Multi-Target Analysis and Design of Mitochondrial Metabolism
Analyzing and optimizing biological models is often identified as a research priority in biomedical engineering. An important feature of a model should be the ability to find the best condition in which an organism has to be grown in order to reach specific optimal output values chosen by the resear...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-09, Vol.10 (9), p.e0133825-e0133825 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0133825 |
---|---|
container_issue | 9 |
container_start_page | e0133825 |
container_title | PloS one |
container_volume | 10 |
creator | Angione, Claudio Costanza, Jole Carapezza, Giovanni Lió, Pietro Nicosia, Giuseppe |
description | Analyzing and optimizing biological models is often identified as a research priority in biomedical engineering. An important feature of a model should be the ability to find the best condition in which an organism has to be grown in order to reach specific optimal output values chosen by the researcher. In this work, we take into account a mitochondrial model analyzed with flux-balance analysis. The optimal design and assessment of these models is achieved through single- and/or multi-objective optimization techniques driven by epsilon-dominance and identifiability analysis. Our optimization algorithm searches for the values of the flux rates that optimize multiple cellular functions simultaneously. The optimization of the fluxes of the metabolic network includes not only input fluxes, but also internal fluxes. A faster convergence process with robust candidate solutions is permitted by a relaxed Pareto dominance, regulating the granularity of the approximation of the desired Pareto front. We find that the maximum ATP production is linked to a total consumption of NADH, and reaching the maximum amount of NADH leads to an increasing request of NADH from the external environment. Furthermore, the identifiability analysis characterizes the type and the stage of three monogenic diseases. Finally, we propose a new methodology to extend any constraint-based model using protein abundances. |
doi_str_mv | 10.1371/journal.pone.0133825 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1719285762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A428834135</galeid><doaj_id>oai_doaj_org_article_9091d9d7c41b4fde9f16379794b373af</doaj_id><sourcerecordid>A428834135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-e6ef245331bff1206339aa935a47c8ba0acece33c4fb13a032e7740c6173548f3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjElPmjQgwrB-DeywoKu3IU2TToZMMzapuP_ezE53mcpeSC4STp7znpyTN8ueYzTHwPC7jR_6Trr5znd6jjBAVZQPslPMoZjRAsHDo_NJ9iSEDUIlVJQ-zk4KCoyiqjrN3q8GF-3sSvatjvkiCV4HG3LZNflHHWzb5d7kKxu9Wvuu6a10-UpHWXtnw_Zp9shIF_SzcT_Lfnz-dHX-dXZx-WV5vriYKcqLONNUm4KUALg2BheIAnApOZSSMFXVEkmllQZQxNQYJIJCM0aQophBSSoDZ9nLg-7O-SDGxoPADPOiKhktErE8EI2XG7Hr7Vb218JLK24Cvm-F7KNVTguOOG54wxTBNTGN5ganaXDGSQ0M5L7ah7HaUG91o3QXe-kmotObzq5F638LUjJCCE0Cb0aB3v8adIhia4PSzslO--Hm3cDTPCqU0Ff_oPd3N1KtTA3YzvhUV-1FxYIUVQUEQ5mo-T1UWo3eWpVcYmyKTxLeThISE_Wf2MohBLH8_u3_2cufU_b1EbvW0sV18G6I1ndhCpIDqHofQq_N3ZAxEnuT305D7E0uRpOntBfHH3SXdOtq-AvCFfUc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1719285762</pqid></control><display><type>article</type><title>Multi-Target Analysis and Design of Mitochondrial Metabolism</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Angione, Claudio ; Costanza, Jole ; Carapezza, Giovanni ; Lió, Pietro ; Nicosia, Giuseppe</creator><contributor>Bader, Joel S.</contributor><creatorcontrib>Angione, Claudio ; Costanza, Jole ; Carapezza, Giovanni ; Lió, Pietro ; Nicosia, Giuseppe ; Bader, Joel S.</creatorcontrib><description>Analyzing and optimizing biological models is often identified as a research priority in biomedical engineering. An important feature of a model should be the ability to find the best condition in which an organism has to be grown in order to reach specific optimal output values chosen by the researcher. In this work, we take into account a mitochondrial model analyzed with flux-balance analysis. The optimal design and assessment of these models is achieved through single- and/or multi-objective optimization techniques driven by epsilon-dominance and identifiability analysis. Our optimization algorithm searches for the values of the flux rates that optimize multiple cellular functions simultaneously. The optimization of the fluxes of the metabolic network includes not only input fluxes, but also internal fluxes. A faster convergence process with robust candidate solutions is permitted by a relaxed Pareto dominance, regulating the granularity of the approximation of the desired Pareto front. We find that the maximum ATP production is linked to a total consumption of NADH, and reaching the maximum amount of NADH leads to an increasing request of NADH from the external environment. Furthermore, the identifiability analysis characterizes the type and the stage of three monogenic diseases. Finally, we propose a new methodology to extend any constraint-based model using protein abundances.