The Role of Cysteine Residues in Redox Regulation and Protein Stability of Arabidopsis thaliana Starch Synthase 1

Starch biosynthesis in Arabidopsis thaliana is strictly regulated. In leaf extracts, starch synthase 1 (AtSS1) responds to the redox potential within a physiologically relevant range. This study presents data testing two main hypotheses: 1) that specific thiol-disulfide exchange in AtSS1 influences...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-09, Vol.10 (9), p.e0136997-e0136997
Hauptverfasser: Skryhan, Katsiaryna, Cuesta-Seijo, Jose A, Nielsen, Morten M, Marri, Lucia, Mellor, Silas B, Glaring, Mikkel A, Jensen, Poul E, Palcic, Monica M, Blennow, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0136997
container_issue 9
container_start_page e0136997
container_title PloS one
container_volume 10
creator Skryhan, Katsiaryna
Cuesta-Seijo, Jose A
Nielsen, Morten M
Marri, Lucia
Mellor, Silas B
Glaring, Mikkel A
Jensen, Poul E
Palcic, Monica M
Blennow, Andreas
description Starch biosynthesis in Arabidopsis thaliana is strictly regulated. In leaf extracts, starch synthase 1 (AtSS1) responds to the redox potential within a physiologically relevant range. This study presents data testing two main hypotheses: 1) that specific thiol-disulfide exchange in AtSS1 influences its catalytic function 2) that each conserved Cys residue has an impact on AtSS1 catalysis. Recombinant AtSS1 versions carrying combinations of cysteine-to-serine substitutions were generated and characterized in vitro. The results demonstrate that AtSS1 is activated and deactivated by the physiological redox transmitters thioredoxin f1 (Trxf1), thioredoxin m4 (Trxm4) and the bifunctional NADPH-dependent thioredoxin reductase C (NTRC). AtSS1 displayed an activity change within the physiologically relevant redox range, with a midpoint potential equal to -306 mV, suggesting that AtSS1 is in the reduced and active form during the day with active photosynthesis. Cys164 and Cys545 were the key cysteine residues involved in regulatory disulfide formation upon oxidation. A C164S_C545S double mutant had considerably decreased redox sensitivity as compared to wild type AtSS1 (30% vs 77%). Michaelis-Menten kinetics and molecular modeling suggest that both cysteines play important roles in enzyme catalysis, namely, Cys545 is involved in ADP-glucose binding and Cys164 is involved in acceptor binding. All the other single mutants had essentially complete redox sensitivity (98-99%). In addition of being part of a redox directed activity "light switch", reactivation tests and low heterologous expression levels indicate that specific cysteine residues might play additional roles. Specifically, Cys265 in combination with Cys164 can be involved in proper protein folding or/and stabilization of translated protein prior to its transport into the plastid. Cys442 can play an important role in enzyme stability upon oxidation. The physiological and phylogenetic relevance of these findings is discussed.
doi_str_mv 10.1371/journal.pone.0136997
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1719284367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3d5842fc4f8842d3b74aaa3ac90ad80f</doaj_id><sourcerecordid>3828132691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-b9eaf71ec41230573f1aa7eb4ec826bfae300df41801a1e0d4afdf6e365d64e13</originalsourceid><addsrcrecordid>eNptUk1v1DAQjRCIlsI_QGCJC5dd7NhxkgtSteKjUiUQLWdrEo93vfLaWzup2H-P002rFnHx2OP3nmfGryjeMrpkvGaftmGMHtxyHzwuKeOybetnxSlrebmQJeXPH-1PilcpbSmteCPly-KklFzWTU1Pi5vrDZJfwSEJhqwOaUDrcwKT1SMmYn3e6_Anr-vRwWCDJ-A1-RnDhCRXA3TW2eEw0c9jPuiwTzaRYQPOgocJEfsNuTr4nEpI2OvihQGX8M0cz4rfX79cr74vLn98u1idXy76qpTDomsRTM2wF6zktKq5YQA1dgL7ppSdAeSUaiNYQxkwpFqA0UYil5WWAhk_K94fdfcuJDVPKylWs7ZsRO4_Iy6OCB1gq_bR7iAeVACr7hIhrhXEwfYOFddVI0rTC9PkqHlXCwDg0LcUdENN1vo8vzZ2O9Q9-iGCeyL69MbbjVqHWyUq2bKmygIfZ4EYbvLoB7WzqUfnwGMY7-ou6yb_IM3QD_9A_9-dOKL6GFKKaB6KYVRNDrpnqclBanZQpr173MgD6d4y_C-6c8Yj</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1719284367</pqid></control><display><type>article</type><title>The Role of Cysteine Residues in Redox Regulation and Protein Stability of Arabidopsis thaliana Starch Synthase 1</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Skryhan, Katsiaryna ; Cuesta-Seijo, Jose