An Efficient Stepwise Statistical Test to Identify Multiple Linked Human Genetic Variants Associated with Specific Phenotypic Traits

Recent advances in genotyping methodologies have allowed genome-wide association studies (GWAS) to accurately identify genetic variants that associate with common or pathological complex traits. Although most GWAS have focused on associations with single genetic variants, joint identification of mul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-09, Vol.10 (9), p.e0138700-e0138700
Hauptverfasser: Huh, Iksoo, Kwon, Min-Seok, Park, Taesung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0138700
container_issue 9
container_start_page e0138700
container_title PloS one
container_volume 10
creator Huh, Iksoo
Kwon, Min-Seok
Park, Taesung
description Recent advances in genotyping methodologies have allowed genome-wide association studies (GWAS) to accurately identify genetic variants that associate with common or pathological complex traits. Although most GWAS have focused on associations with single genetic variants, joint identification of multiple genetic variants, and how they interact, is essential for understanding the genetic architecture of complex phenotypic traits. Here, we propose an efficient stepwise method based on the Cochran-Mantel-Haenszel test (for stratified categorical data) to identify causal joint multiple genetic variants in GWAS. This method combines the CMH statistic with a stepwise procedure to detect multiple genetic variants associated with specific categorical traits, using a series of associated I × J contingency tables and a null hypothesis of no phenotype association. Through a new stratification scheme based on the sum of minor allele count criteria, we make the method more feasible for GWAS data having sample sizes of several thousands. We also examine the properties of the proposed stepwise method via simulation studies, and show that the stepwise CMH test performs better than other existing methods (e.g., logistic regression and detection of associations by Markov blanket) for identifying multiple genetic variants. Finally, we apply the proposed approach to two genomic sequencing datasets to detect linked genetic variants associated with bipolar disorder and obesity, respectively.
doi_str_mv 10.1371/journal.pone.0138700
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1719319177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_370bd777616a4efaa561c57b38c4ca52</doaj_id><sourcerecordid>1718075077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-4c5d9cc9d1c0925e8e514469d84d241f72bdf701439b3b33c9f8bc96cb26607a3</originalsourceid><addsrcrecordid>eNptUktvEzEYXCEQfcA_QGCJC5cEe_3avSBFVWkjBYHUwNXy2t7GwbG3tpcq9_5w3CStWsTJI3tmvoenqt4hOEWYo8_rMEYv3XQI3kwhwg2H8EV1jFpcT1gN8csn-Kg6SWkNIcUNY6-ro5oRyNoaHld3Mw_O-94qa3wGV9kMtzaZAmS2KVslHVialEEOYK4LxfZb8G102Q7OgIX1v40Gl-NGenBhvCkC8EtGK31OYJZSUFbmwri1eQWuBqNsqQR-rIwPeTsUuIzS5vSmetVLl8zbw3la_fx6vjy7nCy-X8zPZouJojXLE6KobpVqNVKwralpDEWEsFY3RNcE9bzudM8hIrjtcIexavumUy1TXc0Y5BKfVh_2voMLSRwWmATiZVGoRZwXxnzP0EGuxRDtRsatCNKK3UWI10LGMqUzAnPYac45Q0wS00tJGVKUd7hRRElaF68vh2pjtzFale1F6Z6ZPn_xdiWuwx9BaINJQ4rBp4NBDDdj-QWxsUkZ56Q3Ydz13UBO4a7vj_9Q_z8d2bNUDClF0z82g6C4D9WDStyHShxCVWTvnw7yKHpIEf4LH0XMag</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1719319177</pqid></control><display><type>article</type><title>An Efficient Stepwise Statistical Test to Identify Multiple Linked Human Genetic Variants Associated with Specific Phenotypic Traits</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Huh, Iksoo ; Kwon, Min-Seok ; Park, Taesung</creator><contributor>Chen, Zhongxue</contributor><creatorcontrib>Huh, Iksoo ; Kwon, Min-Seok ; Park, Taesung ; Chen, Zhongxue</creatorcontrib><description>Recent advances in genotyping methodologies have allowed genome-wide association studies (GWAS) to accurately identify genetic variants that associate with common or pathological complex traits. Although most GWAS have focused on associations with single genetic variants, joint identification of multiple genetic variants, and how they interact, is essential for understanding the genetic architecture of complex phenotypic traits. Here, we propose an efficient stepwise method based on the Cochran-Mantel-Haenszel test (for stratified categorical data) to identify causal joint multiple genetic variants in GWAS. This method combines the CMH statistic with a stepwise procedure to detect multiple genetic variants associated with specific categorical traits, using a series of associated I × J contingency tables and a null hypothesis of no phenotype association. Through a new stratification scheme based on the sum of minor allele count criteria, we make the method more feasible for GWAS data having sample sizes of several thousands. We also examine the properties of the proposed stepwise method via simulation studies, and show that the stepwise CMH test performs better than other existing methods (e.g., logistic regression and detection of associations by Markov blanket) for identifying multiple genetic variants. Finally, we apply the proposed approach to two genomic sequencing datasets to detect linked genetic variants associated with bipolar disorder and obesity, respectively.