The Potential Regulatory Mechanisms of miR-196a in Huntington's Disease through Bioinformatic Analyses

High throughput screening is a powerful tool to identify the potential candidate molecules involved during disease progression. However, analysis of complicated data is one of the most challenging steps on the way to obtaining useful results from this approach. Previously, we showed that a specific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-09, Vol.10 (9), p.e0137637-e0137637
Hauptverfasser: Fu, Mu-Hui, Li, Chia-Ling, Lin, Hsiu-Lien, Tsai, Shaw-Jeng, Lai, Yen-Yu, Chang, Yu-Fan, Cheng, Pei-Hsun, Chen, Chuan-Mu, Yang, Shang-Hsun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0137637
container_issue 9
container_start_page e0137637
container_title PloS one
container_volume 10
creator Fu, Mu-Hui
Li, Chia-Ling
Lin, Hsiu-Lien
Tsai, Shaw-Jeng
Lai, Yen-Yu
Chang, Yu-Fan
Cheng, Pei-Hsun
Chen, Chuan-Mu
Yang, Shang-Hsun
description High throughput screening is a powerful tool to identify the potential candidate molecules involved during disease progression. However, analysis of complicated data is one of the most challenging steps on the way to obtaining useful results from this approach. Previously, we showed that a specific miRNA, miR-196a, could ameliorate the pathological phenotypes of Huntington's disease (HD) in different models, and performed high throughput screening by using the striatum of transgenic mice. In this study, we further tried to identify the potential regulatory mechanisms using different bioinformatic tools, including Database for Annotation, Visualization and Integrated Discovery (DAVID), Molecular Signatures Database (MSigDB), TargetScan and MetaCore. The results showed that miR-196a dominantly altered "ABC transporters", "RIG-I-like receptor signaling pathway", immune system", "adaptive immune system","tissue remodeling and wound repair" and "cytoskeleton remodeling". In addition, miR-196a also changed the expression of several well-defined pathways of HD, such as apoptosis and cell adhesion. Since these analyses showed the regulatory pathways are highly related to the modification of the cytoskeleton, we further confirmed that miR-196a could enhance the neurite outgrowth in neuroblastoma cells, suggesting miR-196a might provide beneficial functions through the alteration of cytoskeleton structures. Since impairment of the cytoskeleton has been reported in several neuronal diseases, this study will provide not only the potential working mechanisms of miR-196a but also insights for therapeutic strategies for use with different neuronal diseases.
doi_str_mv 10.1371/journal.pone.0137637
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1719285782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A428834134</galeid><doaj_id>oai_doaj_org_article_d4accc46c6fa4709b6e249d9e2f2fd59</doaj_id><sourcerecordid>A428834134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-5f08b53a69afc0747d8bfc0801963441bdb5a9dcb9a03e71014f296ef8c7f0ff3</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEoqXwDxBEqsTHYRc7dpz4grSUj65UVLQUrpbj2ImrxF5sB7H_HqebVhvUA8oh1viZ9x2PPUnyHIIlRAV8d20HZ3i33FojlyCGCCoeJMeQomxBMoAeHqyPkifeXwOQo5KQx8lRFlmCS3CcqKtWpt9skCZo3qUb2QwdD9bt0q9StNxo3_vUqrTXmwWkhKfapOdDhE0TrHnt04_aS-5lGlpnh6ZNP2irjbKu50GLdBUr3HnpnyaPFO-8fDb9T5Ifnz9dnZ0vLi6_rM9WFwtBaBYWuQJllSNOKFcCFLioyyouShCtEcawqquc01pUlAMkCwggVhklUpWiUEApdJK83OtuO-vZ1CLPYAFpVuZFmUVivSdqy6_Z1umeux2zXLObgHUN4y6W3klWYy6EwEQQxXEBaEVkhmlNZaYyVec0ar2f3Iaql7WITXS8m4nOd4xuWWN_M5wXGAIcBd5MAs7-GqQPrNdeyK7jRtrhpm5EMcR09Dr9B73_dBPV8HiA8SKirxhF2QpnZYkwRKPt8h4qfrXstYjvSekYnyW8nSVEJsg_oeGD92z9ffP_7OXPOfvqgG0l70LrbTcEbY2fg3gPCme9d1LdNRkCNo7DbTfYOA5sGoeY9uLwgu6Sbt8_-gtPJAWc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1719285782</pqid></control><display><type>article</type><title>The Potential Regulatory Mechanisms of miR-196a in Huntington's Disease through Bioinformatic Analyses</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Fu, Mu-Hui ; Li, Chia-Ling ; Lin, Hsiu-Lien ; Tsai, Shaw-Jeng ; Lai, Yen-Yu ; Chang, Yu-Fan ; Cheng, Pei-Hsun ; Chen, Chuan-Mu ; Yang, Shang-Hsun</creator><contributor>Zhang, Jianhua</contributor><creatorcontrib>Fu, Mu-Hui ; Li, Chia-Ling ; Lin, Hsiu-Lien ; Tsai, Shaw-Jeng ; Lai, Yen-Yu ; Chang, Yu-Fan ; Cheng, Pei-Hsun ; Chen, Chuan-Mu ; Yang, Shang-Hsun ; Zhang, Jianhua</creatorcontrib><description>High throughput screening is a powerful tool to identify the potential candidate molecules involved during disease progression. However, analysis of complicated data is one of the most challenging steps on the way to obtaining useful results from this approach. Previously, we showed that a specific miRNA, miR-196a, could ameliorate the pathological phenotypes of Huntington's disease (HD) in different models, and performed high throughput screening by using the striatum of transgenic mice. In this study, we further tried to identify the potential regulatory mechanisms using different bioinformatic tools, including Database for Annotation, Visualization and Integrated Discovery (DAVID), Molecular Signatures Database (MSigDB), TargetScan and MetaCore. The results showed that miR-196a dominantly altered "ABC transporters", "RIG-I-like receptor signaling pathway", immune system", "adaptive immune system","tissue remodeling and wound repair" and "cytoskeleton remodeling". In addition, miR-196a also changed the expression of several well-defined pathways of HD, such as apoptosis and cell adhesion. Since these analyses showed the regulatory pathways are highly related to the modification of the cytoskeleton, we further confirmed that miR-196a could enhance the neurite outgrowth in neuroblastoma cells, suggesting miR-196a might provide beneficial functions through the alteration of cytoskeleton structures. Since impairment of the cytoskeleton has been reported in several neuronal diseases, this study will provide not only the potential working mechanisms of miR-196a but also insights for therapeutic strategies for use with different neuronal diseases.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0137637</identifier><identifier>PMID: 26376480</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptive systems ; Adhesive strength ; Agricultural biotechnology ; Analysis ; Animal models ; Animals ; Annotations ; Apoptosis ; Axonogenesis ; Biomarkers - metabolism ; Brain ; Care and treatment ; Cell adhesion ; Computational Biology - methods ; Corpus Striatum - cytology ; Corpus Striatum - metabolism ; Cytoskeleton ; Data processing ; Development and progression ; Disease Models, Animal ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation ; Genetic aspects ; Genetic engineering ; High-throughput screening ; Huntington Disease - genetics ; Huntington Disease - metabolism ; Huntington Disease - pathology ; Huntington's disease ; Huntingtons disease ; Immune system ; Medicine ; Mice ; Mice, Transgenic ; MicroRNA ; MicroRNAs - genetics ; miRNA ; Neostriatum ; Neurites - metabolism ; Neuroblastoma ; Neuroblastoma - genetics ; Neuroblastoma - pathology ; Neuroblastoma cells ; Neuroblasts ; Neurodegeneration ; Patient outcomes ; Phenotype ; Physiology ; Proteins ; Regulatory mechanisms (biology) ; Rodents ; Screening ; Signal transduction ; Transgenic animals ; Transgenic mice ; Wound healing</subject><ispartof>PloS one, 2015-09, Vol.10 (9), p.e0137637-e0137637</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Fu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Fu et al 2015 Fu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-5f08b53a69afc0747d8bfc0801963441bdb5a9dcb9a03e71014f296ef8c7f0ff3</citedby><cites>FETCH-LOGICAL-c692t-5f08b53a69afc0747d8bfc0801963441bdb5a9dcb9a03e71014f296ef8c7f0ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4574104/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4574104/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79472,79473</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26376480$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhang, Jianhua</contributor><creatorcontrib>Fu, Mu-Hui</creatorcontrib><creatorcontrib>Li, Chia-Ling</creatorcontrib><creatorcontrib>Lin, Hsiu-Lien</creatorcontrib><creatorcontrib>Tsai, Shaw-Jeng</creatorcontrib><creatorcontrib>Lai, Yen-Yu</creatorcontrib><creatorcontrib>Chang, Yu-Fan</creatorcontrib><creatorcontrib>Cheng, Pei-Hsun</creatorcontrib><creatorcontrib>Chen, Chuan-Mu</creatorcontrib><creatorcontrib>Yang, Shang-Hsun</creatorcontrib><title>The