Sparse Spectro-Temporal Receptive Fields Based on Multi-Unit and High-Gamma Responses in Human Auditory Cortex

Spectro-Temporal Receptive Fields (STRFs) were estimated from both multi-unit sorted clusters and high-gamma power responses in human auditory cortex. Intracranial electrophysiological recordings were used to measure responses to a random chord sequence of Gammatone stimuli. Traditional methods for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-09, Vol.10 (9), p.e0137915-e0137915
Hauptverfasser: Jenison, Rick L, Reale, Richard A, Armstrong, Amanda L, Oya, Hiroyuki, Kawasaki, Hiroto, Howard, 3rd, Matthew A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0137915
container_issue 9
container_start_page e0137915
container_title PloS one
container_volume 10
creator Jenison, Rick L
Reale, Richard A
Armstrong, Amanda L
Oya, Hiroyuki
Kawasaki, Hiroto
Howard, 3rd, Matthew A
description Spectro-Temporal Receptive Fields (STRFs) were estimated from both multi-unit sorted clusters and high-gamma power responses in human auditory cortex. Intracranial electrophysiological recordings were used to measure responses to a random chord sequence of Gammatone stimuli. Traditional methods for estimating STRFs from single-unit recordings, such as spike-triggered-averages, tend to be noisy and are less robust to other response signals such as local field potentials. We present an extension to recently advanced methods for estimating STRFs from generalized linear models (GLM). A new variant of regression using regularization that penalizes non-zero coefficients is described, which results in a sparse solution. The frequency-time structure of the STRF tends toward grouping in different areas of frequency-time and we demonstrate that group sparsity-inducing penalties applied to GLM estimates of STRFs reduces the background noise while preserving the complex internal structure. The contribution of local spiking activity to the high-gamma power signal was factored out of the STRF using the GLM method, and this contribution was significant in 85 percent of the cases. Although the GLM methods have been used to estimate STRFs in animals, this study examines the detailed structure directly from auditory cortex in the awake human brain. We used this approach to identify an abrupt change in the best frequency of estimated STRFs along posteromedial-to-anterolateral recording locations along the long axis of Heschl's gyrus. This change correlates well with a proposed transition from core to non-core auditory fields previously identified using the temporal response properties of Heschl's gyrus recordings elicited by click-train stimuli.
doi_str_mv 10.1371/journal.pone.0137915
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1719284359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A428587018</galeid><doaj_id>oai_doaj_org_article_bf54487634a24b7e946e78ec16561e9c</doaj_id><sourcerecordid>A428587018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-b78baeba2795743bfdd6e5fcb677a53ea64dba473f5b5d6be3ef9d57343366b73</originalsourceid><addsrcrecordid>eNqNk11r2zAUhs3YWLtu_2BsgsHYLpxZ1pd9M8jC2gQ6Ck27WyHbx4mKbbmSXNZ_P6VxSzx6MXQhcfS8r6RzdKLoPU5mmAj87cYMtlPNrDcdzJIQyjF7ER3jnKQxTxPy8mB9FL1x7iZJGMk4fx0dpZxwkeDkOOrWvbIO0LqH0lsTX0HbG6sadAkl9F7fATrV0FQO_VAOKmQ69GtovI6vO-2R6iq01JttfKbaVgWNC7dx4JDu0HJoVYfmQ6W9sfdoYayHP2-jV7VqHLwb55Po-vTn1WIZn1-crRbz87jkeerjQmSFgkKlImeCkqKuKg6sLgsuhGIEFKdVoaggNStYxQsgUOcVE4QSwnkhyEn0ce_bN8bJMVVOYoHzNKOE5YFY7YnKqBvZW90qey-N0vIhYOxGKut12YAsakZpJjihKqWFgJxyEBmUmDOOIS-D1_fxtKFooSqh8yGFE9PpTqe3cmPuJGU8pykOBl9GA2tuB3BettqV0DSqAzM83DsVGcZ5FtBP_6DPv26kNio8QHe1CeeWO1M5p2nGslD9ndfsGSqMClpdhn9V6xCfCL5OBIEJRfUbNTgnV-vL_2cvfk_ZzwfsFlTjt840g9fhO01BugdLa5yzUD8lGSdy1xaP2ZC7tpBjWwTZh8MCPYke-4D8BbYuB_s</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1719284359</pqid></control><display><type>article</type><title>Sparse Spectro-Temporal Receptive Fields Based on Multi-Unit and High-Gamma Responses in Human Auditory Cortex</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jenison, Rick L ; Reale, Richard A ; Armstrong, Amanda L ; Oya, Hiroyuki ; Kawasaki, Hiroto ; Howard, 3rd, Matthew A</creator><contributor>Malmierca, Manuel S.</contributor><creatorcontrib>Jenison, Rick L ; Reale, Richard A ; Armstrong, Amanda L ; Oya, Hiroyuki ; Kawasaki, Hiroto ; Howard, 3rd, Matthew A ; Malmierca, Manuel S.