mice Lacking beta2-Integrin Function Remain Glucose Tolerant in Spite of Insulin Resistance, Neutrophil Infiltration and Inflammation</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Meakin, Paul J ; Morrison, Vicky L ; Sneddon, Claire C ; Savinko, Terhi ; Uotila, Liisa ; Jalicy, Susan M ; Gabriel, Jennie L ; Kang, Li ; Ashford, Michael L J ; Fagerholm, Susanna C</creator><creatorcontrib>Meakin, Paul J ; Morrison, Vicky L ; Sneddon, Claire C ; Savinko, Terhi ; Uotila, Liisa ; Jalicy, Susan M ; Gabriel, Jennie L ; Kang, Li ; Ashford, Michael L J ; Fagerholm, Susanna C</creatorcontrib><description>Beta2-integrins are important in leukocyte trafficking and function, and are regulated through the binding of cytoplasmic proteins, such as kindlin-3, to their intracellular domain. Here, we investigate the involvement of beta2-integrins in the regulation of metabolic disease using mice where the kindlin-3 binding site in the beta2-integrin cytoplasmic tail has been mutated (TTT/AAA-beta2-integrin knock-in (KI) mice), leading to expressed but dysfunctional beta2-integrins and significant neutrophilia in vivo. Beta2-integrin KI mice fed on a high fat diet showed normal weight gain, and normal accumulation of macrophages and lymphocytes in white adipose tissue (WAT) and liver, but increased neutrophil numbers especially in WAT. In addition, beta2-integrin KI mice fed on a high fat diet showed significantly increased peripheral insulin resistance in response to high-fat feeding. However, this was associated with improved glucose disposal following glucose load. Interestingly, beta2-integrin KI neutrophils produced more elastase in vitro, in response to stimulation. Beta2-integrin KI mice displayed variability of tissue inflammatory status, with liver and WAT exhibiting little or no difference in inflammation compared to high fat fed controls, whereas skeletal muscle demonstrated a raised inflammatory profile in association with higher elastase levels and diminished signalling through the IRS1-PKB pathway. In conclusion, although expression of dysfunctional beta2-integrins increased neutrophil production and infiltration into tissue, skeletal muscle was the most affected tissue exhibiting evidence of higher neutrophil activity and insulin resistance. Thus, beta2-integrins modulate glucose homeostasis during high fat feeding predominantly through actions on skeletal muscle to affect metabolic phenotype in vivo.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0138872</identifier><identifier>PMID: 26405763</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adipose tissue ; Adipose Tissue, White - immunology ; Animal tissues ; Animals ; Binding Sites ; Biotechnology ; Cancer ; Care and treatment ; CD18 Antigens - chemistry ; CD18 Antigens - genetics ; CD18 Antigens - metabolism ; Dendritic cells ; Development and progression ; Diabetes ; Diet ; Diet, High-Fat ; Elastase ; Feeding ; Glucose ; High fat diet ; Homeostasis ; Hospitals ; Infiltration ; Inflammation ; Insulin ; Insulin Resistance ; Integrins ; Leukocytes ; Leukocytes (neutrophilic) ; Liver ; Liver - immunology ; Lymphocytes ; Macrophages ; Macrophages - metabolism ; Medical research ; Medical schools ; Medicine ; Metabolic disorders ; Mice ; Muscles ; Musculoskeletal system ; Mutation ; Neutrophil Infiltration ; Neutrophilia ; Neutrophils ; Obesity ; Obesity - genetics ; Obesity - immunology ; Obesity - metabolism ; Patient outcomes ; Phenotypes ; Proteins ; Regulation ; Risk factors ; Rodents ; Signal transduction ; Skeletal muscle ; T-Lymphocytes - metabolism</subject><ispartof>PloS one, 2015-09, Vol.10 (9), p.e0138872-e0138872</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Meakin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Meakin et al 2015 Meakin et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-b978dd056b76c676c0b7c371dc00571844885e144fdc3eada5e76c50af380dc63</citedby><cites>FETCH-LOGICAL-c692t-b978dd056b76c676c0b7c371dc00571844885e144fdc3eada5e76c50af380dc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4583187/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4583187/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26405763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meakin, Paul