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0133825</identifier><identifier>PMID: 26376088</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine Triphosphate - biosynthesis ; Algorithms ; Analysis ; Automation ; Bioinformatics ; Biological models (mathematics) ; Biology ; Biomedical engineering ; Computer science ; Constraint modelling ; Design analysis ; Design optimization ; Dominance ; Enzymes ; Fluxes ; Gene expression ; Ketoglutarate Dehydrogenase Complex - deficiency ; Laboratories ; Mathematics ; Metabolic Flux Analysis ; Metabolism ; Metabolites ; Mitochondria ; Mitochondria - metabolism ; Mitochondrial Proteins - metabolism ; Models, Biological ; Multiple objective analysis ; NAD - metabolism ; NADH ; Nicotinamide adenine dinucleotide ; Optimization ; Optimization algorithms ; Optimization theory ; Physiological aspects ; Proteins ; Quantitative genetics ; Sensitivity analysis ; Succinate Dehydrogenase - genetics</subject><ispartof>PloS one, 2015-09, Vol.10 (9), p.e0133825-e0133825</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Angione et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Angione et al 2015 Angione et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-e6ef245331bff1206339aa935a47c8ba0acece33c4fb13a032e7740c6173548f3</citedby><cites>FETCH-LOGICAL-c692t-e6ef245331bff1206339aa935a47c8ba0acece33c4fb13a032e7740c6173548f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4574446/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4574446/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26376088$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bader, Joel S.</contributor><creatorcontrib>Angione, Claudio</creatorcontrib><creatorcontrib>Costanza, Jole</creatorcontrib><creatorcontrib>Carapezza, Giovanni</creatorcontrib><creatorcontrib>Lió, Pietro</creatorcontrib><creatorcontrib>Nicosia, Giuseppe</creatorcontrib><title>Multi-Target Analysis and Design of Mitochondrial Metabolism</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Analyzing and optimizing biological models is often identified as a research priority in biomedical engineering. An important feature of a model should be the ability to find the best condition in which an organism has to be grown in order to reach specific optimal output values chosen by the researcher. In this work, we take into account a mitochondrial model analyzed with flux-balance analysis. The optimal design and assessment of these models is achieved through single- and/or multi-objective optimization techniques driven by epsilon-dominance and identifiability analysis. Our optimization algorithm searches for the values of the flux rates that optimize multiple cellular functions simultaneously. The optimization of the fluxes of the metabolic network includes not only input fluxes, but also internal fluxes. A faster convergence process with robust candidate solutions is permitted by a relaxed Pareto dominance, regulating the granularity of the approximation of the desired Pareto front. We find that the maximum ATP production is linked to a total consumption of NADH, and reaching the maximum amount of NADH leads to an increasing request of NADH from the external environment. Furthermore, the identifiability analysis characterizes the type and the stage of three monogenic diseases. Finally, we propose a new methodology to extend any constraint-based model using protein abundances.</description><subject>Adenosine Triphosphate - biosynthesis</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Automation</subject><subject>Bioinformatics</subject><subject>Biological models (mathematics)</subject><subject>Biology</subject><subject>Biomedical engineering</subject><subject>Computer science</subject><subject>Constraint modelling</subject><subject>Design analysis</subject><subject>Design optimization</subject><subject>Dominance</subject><subject>Enzymes</subject><subject>Fluxes</subject><subject>Gene expression</subject><subject>Ketoglutarate Dehydrogenase Complex - deficiency</subject><subject>Laboratories</subject><subject>Mathematics</subject><subject>Metabolic Flux Analysis</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Models, Biological</subject><subject>Multiple objective analysis</subject><subject>NAD - metabolism</subject><subject>NADH</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Optimization theory</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Quantitative genetics</subject><subject>Sensitivity analysis</subject><subject>Succinate Dehydrogenase - genetics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjElPmjQgwrB-DeywoKu3IU2TToZMMzapuP_ezE53mcpeSC4STp7znpyTN8ueYzTHwPC7jR_6Trr5znd6jjBAVZQPslPMoZjRAsHDo_NJ9iSEDUIlVJQ-zk4KCoyiqjrN3q8GF-3sSvatjvkiCV4HG3LZNflHHWzb5d7kKxu9Wvuu6a10-UpHWXtnw_Zp9shIF_SzcT_Lfnz-dHX-dXZx-WV5vriYKcqLONNUm4KUALg2BheIAnApOZSSMFXVEkmllQZQxNQYJIJCM0aQophBSSoDZ9nLg-7O-SDGxoPADPOiKhktErE8EI2XG7Hr7Vb218JLK24Cvm-F7KNVTguOOG54wxTBNTGN5ganaXDGSQ0M5L7ah7HaUG91o3QXe-kmotObzq5F638LUjJCCE0Cb0aB3v8adIhia4PSzslO--Hm3cDTPCqU0Ff_oPd3N1KtTA3YzvhUV-1FxYIUVQUEQ5mo-T1UWo3eWpVcYmyKTxLeThISE_Wf2MohBLH8_u3_2cufU_b1EbvW0sV18G6I1ndhCpIDqHofQq_N3ZAxEnuT305D7E0uRpOntBfHH3SXdOtq-AvCFfUc</recordid><startdate>20150916</startdate><enddate>20150916</enddate><creator>Angione, Claudio</creator><creator>Costanza, Jole</creator><creator>Carapezza, Giovanni</creator><creator>Lió, Pietro</creator><creator>Nicosia, Giuseppe</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150916</creationdate><title>Multi-Target