Multi-Target Analysis and Design of Mitochondrial Metabolism

Analyzing and optimizing biological models is often identified as a research priority in biomedical engineering. An important feature of a model should be the ability to find the best condition in which an organism has to be grown in order to reach specific optimal output values chosen by the resear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-09, Vol.10 (9), p.e0133825-e0133825
Hauptverfasser: Angione, Claudio, Costanza, Jole, Carapezza, Giovanni, Lió, Pietro, Nicosia, Giuseppe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0133825
container_issue 9
container_start_page e0133825
container_title PloS one
container_volume 10
creator Angione, Claudio
Costanza, Jole
Carapezza, Giovanni
Lió, Pietro
Nicosia, Giuseppe
description Analyzing and optimizing biological models is often identified as a research priority in biomedical engineering. An important feature of a model should be the ability to find the best condition in which an organism has to be grown in order to reach specific optimal output values chosen by the researcher. In this work, we take into account a mitochondrial model analyzed with flux-balance analysis. The optimal design and assessment of these models is achieved through single- and/or multi-objective optimization techniques driven by epsilon-dominance and identifiability analysis. Our optimization algorithm searches for the values of the flux rates that optimize multiple cellular functions simultaneously. The optimization of the fluxes of the metabolic network includes not only input fluxes, but also internal fluxes. A faster convergence process with robust candidate solutions is permitted by a relaxed Pareto dominance, regulating the granularity of the approximation of the desired Pareto front. We find that the maximum ATP production is linked to a total consumption of NADH, and reaching the maximum amount of NADH leads to an increasing request of NADH from the external environment. Furthermore, the identifiability analysis characterizes the type and the stage of three monogenic diseases. Finally, we propose a new methodology to extend any constraint-based model using protein abundances.
doi_str_mv 10.1371/journal.pone.0133825
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1719285762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A428834135</galeid><doaj_id>oai_doaj_org_article_9091d9d7c41b4fde9f16379794b373af</doaj_id><sourcerecordid>A428834135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-e6ef245331bff1206339aa935a47c8ba0acece33c4fb13a032e7740c6173548f3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjElPmjQgwrB-DeywoKu3IU2TToZMMzapuP_ezE53mcpeSC4STp7znpyTN8ueYzTHwPC7jR_6Trr5znd6jjBAVZQPslPMoZjRAsHDo_NJ9iSEDUIlVJQ-zk4KCoyiqjrN3q8GF-3sSvatjvkiCV4HG3LZNflHHWzb5d7kKxu9Wvuu6a10-UpHWXtnw_Zp9shIF_SzcT_Lfnz-dHX-dXZx-WV5vriYKcqLONNUm4KUALg2BheIAnApOZSSMFXVEkmllQZQxNQYJIJCM0aQophBSSoDZ9nLg-7O-SDGxoPADPOiKhktErE8EI2XG7Hr7Vb218JLK24Cvm-F7KNVTguOOG54wxTBNTGN5ganaXDGSQ0M5L7ah7HaUG91o3QXe-kmotObzq5F638LUjJCCE0Cb0aB3v8adIhia4PSzslO--Hm3cDTPCqU0Ff_oPd3N1KtTA3YzvhUV-1FxYIUVQUEQ5mo-T1UWo3eWpVcYmyKTxLeThISE_Wf2MohBLH8_u3_2cufU_b1EbvW0sV18G6I1ndhCpIDqHofQq_N3ZAxEnuT305D7E0uRpOntBfHH3SXdOtq-AvCFfUc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1719285762</pqid></control><display><type>article</type><title>Multi-Target Analysis and Design of Mitochondrial Metabolism</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Angione, Claudio ; Costanza, Jole ; Carapezza, Giovanni ; Lió, Pietro ; Nicosia, Giuseppe</creator><contributor>Bader, Joel S.</contributor><creatorcontrib>Angione, Claudio ; Costanza, Jole ; Carapezza, Giovanni ; Lió, Pietro ; Nicosia, Giuseppe ; Bader, Joel S.</creatorcontrib><description>Analyzing and optimizing biological models is often identified as a research priority in biomedical engineering. An important feature of a model should be the ability to find the best condition in which an organism has to be grown in order to reach specific optimal output values chosen by the researcher. In this work, we take into account a mitochondrial model analyzed with flux-balance analysis. The optimal design and assessment of these models is achieved through single- and/or multi-objective optimization techniques driven by epsilon-dominance and identifiability analysis. Our optimization algorithm searches for the values of the flux rates that optimize multiple cellular functions simultaneously. The optimization of the fluxes of the metabolic network includes not only input fluxes, but also internal fluxes. A faster convergence process with robust candidate solutions is permitted by a relaxed Pareto dominance, regulating the granularity of the approximation of the desired Pareto front. We find that the maximum ATP production is linked to a total consumption of NADH, and reaching the maximum amount of NADH leads to an increasing request of NADH from the external environment. Furthermore, the identifiability analysis characterizes the type and the stage of three monogenic diseases. Finally, we propose a new methodology to extend any constraint-based model using protein abundances.