The Potential Regulatory Mechanisms of miR-196a in Huntington's Disease through Bioinformatic Analyses
High throughput screening is a powerful tool to identify the potential candidate molecules involved during disease progression. However, analysis of complicated data is one of the most challenging steps on the way to obtaining useful results from this approach. Previously, we showed that a specific...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-09, Vol.10 (9), p.e0137637-e0137637 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0137637 |
---|---|
container_issue | 9 |
container_start_page | e0137637 |
container_title | PloS one |
container_volume | 10 |
creator | Fu, Mu-Hui Li, Chia-Ling Lin, Hsiu-Lien Tsai, Shaw-Jeng Lai, Yen-Yu Chang, Yu-Fan Cheng, Pei-Hsun Chen, Chuan-Mu Yang, Shang-Hsun |
description | High throughput screening is a powerful tool to identify the potential candidate molecules involved during disease progression. However, analysis of complicated data is one of the most challenging steps on the way to obtaining useful results from this approach. Previously, we showed that a specific miRNA, miR-196a, could ameliorate the pathological phenotypes of Huntington's disease (HD) in different models, and performed high throughput screening by using the striatum of transgenic mice. In this study, we further tried to identify the potential regulatory mechanisms using different bioinformatic tools, including Database for Annotation, Visualization and Integrated Discovery (DAVID), Molecular Signatures Database (MSigDB), TargetScan and MetaCore. The results showed that miR-196a dominantly altered "ABC transporters", "RIG-I-like receptor signaling pathway", immune system", "adaptive immune system","tissue remodeling and wound repair" and "cytoskeleton remodeling". In addition, miR-196a also changed the expression of several well-defined pathways of HD, such as apoptosis and cell adhesion. Since these analyses showed the regulatory pathways are highly related to the modification of the cytoskeleton, we further confirmed that miR-196a could enhance the neurite outgrowth in neuroblastoma cells, suggesting miR-196a might provide beneficial functions through the alteration of cytoskeleton structures. Since impairment of the cytoskeleton has been reported in several neuronal diseases, this study will provide not only the potential working mechanisms of miR-196a but also insights for therapeutic strategies for use with different neuronal diseases. |
doi_str_mv | 10.1371/journal.pone.0137637 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1719285782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A428834134</galeid><doaj_id>oai_doaj_org_article_d4accc46c6fa4709b6e249d9e2f2fd59</doaj_id><sourcerecordid>A428834134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-5f08b53a69afc0747d8bfc0801963441bdb5a9dcb9a03e71014f296ef8c7f0ff3</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEoqXwDxBEqsTHYRc7dpz4grSUj65UVLQUrpbj2ImrxF5sB7H_HqebVhvUA8oh1viZ9x2PPUnyHIIlRAV8d20HZ3i33FojlyCGCCoeJMeQomxBMoAeHqyPkifeXwOQo5KQx8lRFlmCS3CcqKtWpt9skCZo3qUb2QwdD9bt0q9StNxo3_vUqrTXmwWkhKfapOdDhE0TrHnt04_aS-5lGlpnh6ZNP2irjbKu50GLdBUr3HnpnyaPFO-8fDb9T5Ifnz9dnZ0vLi6_rM9WFwtBaBYWuQJllSNOKFcCFLioyyouShCtEcawqquc01pUlAMkCwggVhklUpWiUEApdJK83OtuO-vZ1CLPYAFpVuZFmUVivSdqy6_Z1umeux2zXLObgHUN4y6W3klWYy6EwEQQxXEBaEVkhmlNZaYyVec0ar2f3Iaql7WITXS8m4nOd4xuWWN_M5wXGAIcBd5MAs7-GqQPrNdeyK7jRtrhpm5EMcR09Dr9B73_dBPV8HiA8SKirxhF2QpnZYkwRKPt8h4qfrXstYjvSekYnyW8nSVEJsg_oeGD92z9ffP_7OXPOfvqgG0l70LrbTcEbY2fg3gPCme9d1LdNRkCNo7DbTfYOA5sGoeY9uLwgu6Sbt8_-gtPJAWc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1719285782</pqid></control><display><type>article</type><title>The Potential Regulatory Mechanisms of miR-196a in Huntington's Disease through Bioinformatic Analyses</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Fu, Mu-Hui ; Li, Chia-Ling ; Lin, Hsiu-Lien ; Tsai, Shaw-Jeng ; Lai, Yen-Yu ; Chang, Yu-Fan ; Cheng, Pei-Hsun ; Chen, Chuan-Mu ; Yang, Shang-Hsun</creator><contributor>Zhang, Jianhua</contributor><creatorcontrib>Fu, Mu-Hui ; Li, Chia-Ling ; Lin, Hsiu-Lien ; Tsai, Shaw-Jeng ; Lai, Yen-Yu ; Chang, Yu-Fan ; Cheng, Pei-Hsun ; Chen, Chuan-Mu ; Yang, Shang-Hsun ; Zhang, Jianhua</creatorcontrib><description>High throughput screening is a powerful tool to identify the potential candidate molecules involved during disease progression. However, analysis of complicated data is one of the most challenging steps on the way to obtaining useful results from this approach. Previously, we showed that a specific miRNA, miR-196a, could ameliorate the pathological phenotypes of Huntington's disease (HD) in different models, and performed high throughput screening by using the striatum of transgenic mice. In this study, we further tried to identify the potential regulatory mechanisms using different bioinformatic tools, including Database for Annotation, Visualization and Integrated Discovery (DAVID), Molecular Signatures Database (MSigDB), TargetScan and MetaCore. The results showed that miR-196a dominantly altered "ABC transporters", "RIG-I-like receptor signaling pathway", immune system", "adaptive immune system","tissue remodeling and wound repair" and "cytoskeleton remodeling". In addition, miR-196a also changed the expression of several well-defined pathways of HD, such as apoptosis and cell adhesion. Since these analyses showed the regulatory pathways are highly related to the modification of the cytoskeleton, we further confirmed that miR-196a could enhance the neurite outgrowth in neuroblastoma cells, suggesting miR-196a might provide beneficial functions through the alteration of cytoskeleton structures. Since impairment of the cytoskeleton has been reported in several neuronal diseases, this study will provide not only the potential working mechanisms of miR-196a but also insights for therapeutic strategies for use with different neuronal diseases.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0137637</identifier><identifier>PMID: 26376480</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptive systems ; Adhesive strength ; Agricultural biotechnology ; Analysis ; Animal models ; Animals ; Annotations ; Apoptosis ; Axonogenesis ; Biomarkers - metabolism ; Brain ; Care and treatment ; Cell adhesion ; Computational Biology - methods ; Corpus Striatum - cytology ; Corpus Striatum - metabolism ; Cytoskeleton ; Data processing ; Development and progression ; Disease Models, Animal ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation ; Genetic aspects ; Genetic engineering ; High-throughput screening ; Huntington Disease - genetics ; Huntington Disease - metabolism ; Huntington Disease - pathology ; Huntington's disease ; Huntingtons disease ; Immune system ; Medicine ; Mice ; Mice, Transgenic ; MicroRNA ; MicroRNAs - genetics ; miRNA ; Neostriatum ; Neurites - metabolism ; Neuroblastoma ; Neuroblastoma - genetics ; Neuroblastoma - pathology ; Neuroblastoma cells ; Neuroblasts ; Neurodegeneration ; Patient outcomes ; Phenotype ; Physiology ; Proteins ; Regulatory mechanisms (biology) ; Rodents ; Screening ; Signal transduction ; Transgenic animals ; Transgenic mice ; Wound healing</subject><ispartof>PloS one, 2015-09, Vol.10 (9), p.e0137637-e0137637</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Fu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Fu et al 2015 Fu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-5f08b53a69afc0747d8bfc0801963441bdb5a9dcb9a03e71014f296ef8c7f0ff3</citedby><cites>FETCH-LOGICAL-c692t-5f08b53a69afc0747d8bfc0801963441bdb5a9dcb9a03e71014f296ef8c7f0ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4574104/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4574104/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79472,79473</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26376480$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhang, Jianhua</contributor><creatorcontrib>Fu, Mu-Hui</creatorcontrib><creatorcontrib>Li, Chia-Ling</creatorcontrib><creatorcontrib>Lin, Hsiu-Lien</creatorcontrib><creatorcontrib>Tsai, Shaw-Jeng</creatorcontrib><creatorcontrib>Lai, Yen-Yu</creatorcontrib><creatorcontrib>Chang, Yu-Fan</creatorcontrib><creatorcontrib>Cheng, Pei-Hsun</creatorcontrib><creatorcontrib>Chen, Chuan-Mu</creatorcontrib><creatorcontrib>Yang, Shang-Hsun</creatorcontrib><title>The