Potential Regulatory Mechanisms of miR-196a in Huntington's Disease through Bioinformatic Analyses</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>High throughput screening is a powerful tool to identify the potential candidate molecules involved during disease progression. However, analysis of complicated data is one of the most challenging steps on the way to obtaining useful results from this approach. Previously, we showed that a specific miRNA, miR-196a, could ameliorate the pathological phenotypes of Huntington's disease (HD) in different models, and performed high throughput screening by using the striatum of transgenic mice. In this study, we further tried to identify the potential regulatory mechanisms using different bioinformatic tools, including Database for Annotation, Visualization and Integrated Discovery (DAVID), Molecular Signatures Database (MSigDB), TargetScan and MetaCore. The results showed that miR-196a dominantly altered "ABC transporters", "RIG-I-like receptor signaling pathway", immune system", "adaptive immune system","tissue remodeling and wound repair" and "cytoskeleton remodeling". In addition, miR-196a also changed the expression of several well-defined pathways of HD, such as apoptosis and cell adhesion. Since these analyses showed the regulatory pathways are highly related to the modification of the cytoskeleton, we further confirmed that miR-196a could enhance the neurite outgrowth in neuroblastoma cells, suggesting miR-196a might provide beneficial functions through the alteration of cytoskeleton structures. Since impairment of the cytoskeleton has been reported in several neuronal diseases, this study will provide not only the potential working mechanisms of miR-196a but also insights for therapeutic strategies for use with different neuronal diseases.</description><subject>Adaptive systems</subject><subject>Adhesive strength</subject><subject>Agricultural biotechnology</subject><subject>Analysis</subject><subject>Animal models</subject><subject>Animals</subject><subject>Annotations</subject><subject>Apoptosis</subject><subject>Axonogenesis</subject><subject>Biomarkers - metabolism</subject><subject>Brain</subject><subject>Care and treatment</subject><subject>Cell adhesion</subject><subject>Computational Biology - methods</subject><subject>Corpus Striatum - cytology</subject><subject>Corpus Striatum - metabolism</subject><subject>Cytoskeleton</subject><subject>Data processing</subject><subject>Development and progression</subject><subject>Disease Models, Animal</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>High-throughput screening</subject><subject>Huntington Disease - genetics</subject><subject>Huntington Disease - metabolism</subject><subject>Huntington Disease - pathology</subject><subject>Huntington's disease</subject><subject>Huntingtons disease</subject><subject>Immune system</subject><subject>Medicine</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>MicroRNA</subject><subject>MicroRNAs - genetics</subject><subject>miRNA</subject><subject>Neostriatum</subject><subject>Neurites - metabolism</subject><subject>Neuroblastoma</subject><subject>Neuroblastoma - genetics</subject><subject>Neuroblastoma - pathology</subject><subject>Neuroblastoma cells</subject><subject>Neuroblasts</subject><subject>Neurodegeneration</subject><subject>Patient outcomes</subject><subject>Phenotype</subject><subject>Physiology</subject><subject>Proteins</subject><subject>Regulatory mechanisms (biology)</subject><subject>Rodents</subject><subject>Screening</subject><subject>Signal transduction</subject><subject>Transgenic animals</subject><subject>Transgenic