J</creatorcontrib><creatorcontrib>Morrison, Vicky L</creatorcontrib><creatorcontrib>Sneddon, Claire C</creatorcontrib><creatorcontrib>Savinko, Terhi</creatorcontrib><creatorcontrib>Uotila, Liisa</creatorcontrib><creatorcontrib>Jalicy, Susan M</creatorcontrib><creatorcontrib>Gabriel, Jennie L</creatorcontrib><creatorcontrib>Kang, Li</creatorcontrib><creatorcontrib>Ashford, Michael L J</creatorcontrib><creatorcontrib>Fagerholm, Susanna C</creatorcontrib><title>Mice Lacking beta2-Integrin Function Remain Glucose Tolerant in Spite of Insulin Resistance, Neutrophil Infiltration and Inflammation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Beta2-integrins are important in leukocyte trafficking and function, and are regulated through the binding of cytoplasmic proteins, such as kindlin-3, to their intracellular domain. Here, we investigate the involvement of beta2-integrins in the regulation of metabolic disease using mice where the kindlin-3 binding site in the beta2-integrin cytoplasmic tail has been mutated (TTT/AAA-beta2-integrin knock-in (KI) mice), leading to expressed but dysfunctional beta2-integrins and significant neutrophilia in vivo. Beta2-integrin KI mice fed on a high fat diet showed normal weight gain, and normal accumulation of macrophages and lymphocytes in white adipose tissue (WAT) and liver, but increased neutrophil numbers especially in WAT. In addition, beta2-integrin KI mice fed on a high fat diet showed significantly increased peripheral insulin resistance in response to high-fat feeding. However, this was associated with improved glucose disposal following glucose load. Interestingly, beta2-integrin KI neutrophils produced more elastase in vitro, in response to stimulation. Beta2-integrin KI mice displayed variability of tissue inflammatory status, with liver and WAT exhibiting little or no difference in inflammation compared to high fat fed controls, whereas skeletal muscle demonstrated a raised inflammatory profile in association with higher elastase levels and diminished signalling through the IRS1-PKB pathway. In conclusion, although expression of dysfunctional beta2-integrins increased neutrophil production and infiltration into tissue, skeletal muscle was the most affected tissue exhibiting evidence of higher neutrophil activity and insulin resistance. Thus, beta2-integrins modulate glucose homeostasis during high fat feeding predominantly through actions on skeletal muscle to affect metabolic phenotype in vivo.</description><subject>Adipose tissue</subject><subject>Adipose Tissue, White - immunology</subject><subject>Animal tissues</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Biotechnology</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>CD18 Antigens - chemistry</subject><subject>CD18 Antigens - genetics</subject><subject>CD18 Antigens - metabolism</subject><subject>Dendritic cells</subject><subject>Development and progression</subject><subject>Diabetes</subject><subject>Diet</subject><subject>Diet, High-Fat</subject><subject>Elastase</subject><subject>Feeding</subject><subject>Glucose</subject><subject>High fat diet</subject><subject>Homeostasis</subject><subject>Hospitals</subject><subject>Infiltration</subject><subject>Inflammation</subject><subject>Insulin</subject><subject>Insulin Resistance</subject><subject>Integrins</subject><subject>Leukocytes</subject><subject>Leukocytes (neutrophilic)</subject><subject>Liver</subject><subject>Liver - immunology</subject><subject>Lymphocytes</subject><subject>Macrophages</subject><subject>Macrophages - metabolism</subject><subject>Medical research</subject><subject>Medical schools</subject><subject>Medicine</subject><subject>Metabolic disorders</subject><subject>Mice</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Mutation</subject><subject>Neutrophil Infiltration</subject><subject>Neutrophilia</subject><subject>Neutrophils</subject><subject>Obesity</subject><subject>Obesity - genetics</subject><subject>Obesity - immunology</subject><subject>Obesity - metabolism</subject><subject>Patient outcomes</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Regulation</subject><subject>Risk factors</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Skeletal