Potential Regulatory Mechanisms of miR-196a in Huntington's Disease through Bioinformatic Analyses</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>High throughput screening is a powerful tool to identify the potential candidate molecules involved during disease progression. However, analysis of complicated data is one of the most challenging steps on the way to obtaining useful results from this approach. Previously, we showed that a specific miRNA, miR-196a, could ameliorate the pathological phenotypes of Huntington's disease (HD) in different models, and performed high throughput screening by using the striatum of transgenic mice. In this study, we further tried to identify the potential regulatory mechanisms using different bioinformatic tools, including Database for Annotation, Visualization and Integrated Discovery (DAVID), Molecular Signatures Database (MSigDB), TargetScan and MetaCore. The results showed that miR-196a dominantly altered "ABC transporters", "RIG-I-like receptor signaling pathway", immune system", "adaptive immune system","tissue remodeling and wound repair" and "cytoskeleton remodeling". In addition, miR-196a also changed the expression of several well-defined pathways of HD, such as apoptosis and cell adhesion. Since these analyses showed the regulatory pathways are highly related to the modification of the cytoskeleton, we further confirmed that miR-196a could enhance the neurite outgrowth in neuroblastoma cells, suggesting miR-196a might provide beneficial functions through the alteration of cytoskeleton structures. Since impairment of the cytoskeleton has been reported in several neuronal diseases, this study will provide not only the potential working mechanisms of miR-196a but also insights for therapeutic strategies for use with different neuronal diseases.</description><subject>Adaptive systems</subject><subject>Adhesive strength</subject><subject>Agricultural biotechnology</subject><subject>Analysis</subject><subject>Animal models</subject><subject>Animals</subject><subject>Annotations</subject><subject>Apoptosis</subject><subject>Axonogenesis</subject><subject>Biomarkers - metabolism</subject><subject>Brain</subject><subject>Care and treatment</subject><subject>Cell adhesion</subject><subject>Computational Biology - methods</subject><subject>Corpus Striatum - cytology</subject><subject>Corpus Striatum - metabolism</subject><subject>Cytoskeleton</subject><subject>Data processing</subject><subject>Development and progression</subject><subject>Disease Models, Animal</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>High-throughput screening</subject><subject>Huntington Disease - genetics</subject><subject>Huntington Disease - metabolism</subject><subject>Huntington Disease - pathology</subject><subject>Huntington's disease</subject><subject>Huntingtons disease</subject><subject>Immune system</subject><subject>Medicine</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>MicroRNA</subject><subject>MicroRNAs - genetics</subject><subject>miRNA</subject><subject>Neostriatum</subject><subject>Neurites - metabolism</subject><subject>Neuroblastoma</subject><subject>Neuroblastoma - genetics</subject><subject>Neuroblastoma - pathology</subject><subject>Neuroblastoma cells</subject><subject>Neuroblasts</subject><subject>Neurodegeneration</subject><subject>Patient outcomes</subject><subject>Phenotype</subject><subject>Physiology</subject><subject>Proteins</subject><subject>Regulatory mechanisms (biology)</subject><subject>Rodents</subject><subject>Screening</subject><subject>Signal transduction</subject><subject>Transgenic animals</subject><subject>Transgenic mice</subject><subject>Wound