A ; Nielsen, Morten M ; Marri, Lucia ; Mellor, Silas B ; Glaring, Mikkel A ; Jensen, Poul E ; Palcic, Monica M ; Blennow, Andreas</creator><creatorcontrib>Skryhan, Katsiaryna ; Cuesta-Seijo, Jose A ; Nielsen, Morten M ; Marri, Lucia ; Mellor, Silas B ; Glaring, Mikkel A ; Jensen, Poul E ; Palcic, Monica M ; Blennow, Andreas</creatorcontrib><description>Starch biosynthesis in Arabidopsis thaliana is strictly regulated. In leaf extracts, starch synthase 1 (AtSS1) responds to the redox potential within a physiologically relevant range. This study presents data testing two main hypotheses: 1) that specific thiol-disulfide exchange in AtSS1 influences its catalytic function 2) that each conserved Cys residue has an impact on AtSS1 catalysis. Recombinant AtSS1 versions carrying combinations of cysteine-to-serine substitutions were generated and characterized in vitro. The results demonstrate that AtSS1 is activated and deactivated by the physiological redox transmitters thioredoxin f1 (Trxf1), thioredoxin m4 (Trxm4) and the bifunctional NADPH-dependent thioredoxin reductase C (NTRC). AtSS1 displayed an activity change within the physiologically relevant redox range, with a midpoint potential equal to -306 mV, suggesting that AtSS1 is in the reduced and active form during the day with active photosynthesis. Cys164 and Cys545 were the key cysteine residues involved in regulatory disulfide formation upon oxidation. A C164S_C545S double mutant had considerably decreased redox sensitivity as compared to wild type AtSS1 (30% vs 77%). Michaelis-Menten kinetics and molecular modeling suggest that both cysteines play important roles in enzyme catalysis, namely, Cys545 is involved in ADP-glucose binding and Cys164 is involved in acceptor binding. All the other single mutants had essentially complete redox sensitivity (98-99%). In addition of being part of a redox directed activity "light switch", reactivation tests and low heterologous expression levels indicate that specific cysteine residues might play additional roles. Specifically, Cys265 in combination with Cys164 can be involved in proper protein folding or/and stabilization of translated protein prior to its transport into the plastid. Cys442 can play an important role in enzyme stability upon oxidation. The physiological and phylogenetic relevance of these findings is discussed.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0136997</identifier><identifier>PMID: 26367870</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Activation ; Adenosine diphosphate ; Antioxidants ; Arabidopsis ; Arabidopsis - chemistry ; Arabidopsis - enzymology ; Arabidopsis - physiology ; Arabidopsis Proteins - chemistry ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Binding ; Biochemistry ; Biodegradable materials ; Biosynthesis ; Carbohydrates ; Catalysis ; Catalytic Domain ; Chloroplasts ; Cysteine ; Cysteine - genetics ; Cysteine - metabolism ; Deactivation ; Environmental science ; Enzyme Stability ; Enzymes ; Gene Expression Regulation, Plant ; Glucosyltransferases - chemistry ; Glucosyltransferases - genetics ; Glucosyltransferases - metabolism ; Kinetics ; Laboratories ; Metabolism ; Metabolites ; Models, Molecular ; Molecular modelling ; Mutants ; NADP ; Neural networks ; Oxidation ; Oxidation-Reduction ; Phosphorylation ; Photosynthesis ; Phylogeny ; Physiology ; Plant sciences ; Plastids ; Protein folding ; Protein transport ; Proteins ; Reaction kinetics ; Redox potential ; Reductase ; Residues ; Sensitivity ; Serine ; Stability ; Starch ; Starch synthase ; Sucrose ; Thioredoxin ; Thioredoxins - metabolism ; Transmitters</subject><ispartof>PloS one, 2015-09, Vol.10 (9), p.e0136997-e0136997</ispartof><rights>2015 Skryhan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Skryhan et al 2015 Skryhan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-b9eaf71ec41230573f1aa7eb4ec826bfae300df41801a1e0d4afdf6e365d64e13</citedby><cites>FETCH-LOGICAL-c526t-b9eaf71ec41230573f1aa7eb4ec826bfae300df41801a1e0d4afdf6e365d64e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4569185/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4569185/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26367870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Skryhan, Katsiaryna</creatorcontrib><creatorcontrib>Cuesta-Seijo, Jose