Mycobacterium tuberculosis Is Resistant to Isoniazid at a Slow Growth Rate by Single Nucleotide Polymorphisms in katG Codon Ser315

An important aim for improving TB treatment is to shorten the period of antibiotic therapy without increasing relapse rates or encouraging the development of antibiotic-resistant strains. In any M. tuberculosis population there is a proportion of bacteria that are drug-tolerant; this might be becaus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015, Vol.10 (9), p.e0138253-e0138253
Hauptverfasser: Jeeves, Rose E, Marriott, Alice A N, Pullan, Steven T, Hatch, Kim A, Allnutt, Jon C, Freire-Martin, Irene, Hendon-Dunn, Charlotte L, Watson, Robert, Witney, Adam A, Tyler, Richard H, Arnold, Catherine, Marsh, Philip D, McHugh, Timothy D, Bacon, Joanna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0138253
container_issue 9
container_start_page e0138253
container_title PloS one
container_volume 10
creator Jeeves, Rose E
Marriott, Alice A N
Pullan, Steven T
Hatch, Kim A
Allnutt, Jon C
Freire-Martin, Irene
Hendon-Dunn, Charlotte L
Watson, Robert
Witney, Adam A
Tyler, Richard H
Arnold, Catherine
Marsh, Philip D
McHugh, Timothy D
Bacon, Joanna
description An important aim for improving TB treatment is to shorten the period of antibiotic therapy without increasing relapse rates or encouraging the development of antibiotic-resistant strains. In any M. tuberculosis population there is a proportion of bacteria that are drug-tolerant; this might be because of pre-existing populations of slow growing/non replicating bacteria that are protected from antibiotic action due to the expression of a phenotype that limits drug activity. We addressed this question by observing populations of either slow growing (constant 69.3h mean generation time) or fast growing bacilli (constant 23.1h mean generation time) in their response to the effects of isoniazid exposure, using controlled and defined growth in chemostats. Phenotypic differences were detected between the populations at the two growth rates including expression of efflux mechanisms and the involvement of antisense RNA/small RNA in the regulation of a drug-tolerant phenotype, which has not been explored previously for M. tuberculosis. Genotypic analyses showed that slow growing bacilli develop resistance to isoniazid through mutations specifically in katG codon Ser315 which are present in approximately 50-90% of all isoniazid-resistant clinical isolates. The fast growing bacilli persisted as a mixed population with katG mutations distributed throughout the gene. Mutations in katG codon Ser315 appear to have a fitness cost in vitro and particularly in fast growing cultures. Our results suggest a requirement for functional katG-encoded catalase-peroxide in the slow growers but not the fast-growing bacteria, which may explain why katG codon Ser315 mutations are favoured in the slow growing cultures.
doi_str_mv 10.1371/journal.pone.0138253
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1719288585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b77774f4b89f45aa86fd10187fd3db40</doaj_id><sourcerecordid>3828177801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3713-4781c7d97f3bd3e000cff6bd730aaf63e6205ac0f250b042cdfe1f3fbaccc8663</originalsourceid><addsrcrecordid>eNptkk1vEzEQhlcIREvhHyCwxIVLgr1e27sXJBRBiFQ-1MDZ8mfi4F0H20sVjvxy3GZbtQhfPLbfeWcea6rqOYJzhBl6swtjHISf78Ng5hDhtib4QXWKOlzPaA3xwzvxSfUkpR2EBLeUPq5OalrkkNLT6s-ngwpSqGyiG3uQR2miGn1ILoFVAhemBFkMGeRQzmFw4rfTQGQgwNqHS7CM4TJvwYXIBsgDWLth4w34PCpvQnbagK_BH_oQ91uX-gTcAH6IvASLoMMA1iZiRJ5Wj6zwyTyb9rPq-4f33xYfZ-dflqvFu_OZKrh41rAWKaY7ZrHU2EAIlbVUaoahEJZiU0CJUNDWBErY1Epbgyy2BU6pgo3PqpdH333B49P3JY4Y6uq2JS0pitVRoYPY8X10vYgHHoTj1xchbriI2RU2LllZjW1k29mGCNFSqxFELbMaa9nA4vV2qjbK3mhlhhyFv2d6_2VwW74Jv3hDGEEdKwavJ4MYfo4mZd67pIz3YjBhvO6bdk0p2RXpq3-k_6drjioVQ0rR2NtmEORXI3WTxa9Gik8jVdJe3AW5TbqZIfwXuiHMEw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1719288585</pqid></control><display><type>article</type><title>Mycobacterium tuberculosis Is Resistant to Isoniazid at a Slow Growth Rate by Single Nucleotide Polymorphisms in katG Codon Ser315</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jeeves, Rose E ; Marriott, Alice A N ; Pullan, Steven T ; Hatch, Kim A ; Allnutt, Jon C ; Freire-Martin, Irene ; Hendon-Dunn, Charlotte L ; Watson, Robert ; Witney, Adam A ; Tyler, Richard H ; Arnold, Catherine ; Marsh, Philip D ; McHugh, Timothy D ; Bacon, Joanna</creator><contributor>Mokrousov, Igor</contributor><creatorcontrib>Jeeves, Rose E ; Marriott, Alice A N ; Pullan, Steven T ; Hatch, Kim A ; Allnutt, Jon C ; Freire-Martin, Irene ; Hendon-Dunn, Charlotte L ; Watson, Robert ; Witney, Adam A ; Tyler, Richard H ; Arnold, Catherine ; Marsh, Philip D ; McHugh, Timothy D ; Bacon, Joanna ; Mokrousov, Igor</creatorcontrib><description>An important aim for improving TB treatment is to shorten the period of antibiotic therapy without increasing relapse rates or encouraging the development of antibiotic-resistant strains. In any M. tuberculosis population there is a proportion of bacteria that are drug-tolerant; this might be because of pre-existing populations of slow growing/non replicating bacteria that are protected from antibiotic action due to the expression of a phenotype that limits drug activity. We addressed this question by observing populations of either slow growing (constant 69.3h mean generation time) or fast growing bacilli (constant 23.1h mean generation time) in their response to the effects of isoniazid exposure, using controlled and defined growth in chemostats. Phenotypic differences were detected between the populations at the two growth rates including expression of efflux mechanisms and the involvement of antisense RNA/small RNA in the regulation of a drug-tolerant phenotype, which has not been explored previously for M. tuberculosis. Genotypic analyses showed that slow growing bacilli develop resistance to isoniazid through mutations specifically in katG codon Ser315 which are present in approximately 50-90% of all isoniazid-resistant clinical isolates. The fast growing bacilli persisted as a mixed population with katG mutations distributed throughout the gene. Mutations in katG codon Ser315 appear to have a fitness cost in vitro and particularly in fast growing cultures. Our results suggest a requirement for functional katG-encoded catalase-peroxide in the slow growers but not the fast-growing bacteria, which may explain why katG codon Ser315 mutations are favoured in the slow growing cultures.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0138253</identifier><identifier>PMID: 26382066</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antibiotic resistance ; Antibiotics ; Antisense RNA ; Antitubercular Agents - pharmacology ; Antitubercular Agents - therapeutic use ; Bacilli ; Bacteria ; Bacterial Proteins - genetics ; Besra ; Catalase ; Catalase - genetics ; Chemostats ; Chemotherapy ; Clinical isolates ; Codon ; DNA Mutational Analysis ; Drug resistance ; Drug Resistance, Microbial - genetics ; Efflux ; Fitness ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Bacterial - drug effects ; Gene Expression Regulation, Enzymologic - drug effects ; Growth rate ; Humans ; Hypotheses ; Isoniazid ; Isoniazid - pharmacology ; Isoniazid - therapeutic use ; Metabolism ; Microbial Sensitivity Tests ; Mutation ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - drug effects ; Mycobacterium tuberculosis - genetics ; Mycobacterium tuberculosis - growth &amp; development ; Peroxide ; Phenotypes ; Point Mutation ; Polymorphism, Single Nucleotide ; Populations ; Public health ; Replication ; Reproductive fitness ; Ribonucleic acid ; RNA ; Serine - genetics ; Single-nucleotide polymorphism ; Tuberculosis ; Tuberculosis, Multidrug-Resistant - genetics ; Tuberculosis, Multidrug-Resistant - microbiology</subject><ispartof>PloS one, 2015, Vol.10 (9), p.e0138253-e0138253</ispartof><rights>2015 Jeeves et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Jeeves et al 2015 Jeeves et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3713-4781c7d97f3bd3e000cff6bd730aaf63e6205ac0f250b042cdfe1f3fbaccc8663</citedby><cites>FETCH-LOGICAL-c3713-4781c7d97f3bd3e000cff6bd730aaf63e6205ac0f250b042cdfe1f3fbaccc8663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4575197/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4575197/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,4024,23866,27923,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26382066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mokrousov, Igor</contributor><creatorcontrib>Jeeves, Rose E</creatorcontrib><creatorcontrib>Marriott, Alice A N</creatorcontrib><creatorcontrib>Pullan, Steven