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0133825</identifier><identifier>PMID: 26376088</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine Triphosphate - biosynthesis ; Algorithms ; Analysis ; Automation ; Bioinformatics ; Biological models (mathematics) ; Biology ; Biomedical engineering ; Computer science ; Constraint modelling ; Design analysis ; Design optimization ; Dominance ; Enzymes ; Fluxes ; Gene expression ; Ketoglutarate Dehydrogenase Complex - deficiency ; Laboratories ; Mathematics ; Metabolic Flux Analysis ; Metabolism ; Metabolites ; Mitochondria ; Mitochondria - metabolism ; Mitochondrial Proteins - metabolism ; Models, Biological ; Multiple objective analysis ; NAD - metabolism ; NADH ; Nicotinamide adenine dinucleotide ; Optimization ; Optimization algorithms ; Optimization theory ; Physiological aspects ; Proteins ; Quantitative genetics ; Sensitivity analysis ; Succinate Dehydrogenase - genetics</subject><ispartof>PloS one, 2015-09, Vol.10 (9), p.e0133825-e0133825</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Angione et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Angione et al 2015 Angione et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-e6ef245331bff1206339aa935a47c8ba0acece33c4fb13a032e7740c6173548f3</citedby><cites>FETCH-LOGICAL-c692t-e6ef245331bff1206339aa935a47c8ba0acece33c4fb13a032e7740c6173548f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4574446/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4574446/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26376088$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bader, Joel S.</contributor><creatorcontrib>Angione, Claudio</creatorcontrib><creatorcontrib>Costanza, Jole</creatorcontrib><creatorcontrib>Carapezza, Giovanni</creatorcontrib><creatorcontrib>Lió, Pietro</creatorcontrib><creatorcontrib>Nicosia, Giuseppe</creatorcontrib><title>Multi-Target Analysis and Design of Mitochondrial Metabolism</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Analyzing and optimizing biological models is often identified as a research priority in biomedical engineering. An important feature of a model should be the ability to find the best condition in which an organism has to be grown in order to reach specific optimal output values chosen by the researcher. In this work, we take into account a mitochondrial model analyzed with flux-balance analysis. The optimal design and assessment of these models is achieved through single- and/or multi-objective optimization techniques driven by epsilon-dominance and identifiability analysis. Our optimization algorithm searches for the values of the flux rates that optimize multiple cellular functions simultaneously. The optimization of the fluxes of the metabolic network includes not only input fluxes, but also internal fluxes. A faster convergence process with robust candidate solutions is permitted by a relaxed Pareto dominance, regulating the granularity of the approximation of the desired Pareto front. We find that the maximum ATP production is linked to a total consumption of NADH, and reaching the maximum amount of NADH leads to an increasing request of NADH from the external environment. Furthermore, the identifiability analysis characterizes the type and the stage of three monogenic diseases. Finally, we propose a new methodology to extend any constraint-based model using protein abundances.</description><subject>Adenosine Triphosphate - biosynthesis</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Automation</subject><subject>Bioinformatics</subject><subject>Biological models (mathematics)</subject><subject>Biology</subject><subject>Biomedical engineering</subject><subject>Computer science</subject><subject>Constraint modelling</subject><subject>Design analysis</subject><subject>Design optimization</subject><subject>Dominance</subject><subject>Enzymes</subject><subject>Fluxes</subject><subject>Gene expression</subject><subject>Ketoglutarate Dehydrogenase Complex - deficiency</subject><subject>Laboratories</subject><subject>Mathematics</subject><subject>Metabolic Flux Analysis</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Models, Biological</subject><subject>Multiple objective analysis</subject><subject>NAD - metabolism</subject><subject>NADH</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Optimization theory</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Quantitative genetics</subject><subject>Sensitivity analysis</subject><subject>Succinate Dehydrogenase - genetics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjElPmjQgwrB-DeywoKu3IU2TToZMMzapuP_ezE53mcpeSC4STp7znpyTN8ueYzTHwPC7jR_6Trr5znd6jjBAVZQPslPMoZjRAsHDo_NJ9iSEDUIlVJQ-zk4KCoyiqjrN3q8GF-3sSvatjvkiCV4HG3LZNflHHWzb5d7kKxu9Wvuu6a10-UpHWXtnw_Zp9shIF_SzcT_Lfnz-dHX-dXZx-WV5vriYKcqLONNUm4KUALg2BheIAnApOZSSMFXVEkmllQZQxNQYJIJCM0aQophBSSoDZ9nLg-7O-SDGxoPADPOiKhktErE8EI2XG7Hr7Vb218JLK24Cvm-F7KNVTguOOG54wxTBNTGN5ganaXDGSQ0M5L7ah7HaUG91o3QXe-kmotObzq5F638LUjJCCE0Cb0aB3v8adIhia4PSzslO--Hm3cDTPCqU0Ff_oPd3N1KtTA3YzvhUV-1FxYIUVQUEQ5mo-T1UWo3eWpVcYmyKTxLeThISE_Wf2MohBLH8_u3_2cufU_b1EbvW0sV18G6I1ndhCpIDqHofQq_N3ZAxEnuT305D7E0uRpOntBfHH3SXdOtq-AvCFfUc</recordid><startdate>20150916</startdate><enddate>20150916</enddate><creator>Angione, Claudio</creator><creator>Costanza, Jole</creator><creator>Carapezza, Giovanni</creator><creator>Lió, Pietro</creator><creator>Nicosia, Giuseppe</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150916</creationdate><title>Multi-Target