A</creatorcontrib><creatorcontrib>Nielsen, Morten M</creatorcontrib><creatorcontrib>Marri, Lucia</creatorcontrib><creatorcontrib>Mellor, Silas B</creatorcontrib><creatorcontrib>Glaring, Mikkel A</creatorcontrib><creatorcontrib>Jensen, Poul E</creatorcontrib><creatorcontrib>Palcic, Monica M</creatorcontrib><creatorcontrib>Blennow, Andreas</creatorcontrib><title>The Role of Cysteine Residues in Redox Regulation and Protein Stability of Arabidopsis thaliana Starch Synthase 1</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Starch biosynthesis in Arabidopsis thaliana is strictly regulated. In leaf extracts, starch synthase 1 (AtSS1) responds to the redox potential within a physiologically relevant range. This study presents data testing two main hypotheses: 1) that specific thiol-disulfide exchange in AtSS1 influences its catalytic function 2) that each conserved Cys residue has an impact on AtSS1 catalysis. Recombinant AtSS1 versions carrying combinations of cysteine-to-serine substitutions were generated and characterized in vitro. The results demonstrate that AtSS1 is activated and deactivated by the physiological redox transmitters thioredoxin f1 (Trxf1), thioredoxin m4 (Trxm4) and the bifunctional NADPH-dependent thioredoxin reductase C (NTRC). AtSS1 displayed an activity change within the physiologically relevant redox range, with a midpoint potential equal to -306 mV, suggesting that AtSS1 is in the reduced and active form during the day with active photosynthesis. Cys164 and Cys545 were the key cysteine residues involved in regulatory disulfide formation upon oxidation. A C164S_C545S double mutant had considerably decreased redox sensitivity as compared to wild type AtSS1 (30% vs 77%). Michaelis-Menten kinetics and molecular modeling suggest that both cysteines play important roles in enzyme catalysis, namely, Cys545 is involved in ADP-glucose binding and Cys164 is involved in acceptor binding. All the other single mutants had essentially complete redox sensitivity (98-99%). In addition of being part of a redox directed activity "light switch", reactivation tests and low heterologous expression levels indicate that specific cysteine residues might play additional roles. Specifically, Cys265 in combination with Cys164 can be involved in proper protein folding or/and stabilization of translated protein prior to its transport into the plastid. Cys442 can play an important role in enzyme stability upon oxidation. The physiological and phylogenetic relevance of these findings is discussed.</description><subject>Activation</subject><subject>Adenosine diphosphate</subject><subject>Antioxidants</subject><subject>Arabidopsis</subject><subject>Arabidopsis - chemistry</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - chemistry</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Binding</subject><subject>Biochemistry</subject><subject>Biodegradable materials</subject><subject>Biosynthesis</subject><subject>Carbohydrates</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>Chloroplasts</subject><subject>Cysteine</subject><subject>Cysteine - genetics</subject><subject>Cysteine - metabolism</subject><subject>Deactivation</subject><subject>Environmental science</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Gene Expression Regulation, Plant</subject><subject>Glucosyltransferases - chemistry</subject><subject>Glucosyltransferases - genetics</subject><subject>Glucosyltransferases - metabolism</subject><subject>Kinetics</subject><subject>Laboratories</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Models, Molecular</subject><subject>Molecular modelling</subject><subject>Mutants</subject><subject>NADP</subject><subject>Neural networks</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Phosphorylation</subject><subject>Photosynthesis</subject><subject>Phylogeny</subject><subject>Physiology</subject><subject>Plant sciences</subject><subject>Plastids</subject><subject>Protein folding</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Reaction kinetics</subject><subject>Redox potential</subject><subject>Reductase</subject><subject>Residues</subject><subject>Sensitivity</subject><subject>Serine</subject><subject>Stability</subject><subject>Starch</subject><subject>Starch