mice</subject><subject>Wound healing</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEoqXwDxBEqsTHYRc7dpz4grSUj65UVLQUrpbj2ImrxF5sB7H_HqebVhvUA8oh1viZ9x2PPUnyHIIlRAV8d20HZ3i33FojlyCGCCoeJMeQomxBMoAeHqyPkifeXwOQo5KQx8lRFlmCS3CcqKtWpt9skCZo3qUb2QwdD9bt0q9StNxo3_vUqrTXmwWkhKfapOdDhE0TrHnt04_aS-5lGlpnh6ZNP2irjbKu50GLdBUr3HnpnyaPFO-8fDb9T5Ifnz9dnZ0vLi6_rM9WFwtBaBYWuQJllSNOKFcCFLioyyouShCtEcawqquc01pUlAMkCwggVhklUpWiUEApdJK83OtuO-vZ1CLPYAFpVuZFmUVivSdqy6_Z1umeux2zXLObgHUN4y6W3klWYy6EwEQQxXEBaEVkhmlNZaYyVec0ar2f3Iaql7WITXS8m4nOd4xuWWN_M5wXGAIcBd5MAs7-GqQPrNdeyK7jRtrhpm5EMcR09Dr9B73_dBPV8HiA8SKirxhF2QpnZYkwRKPt8h4qfrXstYjvSekYnyW8nSVEJsg_oeGD92z9ffP_7OXPOfvqgG0l70LrbTcEbY2fg3gPCme9d1LdNRkCNo7DbTfYOA5sGoeY9uLwgu6Sbt8_-gtPJAWc</recordid><startdate>20150916</startdate><enddate>20150916</enddate><creator>Fu, Mu-Hui</creator><creator>Li, Chia-Ling</creator><creator>Lin, Hsiu-Lien</creator><creator>Tsai, Shaw-Jeng</creator><creator>Lai, Yen-Yu</creator><creator>Chang, Yu-Fan</creator><creator>Cheng, Pei-Hsun</creator><creator>Chen, Chuan-Mu</creator><creator>Yang, Shang-Hsun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150916</creationdate><title>The Potential Regulatory Mechanisms of miR-196a in Huntington's Disease through Bioinformatic Analyses</title><author>Fu, Mu-Hui ; Li, Chia-Ling ; Lin, Hsiu-Lien ; Tsai, Shaw-Jeng ; Lai, Yen-Yu ; Chang, Yu-Fan ; Cheng, Pei-Hsun ; Chen, Chuan-Mu ; Yang, Shang-Hsun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-5f08b53a69afc0747d8bfc0801963441bdb5a9dcb9a03e71014f296ef8c7f0ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive systems</topic><topic>Adhesive strength</topic><topic>Agricultural biotechnology</topic><topic>Analysis</topic><topic>Animal models</topic><topic>Animals</topic><topic>Annotations</topic><topic>Apoptosis</topic><topic>Axonogenesis</topic><topic>Biomarkers - metabolism</topic><topic>Brain</topic><topic>Care and treatment</topic><topic>Cell adhesion</topic><topic>Computational Biology - methods</topic><topic>Corpus Striatum - cytology</topic><topic>Corpus Striatum - metabolism</topic><topic>Cytoskeleton</topic><topic>Data processing</topic><topic>Development and progression</topic><topic>Disease Models, Animal</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>High-throughput screening</topic><topic>Huntington Disease - genetics</topic><topic>Huntington Disease - metabolism</topic><topic>Huntington Disease - pathology</topic><topic>Huntington's disease</topic><topic>Huntingtons disease</topic><topic>Immune system</topic><topic>Medicine</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>MicroRNA</topic><topic>MicroRNAs - genetics</topic><topic>miRNA</topic><topic>Neostriatum</topic><topic>Neurites - metabolism</topic><topic>Neuroblastoma</topic><topic>Neuroblastoma - genetics</topic><topic>Neuroblastoma - pathology</topic><topic>Neuroblastoma cells</topic><topic>Neuroblasts</topic><topic>Neurodegeneration</topic><topic>Patient outcomes</topic><topic>Phenotype</topic><topic>Physiology</topic><topic>Proteins</topic><topic>Regulatory mechanisms (biology)</topic><topic>Rodents</topic><topic>Screening</topic><topic>Signal transduction</topic><topic>Transgenic animals</topic><topic>Transgenic mice</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Mu-Hui</creatorcontrib><creatorcontrib>Li, Chia-Ling</creatorcontrib><creatorcontrib>Lin, Hsiu-Lien</creatorcontrib><creatorcontrib>Tsai, Shaw-Jeng</creatorcontrib><creatorcontrib>Lai, Yen-Yu</creatorcontrib><creatorcontrib>Chang, Yu-Fan</creatorcontrib><creatorcontrib>Cheng, Pei-Hsun</creatorcontrib><creatorcontrib>Chen, Chuan-Mu</creatorcontrib><creatorcontrib>Yang, Shang-Hsun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Mu-Hui</au><au>Li, Chia-Ling</au><au>Lin, Hsiu-Lien</au><au>Tsai, Shaw-Jeng</au><au>Lai, Yen-Yu</au><au>Chang, Yu-Fan</au><au>Cheng, Pei-Hsun</au><au>Chen, Chuan-Mu</au><au>Yang, Shang-Hsun</au><au>Zhang, Jianhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Potential Regulatory Mechanisms of miR-196a in Huntington's Disease through