Analysis and Design of Mitochondrial Metabolism</title><author>Angione, Claudio ; Costanza, Jole ; Carapezza, Giovanni ; Lió, Pietro ; Nicosia, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-e6ef245331bff1206339aa935a47c8ba0acece33c4fb13a032e7740c6173548f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adenosine Triphosphate - biosynthesis</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Automation</topic><topic>Bioinformatics</topic><topic>Biological models (mathematics)</topic><topic>Biology</topic><topic>Biomedical engineering</topic><topic>Computer science</topic><topic>Constraint modelling</topic><topic>Design analysis</topic><topic>Design optimization</topic><topic>Dominance</topic><topic>Enzymes</topic><topic>Fluxes</topic><topic>Gene expression</topic><topic>Ketoglutarate Dehydrogenase Complex - deficiency</topic><topic>Laboratories</topic><topic>Mathematics</topic><topic>Metabolic Flux Analysis</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Models, Biological</topic><topic>Multiple objective analysis</topic><topic>NAD - metabolism</topic><topic>NADH</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Optimization theory</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Quantitative genetics</topic><topic>Sensitivity analysis</topic><topic>Succinate Dehydrogenase - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angione, Claudio</creatorcontrib><creatorcontrib>Costanza, Jole</creatorcontrib><creatorcontrib>Carapezza, Giovanni</creatorcontrib><creatorcontrib>Lió, Pietro</creatorcontrib><creatorcontrib>Nicosia, Giuseppe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angione, Claudio</au><au>Costanza, Jole</au><au>Carapezza, Giovanni</au><au>Lió, Pietro</au><au>Nicosia, Giuseppe</au><au>Bader, Joel S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Target Analysis and Design of Mitochondrial Metabolism</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-09-16</date><risdate>2015</risdate><volume>10</volume><issue>9</issue><spage>e0133825</spage><epage>e0133825</epage><pages>e0133825-e0133825</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Analyzing and optimizing biological models is often identified as a research priority in biomedical engineering. An important feature of a model should be the ability to find the best condition in which an organism has to be grown in order to reach specific optimal output values chosen by the researcher. In this work, we take into account a mitochondrial model analyzed with flux-balance analysis. The optimal design and assessment of these models is achieved through single- and/or multi-objective optimization techniques driven by epsilon-dominance and identifiability analysis. Our optimization algorithm searches for the values of the flux rates that optimize multiple cellular functions simultaneously. The optimization of the fluxes of the metabolic network includes not only input fluxes, but also internal fluxes. A faster convergence process with robust candidate solutions is permitted by a relaxed Pareto dominance, regulating the granularity of the approximation of the desired Pareto front. We find that the maximum ATP production is linked to a total consumption of NADH, and reaching the maximum amount of NADH leads to an increasing request of NADH from the external environment. Furthermore, the identifiability analysis characterizes the type and the stage of three monogenic diseases. Finally, we propose a new methodology to extend any constraint-based model using protein abundances.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26376088</pmid><doi>10.1371/journal.pone.0133825</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-09, Vol.10 (9), p.e0133825-e0133825 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1719285762 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adenosine Triphosphate - biosynthesis Algorithms Analysis Automation Bioinformatics Biological models (mathematics) Biology Biomedical engineering Computer science Constraint modelling Design analysis Design optimization Dominance Enzymes Fluxes Gene expression Ketoglutarate Dehydrogenase Complex - deficiency Laboratories Mathematics Metabolic Flux Analysis Metabolism Metabolites Mitochondria Mitochondria - metabolism Mitochondrial Proteins - metabolism Models, Biological Multiple objective analysis NAD - metabolism NADH Nicotinamide adenine dinucleotide Optimization Optimization algorithms Optimization theory Physiological aspects Proteins Quantitative genetics Sensitivity analysis Succinate Dehydrogenase - genetics |
title | Multi-Target Analysis and Design of Mitochondrial Metabolism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A31%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Target%20Analysis%20and%20Design%20of%20Mitochondrial%20Metabolism&rft.jtitle=PloS%20one&rft.au=Angione,%20Claudio&rft.date=2015-09-16&rft.volume=10&rft.issue=9&rft.spage=e0133825&rft.epage=e0133825&rft.pages=e0133825-e0133825&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0133825&rft_dat=%3Cgale_plos_%3EA428834135%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1719285762&rft_id=info:pmid/26376088&rft_galeid=A428834135&rft_doaj_id=oai_doaj_org_article_9091d9d7c41b4fde9f16379794b373af&rfr_iscdi=true |