synthase</subject><subject>Sucrose</subject><subject>Thioredoxin</subject><subject>Thioredoxins - metabolism</subject><subject>Transmitters</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAQjRCIlsI_QGCJC5dd7NhxkgtSteKjUiUQLWdrEo93vfLaWzup2H-P002rFnHx2OP3nmfGryjeMrpkvGaftmGMHtxyHzwuKeOybetnxSlrebmQJeXPH-1PilcpbSmteCPly-KklFzWTU1Pi5vrDZJfwSEJhqwOaUDrcwKT1SMmYn3e6_Anr-vRwWCDJ-A1-RnDhCRXA3TW2eEw0c9jPuiwTzaRYQPOgocJEfsNuTr4nEpI2OvihQGX8M0cz4rfX79cr74vLn98u1idXy76qpTDomsRTM2wF6zktKq5YQA1dgL7ppSdAeSUaiNYQxkwpFqA0UYil5WWAhk_K94fdfcuJDVPKylWs7ZsRO4_Iy6OCB1gq_bR7iAeVACr7hIhrhXEwfYOFddVI0rTC9PkqHlXCwDg0LcUdENN1vo8vzZ2O9Q9-iGCeyL69MbbjVqHWyUq2bKmygIfZ4EYbvLoB7WzqUfnwGMY7-ou6yb_IM3QD_9A_9-dOKL6GFKKaB6KYVRNDrpnqclBanZQpr173MgD6d4y_C-6c8Yj</recordid><startdate>20150914</startdate><enddate>20150914</enddate><creator>Skryhan, Katsiaryna</creator><creator>Cuesta-Seijo, Jose A</creator><creator>Nielsen, Morten M</creator><creator>Marri, Lucia</creator><creator>Mellor, Silas B</creator><creator>Glaring, Mikkel A</creator><creator>Jensen, Poul E</creator><creator>Palcic, Monica M</creator><creator>Blennow, Andreas</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150914</creationdate><title>The Role of Cysteine Residues in Redox Regulation and Protein Stability of Arabidopsis thaliana Starch Synthase 1</title><author>Skryhan, Katsiaryna ; Cuesta-Seijo, Jose A ; Nielsen, Morten M ; Marri, Lucia ; Mellor, Silas B ; Glaring, Mikkel A ; Jensen, Poul E ; Palcic, Monica M ; Blennow, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-b9eaf71ec41230573f1aa7eb4ec826bfae300df41801a1e0d4afdf6e365d64e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Activation</topic><topic>Adenosine diphosphate</topic><topic>Antioxidants</topic><topic>Arabidopsis</topic><topic>Arabidopsis - chemistry</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - chemistry</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Binding</topic><topic>Biochemistry</topic><topic>Biodegradable materials</topic><topic>Biosynthesis</topic><topic>Carbohydrates</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>Chloroplasts</topic><topic>Cysteine</topic><topic>Cysteine - genetics</topic><topic>Cysteine - metabolism</topic><topic>Deactivation</topic><topic>Environmental science</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Gene Expression Regulation, Plant</topic><topic>Glucosyltransferases - chemistry</topic><topic>Glucosyltransferases - genetics</topic><topic>Glucosyltransferases - metabolism</topic><topic>Kinetics</topic><topic>Laboratories</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Models, Molecular</topic><topic>Molecular modelling</topic><topic>Mutants</topic><topic>NADP</topic><topic>Neural networks</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Phosphorylation</topic><topic>Photosynthesis</topic><topic>Phylogeny</topic><topic>Physiology</topic><topic>Plant sciences</topic><topic>Plastids</topic><topic>Protein folding</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Reaction kinetics</topic><topic>Redox potential</topic><topic>Reductase</topic><topic>Residues</topic><topic>Sensitivity</topic><topic>Serine</topic><topic>Stability</topic><topic>Starch</topic><topic>Starch synthase</topic><topic>Sucrose</topic><topic>Thioredoxin</topic><topic>Thioredoxins - metabolism</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skryhan, Katsiaryna</creatorcontrib><creatorcontrib>Cuesta-Seijo, Jose A</creatorcontrib><creatorcontrib>Nielsen, Morten M</creatorcontrib><creatorcontrib>Marri, Lucia</creatorcontrib><creatorcontrib>Mellor, Silas B</creatorcontrib><creatorcontrib>Glaring, Mikkel A</creatorcontrib><creatorcontrib>Jensen, Poul E</creatorcontrib><creatorcontrib>Palcic, Monica M</creatorcontrib><creatorcontrib>Blennow, Andreas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skryhan, Katsiaryna</au><au>Cuesta-Seijo, Jose A</au><au>Nielsen, Morten M</au><au>Marri, Lucia</au><au>Mellor, Silas B</au><au>Glaring, Mikkel A</au><au>Jensen, Poul E</au><au>Palcic, Monica M</au><au>Blennow, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Cysteine Residues in Redox Regulation and Protein Stability of Arabidopsis thaliana Starch Synthase 