Bioinformatic Analyses</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-09-16</date><risdate>2015</risdate><volume>10</volume><issue>9</issue><spage>e0137637</spage><epage>e0137637</epage><pages>e0137637-e0137637</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>High throughput screening is a powerful tool to identify the potential candidate molecules involved during disease progression. However, analysis of complicated data is one of the most challenging steps on the way to obtaining useful results from this approach. Previously, we showed that a specific miRNA, miR-196a, could ameliorate the pathological phenotypes of Huntington's disease (HD) in different models, and performed high throughput screening by using the striatum of transgenic mice. In this study, we further tried to identify the potential regulatory mechanisms using different bioinformatic tools, including Database for Annotation, Visualization and Integrated Discovery (DAVID), Molecular Signatures Database (MSigDB), TargetScan and MetaCore. The results showed that miR-196a dominantly altered "ABC transporters", "RIG-I-like receptor signaling pathway", immune system", "adaptive immune system","tissue remodeling and wound repair" and "cytoskeleton remodeling". In addition, miR-196a also changed the expression of several well-defined pathways of HD, such as apoptosis and cell adhesion. Since these analyses showed the regulatory pathways are highly related to the modification of the cytoskeleton, we further confirmed that miR-196a could enhance the neurite outgrowth in neuroblastoma cells, suggesting miR-196a might provide beneficial functions through the alteration of cytoskeleton structures. Since impairment of the cytoskeleton has been reported in several neuronal diseases, this study will provide not only the potential working mechanisms of miR-196a but also insights for therapeutic strategies for use with different neuronal diseases.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26376480</pmid><doi>10.1371/journal.pone.0137637</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-09, Vol.10 (9), p.e0137637-e0137637
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1719285782
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Adaptive systems
Adhesive strength
Agricultural biotechnology
Analysis
Animal models
Animals
Annotations
Apoptosis
Axonogenesis
Biomarkers - metabolism
Brain
Care and treatment
Cell adhesion
Computational Biology - methods
Corpus Striatum - cytology
Corpus Striatum - metabolism
Cytoskeleton
Data processing
Development and progression
Disease Models, Animal
Gene expression
Gene Expression Profiling
Gene Expression Regulation
Genetic aspects
Genetic engineering
High-throughput screening
Huntington Disease - genetics
Huntington Disease - metabolism
Huntington Disease - pathology
Huntington's disease
Huntingtons disease
Immune system
Medicine
Mice
Mice, Transgenic
MicroRNA
MicroRNAs - genetics
miRNA
Neostriatum
Neurites - metabolism
Neuroblastoma
Neuroblastoma - genetics
Neuroblastoma - pathology
Neuroblastoma cells
Neuroblasts
Neurodegeneration
Patient outcomes
Phenotype
Physiology
Proteins
Regulatory mechanisms (biology)
Rodents
Screening
Signal transduction
Transgenic animals
Transgenic mice
Wound healing
title The Potential Regulatory Mechanisms of miR-196a in Huntington's Disease through Bioinformatic Analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A09%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Potential%20Regulatory%20Mechanisms%20of%20miR-196a%20in%20Huntington's%20Disease%20through%20Bioinformatic%20Analyses&rft.jtitle=PloS%20one&rft.au=Fu,%20Mu-Hui&rft.date=2015-09-16&rft.volume=10&rft.issue=9&rft.spage=e0137637&rft.epage=e0137637&rft.pages=e0137637-e0137637&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0137637&rft_dat=%3Cgale_plos_%3EA428834134%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1719285782&rft_id=info:pmid/26376480&rft_galeid=A428834134&rft_doaj_id=oai_doaj_org_article_d4accc46c6fa4709b6e249d9e2f2fd59&rfr_iscdi=true