muscle</subject><subject>T-Lymphocytes - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1GL1DAQx4so3nn6DUQLgii4a9KmTfoiHId3Lqwe3J2-hjSd7mZNkzVJRT-A39t0t3ds5R6khCaT3_wnM8kkyXOM5jin-P3G9s4IPd9aA3OEc8Zo9iA5xlWezcoM5Q8P5kfJE-83CBU5K8vHyVFWElTQMj9O_nxWEtKlkN-VWaU1BJHNFibAyimTnvdGBmVNegWdiOsL3UvrIb2xGpwwIY22660KkNo2XRjfazWwXvkgjIR36Rfog7PbtdJxu1U6OLHTE6YZDFp03c7wNHnUCu3h2fg_Sb6ef7w5-zRbXl4szk6XM1lWWZjVFWVNg4qypqUs40A1lbEWjYypUcwIYawATEjbyBxEIwqIUIFEmzPUyDI_SV7udbfaej5W0HNMY6VwVdAiEos90Vix4VunOuF-cysU3xmsW3HhgpIauMgIhTJvEaYZYS2tmkISJGtGKkZrQqLWhzFaX3fQSDAxfz0Rne4YteYr-5OTguWY0SjwZhRw9kcPPvBOeQlaCwO2352bIUqrbDj3q3_Q-7MbqZWICSjT2hhXDqL8lGQVyxiuhrDze6j4NdApGZ9bvEmYOrydOEQmwK-wEr33fHF99f_s5bcp-_qAXYPQYe2t7ocn46cg2YPSWe8dtHdFxogP3XJbDT50Cx-7Jbq9OLygO6fb9sj_Aj9yEBw</recordid><startdate>20150925</startdate><enddate>20150925</enddate><creator>Meakin, Paul J</creator><creator>Morrison, Vicky L</creator><creator>Sneddon, Claire C</creator><creator>Savinko, Terhi</creator><creator>Uotila, Liisa</creator><creator>Jalicy, Susan M</creator><creator>Gabriel, Jennie L</creator><creator>Kang, Li</creator><creator>Ashford, Michael L J</creator><creator>Fagerholm, Susanna C</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150925</creationdate><title>Mice Lacking beta2-Integrin Function Remain Glucose Tolerant in Spite of Insulin Resistance, Neutrophil Infiltration and Inflammation</title><author>Meakin, Paul J ; Morrison, Vicky L ; Sneddon, Claire C ; Savinko, Terhi ; Uotila, Liisa ; Jalicy, Susan M ; Gabriel, Jennie L ; Kang, Li ; Ashford, Michael L J ; Fagerholm, Susanna C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-b978dd056b76c676c0b7c371dc00571844885e144fdc3eada5e76c50af380dc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adipose tissue</topic><topic>Adipose Tissue, White - immunology</topic><topic>Animal tissues</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Biotechnology</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>CD18 Antigens - chemistry</topic><topic>CD18 Antigens - genetics</topic><topic>CD18 Antigens - metabolism</topic><topic>Dendritic cells</topic><topic>Development and progression</topic><topic>Diabetes</topic><topic>Diet</topic><topic>Diet, High-Fat</topic><topic>Elastase</topic><topic>Feeding</topic><topic>Glucose</topic><topic>High fat diet</topic><topic>Homeostasis</topic><topic>Hospitals</topic><topic>Infiltration</topic><topic>Inflammation</topic><topic>Insulin</topic><topic>Insulin Resistance</topic><topic>Integrins</topic><topic>Leukocytes</topic><topic>Leukocytes (neutrophilic)</topic><topic>Liver</topic><topic>Liver - immunology</topic><topic>Lymphocytes</topic><topic>Macrophages</topic><topic>Macrophages - metabolism</topic><topic>Medical research</topic><topic>Medical schools</topic><topic>Medicine</topic><topic>Metabolic disorders</topic><topic>Mice</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Mutation</topic><topic>Neutrophil Infiltration</topic><topic>Neutrophilia</topic><topic>Neutrophils</topic><topic>Obesity</topic><topic>Obesity - genetics</topic><topic>Obesity - immunology</topic><topic>Obesity - metabolism</topic><topic>Patient outcomes</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Regulation</topic><topic>Risk factors</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Skeletal muscle</topic><topic>T-Lymphocytes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meakin, Paul J</creatorcontrib><creatorcontrib>Morrison, Vicky L</creatorcontrib><creatorcontrib>Sneddon, Claire C</creatorcontrib><creatorcontrib>Savinko, Terhi</creatorcontrib><creatorcontrib>Uotila, Liisa</creatorcontrib><creatorcontrib>Jalicy, Susan M</creatorcontrib><creatorcontrib>Gabriel, Jennie L</creatorcontrib><creatorcontrib>Kang, Li</creatorcontrib><creatorcontrib>Ashford, Michael L J</creatorcontrib><creatorcontrib>Fagerholm, Susanna C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meakin, Paul J</au><au>Morrison, Vicky L</au><au>Sneddon, Claire C</au><au>Savinko, Terhi</au><au>Uotila, Liisa</au><au>Jalicy, Susan M</au><au>Gabriel, Jennie L</au><au>Kang, Li</au><au>Ashford, Michael L J</au><au>Fagerholm, Susanna C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mice Lacking beta2-Integrin