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0138700</identifier><identifier>PMID: 26406920</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alcohol ; Bioinformatics ; Bipolar disorder ; Cardiovascular disease ; Contingency ; Contingency tables ; Coronary vessels ; Datasets ; Diabetes ; Gene sequencing ; Genes ; Genetic Association Studies - methods ; Genetic diversity ; Genetic variance ; Genome, Human ; Genome-wide association studies ; Genomes ; Genomics ; Genotyping ; Humans ; Identification ; Interdisciplinary aspects ; Markov Chains ; Markov processes ; Methods ; Models, Genetic ; Null hypothesis ; Obesity ; Phenotypes ; Polymorphism, Single Nucleotide ; Psychiatry ; Quantitative Trait Loci ; Regression Analysis ; Statistical analysis ; Studies ; Variables</subject><ispartof>PloS one, 2015-09, Vol.10 (9), p.e0138700-e0138700</ispartof><rights>2015 Huh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Huh et al 2015 Huh et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-4c5d9cc9d1c0925e8e514469d84d241f72bdf701439b3b33c9f8bc96cb26607a3</citedby><cites>FETCH-LOGICAL-c526t-4c5d9cc9d1c0925e8e514469d84d241f72bdf701439b3b33c9f8bc96cb26607a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4583484/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4583484/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26406920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chen, Zhongxue</contributor><creatorcontrib>Huh, Iksoo</creatorcontrib><creatorcontrib>Kwon, Min-Seok</creatorcontrib><creatorcontrib>Park, Taesung</creatorcontrib><title>An Efficient Stepwise Statistical Test to Identify Multiple Linked Human Genetic Variants Associated with Specific Phenotypic Traits</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Recent advances in genotyping methodologies have allowed genome-wide association studies (GWAS) to accurately identify genetic variants that associate with common or pathological complex traits. Although most GWAS have focused on associations with single genetic variants, joint identification of multiple genetic variants, and how they interact, is essential for understanding the genetic architecture of complex phenotypic traits. Here, we propose an efficient stepwise method based on the Cochran-Mantel-Haenszel test (for stratified categorical data) to identify causal joint multiple genetic variants in GWAS. This method combines the CMH statistic with a stepwise procedure to detect multiple genetic variants associated with specific categorical traits, using a series of associated I × J contingency tables and a null hypothesis of no phenotype association. Through a new stratification scheme based on the sum of minor allele count criteria, we make the method more feasible for GWAS data having sample sizes of several thousands. We also examine the properties of the proposed stepwise method via simulation studies, and show that the stepwise CMH test performs better than other existing methods (e.g., logistic regression and detection of associations by Markov blanket) for identifying multiple genetic variants. Finally, we apply the proposed approach to two genomic sequencing datasets to detect linked genetic variants associated with bipolar disorder and obesity, respectively.</description><subject>Alcohol</subject><subject>Bioinformatics</subject><subject>Bipolar disorder</subject><subject>Cardiovascular disease</subject><subject>Contingency</subject><subject>Contingency tables</subject><subject>Coronary vessels</subject><subject>Datasets</subject><subject>Diabetes</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic Association Studies - methods</subject><subject>Genetic diversity</subject><subject>Genetic variance</subject><subject>Genome, Human</subject><subject>Genome-wide association studies</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotyping</subject><subject>Humans</subject><subject>Identification</subject><subject>Interdisciplinary aspects</subject><subject>Markov Chains</subject><subject>Markov processes</subject><subject>Methods</subject><subject>Models, Genetic</subject><subject>Null hypothesis</subject><subject>Obesity</subject><subject>Phenotypes</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Psychiatry</subject><subject>Quantitative Trait Loci</subject><subject>Regression Analysis</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Variables</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUktvEzEYXCEQfcA_QGCJC5cEe_3avSBFVWkjBYHUwNXy2t7GwbG3tpcq9_5w3CStWsTJI3tmvoenqt4hOEWYo8_rMEYv3XQI3kwhwg2H8EV1jFpcT1gN8csn-Kg6SWkNIcUNY6-ro5oRyNoaHld3Mw_O-94qa3wGV9kMtzaZAmS2KVslHVialEEOYK4LxfZb8G102Q7OgIX1v40Gl-NGenBhvCkC8EtGK31OYJZSUFbmwri1eQWuBqNsqQR-rIwPeTsUuIzS5vSmetVLl8zbw3la_fx6vjy7nCy-X8zPZouJojXLE6KobpVqNVKwralpDEWEsFY3RNcE9bzudM8hIrjtcIexavumUy1TXc0Y5BKfVh_2voMLSRwWmATiZVGoRZwXxnzP0EGuxRDtRsatCNKK3UWI10LGMqUzAnPYac45Q0wS00tJGVKUd7hRRElaF68vh2pjtzFale1F6Z6ZPn_xdiWuwx9BaINJQ4rBp4NBDDdj-QWxsUkZ56Q3Ydz13UBO4a7vj_9Q_z8d2bNUDClF0z82g6C4D9WDStyHShxCVWTvnw7yKHpIEf4LH0XMag</recordid><startdate>20150925</startdate><enddate>20150925</enddate><creator>Huh, Iksoo</creator><creator>Kwon, Min-Seok</creator><creator>Park, Taesung</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150925</creationdate><title>An