healing</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEoqXwDxBEqsTHYRc7dpz4grSUj65UVLQUrpbj2ImrxF5sB7H_HqebVhvUA8oh1viZ9x2PPUnyHIIlRAV8d20HZ3i33FojlyCGCCoeJMeQomxBMoAeHqyPkifeXwOQo5KQx8lRFlmCS3CcqKtWpt9skCZo3qUb2QwdD9bt0q9StNxo3_vUqrTXmwWkhKfapOdDhE0TrHnt04_aS-5lGlpnh6ZNP2irjbKu50GLdBUr3HnpnyaPFO-8fDb9T5Ifnz9dnZ0vLi6_rM9WFwtBaBYWuQJllSNOKFcCFLioyyouShCtEcawqquc01pUlAMkCwggVhklUpWiUEApdJK83OtuO-vZ1CLPYAFpVuZFmUVivSdqy6_Z1umeux2zXLObgHUN4y6W3klWYy6EwEQQxXEBaEVkhmlNZaYyVec0ar2f3Iaql7WITXS8m4nOd4xuWWN_M5wXGAIcBd5MAs7-GqQPrNdeyK7jRtrhpm5EMcR09Dr9B73_dBPV8HiA8SKirxhF2QpnZYkwRKPt8h4qfrXstYjvSekYnyW8nSVEJsg_oeGD92z9ffP_7OXPOfvqgG0l70LrbTcEbY2fg3gPCme9d1LdNRkCNo7DbTfYOA5sGoeY9uLwgu6Sbt8_-gtPJAWc</recordid><startdate>20150916</startdate><enddate>20150916</enddate><creator>Fu, Mu-Hui</creator><creator>Li, Chia-Ling</creator><creator>Lin, Hsiu-Lien</creator><creator>Tsai, Shaw-Jeng</creator><creator>Lai, Yen-Yu</creator><creator>Chang, Yu-Fan</creator><creator>Cheng, Pei-Hsun</creator><creator>Chen, Chuan-Mu</creator><creator>Yang, Shang-Hsun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150916</creationdate><title>The Potential Regulatory Mechanisms of miR-196a in Huntington's Disease through Bioinformatic Analyses</title><author>Fu, Mu-Hui ; Li, Chia-Ling ; Lin, Hsiu-Lien ; Tsai, Shaw-Jeng ; Lai, Yen-Yu ; Chang, Yu-Fan ; Cheng, Pei-Hsun ; Chen, Chuan-Mu ; Yang, Shang-Hsun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-5f08b53a69afc0747d8bfc0801963441bdb5a9dcb9a03e71014f296ef8c7f0ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive systems</topic><topic>Adhesive strength</topic><topic>Agricultural biotechnology</topic><topic>Analysis</topic><topic>Animal models</topic><topic>Animals</topic><topic>Annotations</topic><topic>Apoptosis</topic><topic>Axonogenesis</topic><topic>Biomarkers - metabolism</topic><topic>Brain</topic><topic>Care and treatment</topic><topic>Cell adhesion</topic><topic>Computational Biology - methods</topic><topic>Corpus Striatum - cytology</topic><topic>Corpus Striatum - metabolism</topic><topic>Cytoskeleton</topic><topic>Data processing</topic><topic>Development and progression</topic><topic>Disease Models, Animal</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>High-throughput screening</topic><topic>Huntington Disease - genetics</topic><topic>Huntington Disease - metabolism</topic><topic>Huntington Disease - pathology</topic><topic>Huntington's disease</topic><topic>Huntingtons disease</topic><topic>Immune system</topic><topic>Medicine</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>MicroRNA</topic><topic>MicroRNAs - genetics</topic><topic>miRNA</topic><topic>Neostriatum</topic><topic>Neurites - metabolism</topic><topic>Neuroblastoma</topic><topic>Neuroblastoma - genetics</topic><topic>Neuroblastoma - pathology</topic><topic>Neuroblastoma cells</topic><topic>Neuroblasts</topic><topic>Neurodegeneration</topic><topic>Patient outcomes</topic><topic>Phenotype</topic><topic>Physiology</topic><topic>Proteins</topic><topic>Regulatory mechanisms (biology)</topic><topic>Rodents</topic><topic>Screening</topic><topic>Signal transduction</topic><topic>Transgenic animals</topic><topic>Transgenic mice</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Mu-Hui</creatorcontrib><creatorcontrib>Li, Chia-Ling</creatorcontrib><creatorcontrib>Lin, Hsiu-Lien</creatorcontrib><creatorcontrib>Tsai, Shaw-Jeng</creatorcontrib><creatorcontrib>Lai, Yen-Yu</creatorcontrib><creatorcontrib>Chang, Yu-Fan</creatorcontrib><creatorcontrib>Cheng, Pei-Hsun</creatorcontrib><creatorcontrib>Chen, Chuan-Mu</creatorcontrib><creatorcontrib>Yang, Shang-Hsun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Mu-Hui</au><au>Li, Chia-Ling</au><au>Lin, Hsiu-Lien</au><au>Tsai, Shaw-Jeng</au><au>Lai, Yen-Yu</au><au>Chang, Yu-Fan</au><au>Cheng, Pei-Hsun</au><au>Chen, Chuan-Mu</au><au>Yang, Shang-Hsun</au><au>Zhang, Jianhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Potential Regulatory Mechanisms of miR-196a in Huntington's Disease through Bioinformatic