Function Remain Glucose Tolerant in Spite of Insulin Resistance, Neutrophil Infiltration and Inflammation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-09-25</date><risdate>2015</risdate><volume>10</volume><issue>9</issue><spage>e0138872</spage><epage>e0138872</epage><pages>e0138872-e0138872</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Beta2-integrins are important in leukocyte trafficking and function, and are regulated through the binding of cytoplasmic proteins, such as kindlin-3, to their intracellular domain. Here, we investigate the involvement of beta2-integrins in the regulation of metabolic disease using mice where the kindlin-3 binding site in the beta2-integrin cytoplasmic tail has been mutated (TTT/AAA-beta2-integrin knock-in (KI) mice), leading to expressed but dysfunctional beta2-integrins and significant neutrophilia in vivo. Beta2-integrin KI mice fed on a high fat diet showed normal weight gain, and normal accumulation of macrophages and lymphocytes in white adipose tissue (WAT) and liver, but increased neutrophil numbers especially in WAT. In addition, beta2-integrin KI mice fed on a high fat diet showed significantly increased peripheral insulin resistance in response to high-fat feeding. However, this was associated with improved glucose disposal following glucose load. Interestingly, beta2-integrin KI neutrophils produced more elastase in vitro, in response to stimulation. Beta2-integrin KI mice displayed variability of tissue inflammatory status, with liver and WAT exhibiting little or no difference in inflammation compared to high fat fed controls, whereas skeletal muscle demonstrated a raised inflammatory profile in association with higher elastase levels and diminished signalling through the IRS1-PKB pathway. In conclusion, although expression of dysfunctional beta2-integrins increased neutrophil production and infiltration into tissue, skeletal muscle was the most affected tissue exhibiting evidence of higher neutrophil activity and insulin resistance. Thus, beta2-integrins modulate glucose homeostasis during high fat feeding predominantly through actions on skeletal muscle to affect metabolic phenotype in vivo.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26405763</pmid><doi>10.1371/journal.pone.0138872</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-09, Vol.10 (9), p.e0138872-e0138872
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1719319575
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adipose tissue
Adipose Tissue, White - immunology
Animal tissues
Animals
Binding Sites
Biotechnology
Cancer
Care and treatment
CD18 Antigens - chemistry
CD18 Antigens - genetics
CD18 Antigens - metabolism
Dendritic cells
Development and progression
Diabetes
Diet
Diet, High-Fat
Elastase
Feeding
Glucose
High fat diet
Homeostasis
Hospitals
Infiltration
Inflammation
Insulin
Insulin Resistance
Integrins
Leukocytes
Leukocytes (neutrophilic)
Liver
Liver - immunology
Lymphocytes
Macrophages
Macrophages - metabolism
Medical research
Medical schools
Medicine
Metabolic disorders
Mice
Muscles
Musculoskeletal system
Mutation
Neutrophil Infiltration
Neutrophilia
Neutrophils
Obesity
Obesity - genetics
Obesity - immunology
Obesity - metabolism
Patient outcomes
Phenotypes
Proteins
Regulation
Risk factors
Rodents
Signal transduction
Skeletal muscle
T-Lymphocytes - metabolism
title Mice Lacking beta2-Integrin Function Remain Glucose Tolerant in Spite of Insulin Resistance, Neutrophil Infiltration and Inflammation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T08%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mice%20Lacking%20beta2-Integrin%20Function%20Remain%20Glucose%20Tolerant%20in%20Spite%20of%20Insulin%20Resistance,%20Neutrophil%20Infiltration%20and%20Inflammation&rft.jtitle=PloS%20one&rft.au=Meakin,%20Paul%20J&rft.date=2015-09-25&rft.volume=10&rft.issue=9&rft.spage=e0138872&rft.epage=e0138872&rft.pages=e0138872-e0138872&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0138872&rft_dat=%3Cgale_plos_%3EA429828197%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1719319575&rft_id=info:pmid/26405763&rft_galeid=A429828197&rft_doaj_id=oai_doaj_org_article_a247e63f017248f79d5c40cb84987b44&rfr_iscdi=true