1</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-09-14</date><risdate>2015</risdate><volume>10</volume><issue>9</issue><spage>e0136997</spage><epage>e0136997</epage><pages>e0136997-e0136997</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Starch biosynthesis in Arabidopsis thaliana is strictly regulated. In leaf extracts, starch synthase 1 (AtSS1) responds to the redox potential within a physiologically relevant range. This study presents data testing two main hypotheses: 1) that specific thiol-disulfide exchange in AtSS1 influences its catalytic function 2) that each conserved Cys residue has an impact on AtSS1 catalysis. Recombinant AtSS1 versions carrying combinations of cysteine-to-serine substitutions were generated and characterized in vitro. The results demonstrate that AtSS1 is activated and deactivated by the physiological redox transmitters thioredoxin f1 (Trxf1), thioredoxin m4 (Trxm4) and the bifunctional NADPH-dependent thioredoxin reductase C (NTRC). AtSS1 displayed an activity change within the physiologically relevant redox range, with a midpoint potential equal to -306 mV, suggesting that AtSS1 is in the reduced and active form during the day with active photosynthesis. Cys164 and Cys545 were the key cysteine residues involved in regulatory disulfide formation upon oxidation. A C164S_C545S double mutant had considerably decreased redox sensitivity as compared to wild type AtSS1 (30% vs 77%). Michaelis-Menten kinetics and molecular modeling suggest that both cysteines play important roles in enzyme catalysis, namely, Cys545 is involved in ADP-glucose binding and Cys164 is involved in acceptor binding. All the other single mutants had essentially complete redox sensitivity (98-99%). In addition of being part of a redox directed activity "light switch", reactivation tests and low heterologous expression levels indicate that specific cysteine residues might play additional roles. Specifically, Cys265 in combination with Cys164 can be involved in proper protein folding or/and stabilization of translated protein prior to its transport into the plastid. Cys442 can play an important role in enzyme stability upon oxidation. The physiological and phylogenetic relevance of these findings is discussed.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26367870</pmid><doi>10.1371/journal.pone.0136997</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-09, Vol.10 (9), p.e0136997-e0136997
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1719284367
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Activation
Adenosine diphosphate
Antioxidants
Arabidopsis
Arabidopsis - chemistry
Arabidopsis - enzymology
Arabidopsis - physiology
Arabidopsis Proteins - chemistry
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Binding
Biochemistry
Biodegradable materials
Biosynthesis
Carbohydrates
Catalysis
Catalytic Domain
Chloroplasts
Cysteine
Cysteine - genetics
Cysteine - metabolism
Deactivation
Environmental science
Enzyme Stability
Enzymes
Gene Expression Regulation, Plant
Glucosyltransferases - chemistry
Glucosyltransferases - genetics
Glucosyltransferases - metabolism
Kinetics
Laboratories
Metabolism
Metabolites
Models, Molecular
Molecular modelling
Mutants
NADP
Neural networks
Oxidation
Oxidation-Reduction
Phosphorylation
Photosynthesis
Phylogeny
Physiology
Plant sciences
Plastids
Protein folding
Protein transport
Proteins
Reaction kinetics
Redox potential
Reductase
Residues
Sensitivity
Serine
Stability
Starch
Starch synthase
Sucrose
Thioredoxin
Thioredoxins - metabolism
Transmitters
title The Role of Cysteine Residues in Redox Regulation and Protein Stability of Arabidopsis thaliana Starch Synthase 1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Cysteine%20Residues%20in%20Redox%20Regulation%20and%20Protein%20Stability%20of%20Arabidopsis%20thaliana%20Starch%20Synthase%201&rft.jtitle=PloS%20one&rft.au=Skryhan,%20Katsiaryna&rft.date=2015-09-14&rft.volume=10&rft.issue=9&rft.spage=e0136997&rft.epage=e0136997&rft.pages=e0136997-e0136997&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0136997&rft_dat=%3Cproquest_plos_%3E3828132691%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1719284367&rft_id=info:pmid/26367870&rft_doaj_id=oai_doaj_org_article_3d5842fc4f8842d3b74aaa3ac90ad80f&rfr_iscdi=true