Efficient Stepwise Statistical Test to Identify Multiple Linked Human Genetic Variants Associated with Specific Phenotypic Traits</title><author>Huh, Iksoo ; Kwon, Min-Seok ; Park, Taesung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-4c5d9cc9d1c0925e8e514469d84d241f72bdf701439b3b33c9f8bc96cb26607a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alcohol</topic><topic>Bioinformatics</topic><topic>Bipolar disorder</topic><topic>Cardiovascular disease</topic><topic>Contingency</topic><topic>Contingency tables</topic><topic>Coronary vessels</topic><topic>Datasets</topic><topic>Diabetes</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic Association Studies - methods</topic><topic>Genetic diversity</topic><topic>Genetic variance</topic><topic>Genome, Human</topic><topic>Genome-wide association studies</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotyping</topic><topic>Humans</topic><topic>Identification</topic><topic>Interdisciplinary aspects</topic><topic>Markov Chains</topic><topic>Markov processes</topic><topic>Methods</topic><topic>Models, Genetic</topic><topic>Null hypothesis</topic><topic>Obesity</topic><topic>Phenotypes</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Psychiatry</topic><topic>Quantitative Trait Loci</topic><topic>Regression Analysis</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huh, Iksoo</creatorcontrib><creatorcontrib>Kwon, Min-Seok</creatorcontrib><creatorcontrib>Park, Taesung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huh, Iksoo</au><au>Kwon, Min-Seok</au><au>Park, Taesung</au><au>Chen, Zhongxue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Stepwise Statistical Test to Identify Multiple Linked Human Genetic Variants Associated with Specific Phenotypic Traits</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-09-25</date><risdate>2015</risdate><volume>10</volume><issue>9</issue><spage>e0138700</spage><epage>e0138700</epage><pages>e0138700-e0138700</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Recent advances in genotyping methodologies have allowed genome-wide association studies (GWAS) to accurately identify genetic variants that associate with common or pathological complex traits. Although most GWAS have focused on associations with single genetic variants, joint identification of multiple genetic variants, and how they interact, is essential for understanding the genetic architecture of complex phenotypic traits. Here, we propose an efficient stepwise method based on the Cochran-Mantel-Haenszel test (for stratified categorical data) to identify causal joint multiple genetic variants in GWAS. This method combines the CMH statistic with a stepwise procedure to detect multiple genetic variants associated with specific categorical traits, using a series of associated I × J contingency tables and a null hypothesis of no phenotype association. Through a new stratification scheme based on the sum of minor allele count criteria, we make the method more feasible for GWAS data having sample sizes of several thousands. We also examine the properties of the proposed stepwise method via simulation studies, and show that the stepwise CMH test performs better than other existing methods (e.g., logistic regression and detection of associations by Markov blanket) for identifying multiple genetic variants. Finally, we apply the proposed approach to two genomic sequencing datasets to detect linked genetic variants associated with bipolar disorder and obesity, respectively.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26406920</pmid><doi>10.1371/journal.pone.0138700</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-09, Vol.10 (9), p.e0138700-e0138700
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1719319177
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Alcohol
Bioinformatics
Bipolar disorder
Cardiovascular disease
Contingency
Contingency tables
Coronary vessels
Datasets
Diabetes
Gene sequencing
Genes
Genetic Association Studies - methods
Genetic diversity
Genetic variance
Genome, Human
Genome-wide association studies
Genomes
Genomics
Genotyping
Humans
Identification
Interdisciplinary aspects
Markov Chains
Markov processes
Methods
Models, Genetic
Null hypothesis
Obesity
Phenotypes
Polymorphism, Single Nucleotide
Psychiatry
Quantitative Trait Loci
Regression Analysis
Statistical analysis
Studies
Variables
title An Efficient Stepwise Statistical Test to Identify Multiple Linked Human Genetic Variants Associated with Specific Phenotypic Traits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A12%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Stepwise%20Statistical%20Test%20to%20Identify%20Multiple%20Linked%20Human%20Genetic%20Variants%20Associated%20with%20Specific%20Phenotypic%20Traits&rft.jtitle=PloS%20one&rft.au=Huh,%20Iksoo&rft.date=2015-09-25&rft.volume=10&rft.issue=9&rft.spage=e0138700&rft.epage=e0138700&rft.pages=e0138700-e0138700&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0138700&rft_dat=%3Cproquest_plos_%3E1718075077%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1719319177&rft_id=info:pmid/26406920&rft_doaj_id=oai_doaj_org_article_370bd777616a4efaa561c57b38c4ca52&rfr_iscdi=true