T</creatorcontrib><creatorcontrib>Hatch, Kim A</creatorcontrib><creatorcontrib>Allnutt, Jon C</creatorcontrib><creatorcontrib>Freire-Martin, Irene</creatorcontrib><creatorcontrib>Hendon-Dunn, Charlotte L</creatorcontrib><creatorcontrib>Watson, Robert</creatorcontrib><creatorcontrib>Witney, Adam A</creatorcontrib><creatorcontrib>Tyler, Richard H</creatorcontrib><creatorcontrib>Arnold, Catherine</creatorcontrib><creatorcontrib>Marsh, Philip D</creatorcontrib><creatorcontrib>McHugh, Timothy D</creatorcontrib><creatorcontrib>Bacon, Joanna</creatorcontrib><title>Mycobacterium tuberculosis Is Resistant to Isoniazid at a Slow Growth Rate by Single Nucleotide Polymorphisms in katG Codon Ser315</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>An important aim for improving TB treatment is to shorten the period of antibiotic therapy without increasing relapse rates or encouraging the development of antibiotic-resistant strains. In any M. tuberculosis population there is a proportion of bacteria that are drug-tolerant; this might be because of pre-existing populations of slow growing/non replicating bacteria that are protected from antibiotic action due to the expression of a phenotype that limits drug activity. We addressed this question by observing populations of either slow growing (constant 69.3h mean generation time) or fast growing bacilli (constant 23.1h mean generation time) in their response to the effects of isoniazid exposure, using controlled and defined growth in chemostats. Phenotypic differences were detected between the populations at the two growth rates including expression of efflux mechanisms and the involvement of antisense RNA/small RNA in the regulation of a drug-tolerant phenotype, which has not been explored previously for M. tuberculosis. Genotypic analyses showed that slow growing bacilli develop resistance to isoniazid through mutations specifically in katG codon Ser315 which are present in approximately 50-90% of all isoniazid-resistant clinical isolates. The fast growing bacilli persisted as a mixed population with katG mutations distributed throughout the gene. Mutations in katG codon Ser315 appear to have a fitness cost in vitro and particularly in fast growing cultures. Our results suggest a requirement for functional katG-encoded catalase-peroxide in the slow growers but not the fast-growing bacteria, which may explain why katG codon Ser315 mutations are favoured in the slow growing cultures.</description><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Antisense RNA</subject><subject>Antitubercular Agents - pharmacology</subject><subject>Antitubercular Agents - therapeutic use</subject><subject>Bacilli</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Besra</subject><subject>Catalase</subject><subject>Catalase - genetics</subject><subject>Chemostats</subject><subject>Chemotherapy</subject><subject>Clinical isolates</subject><subject>Codon</subject><subject>DNA Mutational Analysis</subject><subject>Drug resistance</subject><subject>Drug Resistance, Microbial - genetics</subject><subject>Efflux</subject><subject>Fitness</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Bacterial - drug effects</subject><subject>Gene Expression Regulation, Enzymologic - drug effects</subject><subject>Growth rate</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Isoniazid</subject><subject>Isoniazid - pharmacology</subject><subject>Isoniazid - therapeutic use</subject><subject>Metabolism</subject><subject>Microbial Sensitivity Tests</subject><subject>Mutation</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - drug effects</subject><subject>Mycobacterium tuberculosis - genetics</subject><subject>Mycobacterium tuberculosis - growth &amp; development</subject><subject>Peroxide</subject><subject>Phenotypes</subject><subject>Point Mutation</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Populations</subject><subject>Public health</subject><subject>Replication</subject><subject>Reproductive fitness</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Serine - genetics</subject><subject>Single-nucleotide polymorphism</subject><subject>Tuberculosis</subject><subject>Tuberculosis, Multidrug-Resistant - genetics</subject><subject>Tuberculosis, Multidrug-Resistant - microbiology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1vEzEQhlcIREvhHyCwxIVLgr1e27sXJBRBiFQ-1MDZ8mfi4F0H20sVjvxy3GZbtQhfPLbfeWcea6rqOYJzhBl6swtjHISf78Ng5hDhtib4QXWKOlzPaA3xwzvxSfUkpR2EBLeUPq5OalrkkNLT6s-ngwpSqGyiG3uQR2miGn1ILoFVAhemBFkMGeRQzmFw4rfTQGQgwNqHS7CM4TJvwYXIBsgDWLth4w34PCpvQnbagK_BH_oQ91uX-gTcAH6IvASLoMMA1iZiRJ5Wj6zwyTyb9rPq-4f33xYfZ-dflqvFu_OZKrh41rAWKaY7ZrHU2EAIlbVUaoahEJZiU0CJUNDWBErY1Epbgyy2BU6pgo3PqpdH333B49P3JY4Y6uq2JS0pitVRoYPY8X10vYgHHoTj1xchbriI2RU2LllZjW1k29mGCNFSqxFELbMaa9nA4vV2qjbK3mhlhhyFv2d6_2VwW74Jv3hDGEEdKwavJ4MYfo4mZd67pIz3YjBhvO6bdk0p2RXpq3-k_6drjioVQ0rR2NtmEORXI3WTxa9Gik8jVdJe3AW5TbqZIfwXuiHMEw</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Jeeves, Rose E</creator><creator>Marriott, Alice A N</creator><creator>Pullan, Steven T</creator><creator>Hatch, Kim A</creator><creator>Allnutt, Jon C</creator><creator>Freire-Martin, Irene</creator><creator>Hendon-Dunn, Charlotte L</creator><creator>Watson, Robert</creator><creator>Witney, Adam A</creator><creator>Tyler, Richard H</creator><creator>Arnold, Catherine</creator><creator>Marsh, Philip D</creator><creator>McHugh, Timothy D</creator><creator>Bacon, Joanna</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>2015</creationdate><title>Mycobacterium tuberculosis Is Resistant to Isoniazid at a Slow Growth Rate by Single Nucleotide Polymorphisms in katG Codon Ser315</title><author>Jeeves, Rose E ; Marriott, Alice A N ; Pullan, Steven T ; Hatch, Kim A ; Allnutt, Jon C ; Freire-Martin, Irene ; Hendon-Dunn, Charlotte L ; Watson, Robert ; Witney, Adam A ; Tyler, Richard H ; Arnold, Catherine ; Marsh, Philip D ; McHugh, Timothy D ; Bacon, Joanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3713-4781c7d97f3bd3e000cff6bd730aaf63e6205ac0f250b042cdfe1f3fbaccc8663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Antisense RNA</topic><topic>Antitubercular Agents - pharmacology</topic><topic>Antitubercular Agents - therapeutic use</topic><topic>Bacilli</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Besra</topic><topic>Catalase</topic><topic>Catalase - genetics</topic><topic>Chemostats</topic><topic>Chemotherapy</topic><topic>Clinical isolates</topic><topic>Codon</topic><topic>DNA Mutational Analysis</topic><topic>Drug resistance</topic><topic>Drug Resistance, Microbial - genetics</topic><topic>Efflux</topic><topic>Fitness</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Bacterial - drug effects</topic><topic>Gene Expression Regulation, Enzymologic - drug effects</topic><topic>Growth rate</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Isoniazid</topic><topic>Isoniazid - pharmacology</topic><topic>Isoniazid - therapeutic use</topic><topic>Metabolism</topic><topic>Microbial Sensitivity Tests</topic><topic>Mutation</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - drug effects</topic><topic>Mycobacterium tuberculosis - genetics</topic><topic>Mycobacterium tuberculosis - growth &amp; development</topic><topic>Peroxide</topic><topic>Phenotypes</topic><topic>Point Mutation</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Populations</topic><topic>Public health</topic><topic>Replication</topic><topic>Reproductive fitness</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Serine - genetics</topic><topic>Single-nucleotide polymorphism</topic><topic>Tuberculosis</topic><topic>Tuberculosis, Multidrug-Resistant - genetics</topic><topic>Tuberculosis, Multidrug-Resistant - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeeves, Rose E</creatorcontrib><creatorcontrib>Marriott, Alice A N</creatorcontrib><creatorcontrib>Pullan, Steven T</creatorcontrib><creatorcontrib>Hatch, Kim A</creatorcontrib><creatorcontrib>Allnutt, Jon C</creatorcontrib><creatorcontrib>Freire-Martin, Irene</creatorcontrib><creatorcontrib>Hendon-Dunn, Charlotte L</creatorcontrib><creatorcontrib>Watson, Robert</creatorcontrib><creatorcontrib>Witney, Adam A</creatorcontrib><creatorcontrib>Tyler, Richard H</creatorcontrib><creatorcontrib>Arnold, Catherine</creatorcontrib><creatorcontrib>Marsh, Philip D</creatorcontrib><creatorcontrib>McHugh, Timothy D</creatorcontrib><creatorcontrib>Bacon, Joanna</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeeves, Rose E</au><au>Marriott, Alice A N</au><au>Pullan, Steven T</au><au>Hatch, Kim A</au><au>Allnutt, Jon C</au><au>Freire-Martin, Irene</au><au>Hendon-Dunn, Charlotte L</au><au>Watson, Robert</au><au>Witney, Adam A</au><au>Tyler, Richard H</au><au>Arnold, Catherine</au><au>Marsh, Philip