Analyses</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-09-16</date><risdate>2015</risdate><volume>10</volume><issue>9</issue><spage>e0137637</spage><epage>e0137637</epage><pages>e0137637-e0137637</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>High throughput screening is a powerful tool to identify the potential candidate molecules involved during disease progression. However, analysis of complicated data is one of the most challenging steps on the way to obtaining useful results from this approach. Previously, we showed that a specific miRNA, miR-196a, could ameliorate the pathological phenotypes of Huntington's disease (HD) in different models, and performed high throughput screening by using the striatum of transgenic mice. In this study, we further tried to identify the potential regulatory mechanisms using different bioinformatic tools, including Database for Annotation, Visualization and Integrated Discovery (DAVID), Molecular Signatures Database (MSigDB), TargetScan and MetaCore. The results showed that miR-196a dominantly altered "ABC transporters", "RIG-I-like receptor signaling pathway", immune system", "adaptive immune system","tissue remodeling and wound repair" and "cytoskeleton remodeling". In addition, miR-196a also changed the expression of several well-defined pathways of HD, such as apoptosis and cell adhesion. Since these analyses showed the regulatory pathways are highly related to the modification of the cytoskeleton, we further confirmed that miR-196a could enhance the neurite outgrowth in neuroblastoma cells, suggesting miR-196a might provide beneficial functions through the alteration of cytoskeleton structures. Since impairment of the cytoskeleton has been reported in several neuronal diseases, this study will provide not only the potential working mechanisms of miR-196a but also insights for therapeutic strategies for use with different neuronal diseases.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26376480</pmid><doi>10.1371/journal.pone.0137637</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-09, Vol.10 (9), p.e0137637-e0137637 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1719285782 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adaptive systems Adhesive strength Agricultural biotechnology Analysis Animal models Animals Annotations Apoptosis Axonogenesis Biomarkers - metabolism Brain Care and treatment Cell adhesion Computational Biology - methods Corpus Striatum - cytology Corpus Striatum - metabolism Cytoskeleton Data processing Development and progression Disease Models, Animal Gene expression Gene Expression Profiling Gene Expression Regulation Genetic aspects Genetic engineering High-throughput screening Huntington Disease - genetics Huntington Disease - metabolism Huntington Disease - pathology Huntington's disease Huntingtons disease Immune system Medicine Mice Mice, Transgenic MicroRNA MicroRNAs - genetics miRNA Neostriatum Neurites - metabolism Neuroblastoma Neuroblastoma - genetics Neuroblastoma - pathology Neuroblastoma cells Neuroblasts Neurodegeneration Patient outcomes Phenotype Physiology Proteins Regulatory mechanisms (biology) Rodents Screening Signal transduction Transgenic animals Transgenic mice Wound healing |
title | The Potential Regulatory Mechanisms of miR-196a in Huntington's Disease through Bioinformatic Analyses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A09%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Potential%20Regulatory%20Mechanisms%20of%20miR-196a%20in%20Huntington's%20Disease%20through%20Bioinformatic%20Analyses&rft.jtitle=PloS%20one&rft.au=Fu,%20Mu-Hui&rft.date=2015-09-16&rft.volume=10&rft.issue=9&rft.spage=e0137637&rft.epage=e0137637&rft.pages=e0137637-e0137637&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0137637&rft_dat=%3Cgale_plos_%3EA428834134%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1719285782&rft_id=info:pmid/26376480&rft_galeid=A428834134&rft_doaj_id=oai_doaj_org_article_d4accc46c6fa4709b6e249d9e2f2fd59&rfr_iscdi=true |