Analysis and Design of Mitochondrial Metabolism</title><author>Angione, Claudio ; Costanza, Jole ; Carapezza, Giovanni ; Lió, Pietro ; Nicosia, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-e6ef245331bff1206339aa935a47c8ba0acece33c4fb13a032e7740c6173548f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adenosine Triphosphate - biosynthesis</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Automation</topic><topic>Bioinformatics</topic><topic>Biological models (mathematics)</topic><topic>Biology</topic><topic>Biomedical engineering</topic><topic>Computer science</topic><topic>Constraint modelling</topic><topic>Design analysis</topic><topic>Design optimization</topic><topic>Dominance</topic><topic>Enzymes</topic><topic>Fluxes</topic><topic>Gene expression</topic><topic>Ketoglutarate Dehydrogenase Complex - deficiency</topic><topic>Laboratories</topic><topic>Mathematics</topic><topic>Metabolic Flux Analysis</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Models, Biological</topic><topic>Multiple objective analysis</topic><topic>NAD - metabolism</topic><topic>NADH</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Optimization theory</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Quantitative genetics</topic><topic>Sensitivity analysis</topic><topic>Succinate Dehydrogenase - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angione, Claudio</creatorcontrib><creatorcontrib>Costanza, Jole</creatorcontrib><creatorcontrib>Carapezza, Giovanni</creatorcontrib><creatorcontrib>Lió, Pietro</creatorcontrib><creatorcontrib>Nicosia, Giuseppe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angione, Claudio</au><au>Costanza, Jole</au><au>Carapezza, Giovanni</au><au>Lió, Pietro</au><au>Nicosia, Giuseppe</au><au>Bader, Joel S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Target Analysis and Design of Mitochondrial Metabolism</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-09-16</date><risdate>2015</risdate><volume>10</volume><issue>9</issue><spage>e0133825</spage><epage>e0133825</epage><pages>e0133825-e0133825</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Analyzing and optimizing biological models is often identified as a research priority in biomedical engineering. An important feature of a model should be the ability to find the best condition in which an organism has to be grown in order to reach specific optimal output values chosen by the researcher. In this work, we take into account a mitochondrial model analyzed with flux-balance analysis. The optimal design and assessment of these models is achieved through single- and/or multi-objective optimization techniques driven by epsilon-dominance and identifiability analysis. Our optimization algorithm searches for the values of the flux rates that optimize multiple cellular functions simultaneously. The optimization of the fluxes of the metabolic network includes not only input fluxes, but also internal fluxes. A faster convergence process with robust candidate solutions is permitted by a relaxed Pareto dominance, regulating the granularity of the approximation of the desired Pareto front. We find that the maximum ATP production is linked to a total consumption of NADH, and reaching the maximum amount of NADH leads to an increasing request of NADH from the external environment. Furthermore, the identifiability analysis characterizes the type and the stage of three monogenic diseases. Finally, we propose a new methodology to extend any constraint-based model using protein abundances.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26376088</pmid><doi>10.1371/journal.pone.0133825</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-09, Vol.10 (9), p.e0133825-e0133825
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1719285762
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adenosine Triphosphate - biosynthesis
Algorithms
Analysis
Automation
Bioinformatics
Biological models (mathematics)
Biology
Biomedical engineering
Computer science
Constraint modelling
Design analysis
Design optimization
Dominance
Enzymes
Fluxes
Gene expression
Ketoglutarate Dehydrogenase Complex - deficiency
Laboratories
Mathematics
Metabolic Flux Analysis
Metabolism
Metabolites
Mitochondria
Mitochondria - metabolism
Mitochondrial Proteins - metabolism
Models, Biological
Multiple objective analysis
NAD - metabolism
NADH
Nicotinamide adenine dinucleotide
Optimization
Optimization algorithms
Optimization theory
Physiological aspects
Proteins
Quantitative genetics
Sensitivity analysis
Succinate Dehydrogenase - genetics
title Multi-Target Analysis and Design of Mitochondrial Metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A31%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Target%20Analysis%20and%20Design%20of%20Mitochondrial%20Metabolism&rft.jtitle=PloS%20one&rft.au=Angione,%20Claudio&rft.date=2015-09-16&rft.volume=10&rft.issue=9&rft.spage=e0133825&rft.epage=e0133825&rft.pages=e0133825-e0133825&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0133825&rft_dat=%3Cgale_plos_%3EA428834135%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1719285762&rft_id=info:pmid/26376088&rft_galeid=A428834135&rft_doaj_id=oai_doaj_org_article_9091d9d7c41b4fde9f16379794b373af&rfr_iscdi=true