D</au><au>McHugh, Timothy D</au><au>Bacon, Joanna</au><au>Mokrousov, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mycobacterium tuberculosis Is Resistant to Isoniazid at a Slow Growth Rate by Single Nucleotide Polymorphisms in katG Codon Ser315</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015</date><risdate>2015</risdate><volume>10</volume><issue>9</issue><spage>e0138253</spage><epage>e0138253</epage><pages>e0138253-e0138253</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>An important aim for improving TB treatment is to shorten the period of antibiotic therapy without increasing relapse rates or encouraging the development of antibiotic-resistant strains. In any M. tuberculosis population there is a proportion of bacteria that are drug-tolerant; this might be because of pre-existing populations of slow growing/non replicating bacteria that are protected from antibiotic action due to the expression of a phenotype that limits drug activity. We addressed this question by observing populations of either slow growing (constant 69.3h mean generation time) or fast growing bacilli (constant 23.1h mean generation time) in their response to the effects of isoniazid exposure, using controlled and defined growth in chemostats. Phenotypic differences were detected between the populations at the two growth rates including expression of efflux mechanisms and the involvement of antisense RNA/small RNA in the regulation of a drug-tolerant phenotype, which has not been explored previously for M. tuberculosis. Genotypic analyses showed that slow growing bacilli develop resistance to isoniazid through mutations specifically in katG codon Ser315 which are present in approximately 50-90% of all isoniazid-resistant clinical isolates. The fast growing bacilli persisted as a mixed population with katG mutations distributed throughout the gene. Mutations in katG codon Ser315 appear to have a fitness cost in vitro and particularly in fast growing cultures. Our results suggest a requirement for functional katG-encoded catalase-peroxide in the slow growers but not the fast-growing bacteria, which may explain why katG codon Ser315 mutations are favoured in the slow growing cultures.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26382066</pmid><doi>10.1371/journal.pone.0138253</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015, Vol.10 (9), p.e0138253-e0138253
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1719288585
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Antibiotic resistance
Antibiotics
Antisense RNA
Antitubercular Agents - pharmacology
Antitubercular Agents - therapeutic use
Bacilli
Bacteria
Bacterial Proteins - genetics
Besra
Catalase
Catalase - genetics
Chemostats
Chemotherapy
Clinical isolates
Codon
DNA Mutational Analysis
Drug resistance
Drug Resistance, Microbial - genetics
Efflux
Fitness
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Bacterial - drug effects
Gene Expression Regulation, Enzymologic - drug effects
Growth rate
Humans
Hypotheses
Isoniazid
Isoniazid - pharmacology
Isoniazid - therapeutic use
Metabolism
Microbial Sensitivity Tests
Mutation
Mycobacterium tuberculosis
Mycobacterium tuberculosis - drug effects
Mycobacterium tuberculosis - genetics
Mycobacterium tuberculosis - growth & development
Peroxide
Phenotypes
Point Mutation
Polymorphism, Single Nucleotide
Populations
Public health
Replication
Reproductive fitness
Ribonucleic acid
RNA
Serine - genetics
Single-nucleotide polymorphism
Tuberculosis
Tuberculosis, Multidrug-Resistant - genetics
Tuberculosis, Multidrug-Resistant - microbiology
title Mycobacterium tuberculosis Is Resistant to Isoniazid at a Slow Growth Rate by Single Nucleotide Polymorphisms in katG Codon Ser315
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mycobacterium%20tuberculosis%20Is%20Resistant%20to%20Isoniazid%20at%20a%20Slow%20Growth%20Rate%20by%20Single%20Nucleotide%20Polymorphisms%20in%20katG%20Codon%20Ser315&rft.jtitle=PloS%20one&rft.au=Jeeves,%20Rose%20E&rft.date=2015&rft.volume=10&rft.issue=9&rft.spage=e0138253&rft.epage=e0138253&rft.pages=e0138253-e0138253&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0138253&rft_dat=%3Cproquest_plos_%3E3828177801%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1719288585&rft_id=info:pmid/26382066&rft_doaj_id=oai_doaj_org_article_b77774f4b89f45aa86fd10187fd3db40&rfr_iscdi=true