</creatorcontrib><description>Spectro-Temporal Receptive Fields (STRFs) were estimated from both multi-unit sorted clusters and high-gamma power responses in human auditory cortex. Intracranial electrophysiological recordings were used to measure responses to a random chord sequence of Gammatone stimuli. Traditional methods for estimating STRFs from single-unit recordings, such as spike-triggered-averages, tend to be noisy and are less robust to other response signals such as local field potentials. We present an extension to recently advanced methods for estimating STRFs from generalized linear models (GLM). A new variant of regression using regularization that penalizes non-zero coefficients is described, which results in a sparse solution. The frequency-time structure of the STRF tends toward grouping in different areas of frequency-time and we demonstrate that group sparsity-inducing penalties applied to GLM estimates of STRFs reduces the background noise while preserving the complex internal structure. The contribution of local spiking activity to the high-gamma power signal was factored out of the STRF using the GLM method, and this contribution was significant in 85 percent of the cases. Although the GLM methods have been used to estimate STRFs in animals, this study examines the detailed structure directly from auditory cortex in the awake human brain. We used this approach to identify an abrupt change in the best frequency of estimated STRFs along posteromedial-to-anterolateral recording locations along the long axis of Heschl's gyrus. This change correlates well with a proposed transition from core to non-core auditory fields previously identified using the temporal response properties of Heschl's gyrus recordings elicited by click-train stimuli.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0137915</identifier><identifier>PMID: 26367010</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Auditory Cortex - pathology ; Auditory Cortex - physiopathology ; Background noise ; Brain ; Communication ; Cortex (auditory) ; Cortex (temporal) ; Electrodes ; Epidemiology ; Epilepsy - pathology ; Epilepsy - physiopathology ; Estimates ; Estimation ; Frequency ; Gamma Rhythm ; Generalized linear models ; Human behavior ; Human subjects ; Humans ; Laboratory animals ; Models, Neurological ; Neurons ; Neurophysiology ; Neurosciences ; Neurosurgery ; NMR ; Noise ; Noise reduction ; Nuclear magnetic resonance ; Regression analysis ; Regularization ; Sparsity ; Statistical models ; Stimuli ; Temporal Lobe - pathology ; Temporal Lobe - physiopathology ; Temporal variations</subject><ispartof>PloS one, 2015-09, Vol.10 (9), p.e0137915-e0137915</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Jenison et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Jenison et al 2015 Jenison et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-b78baeba2795743bfdd6e5fcb677a53ea64dba473f5b5d6be3ef9d57343366b73</citedby><cites>FETCH-LOGICAL-c692t-b78baeba2795743bfdd6e5fcb677a53ea64dba473f5b5d6be3ef9d57343366b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4569421/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4569421/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26367010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Malmierca, Manuel S.</contributor><creatorcontrib>Jenison, Rick L</creatorcontrib><creatorcontrib>Reale, Richard A</creatorcontrib><creatorcontrib>Armstrong, Amanda L</creatorcontrib><creatorcontrib>Oya, Hiroyuki</creatorcontrib><creatorcontrib>Kawasaki, Hiroto</creatorcontrib><creatorcontrib>Howard, 3rd, Matthew A</creatorcontrib><title>Sparse Spectro-Temporal Receptive Fields Based on Multi-Unit and High-Gamma Responses in Human Auditory Cortex</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Spectro-Temporal Receptive Fields (STRFs) were estimated from both multi-unit sorted clusters and high-gamma power responses in human auditory cortex. Intracranial electrophysiological recordings were used to measure responses to a random chord sequence of Gammatone stimuli. Traditional methods for estimating STRFs from single-unit recordings, such as spike-triggered-averages, tend to be noisy and are less robust to other response signals such as local field potentials. We present an extension to recently advanced methods for estimating STRFs from generalized linear models (GLM). A new variant of regression using regularization that penalizes non-zero coefficients is described, which results in a sparse solution. The frequency-time structure of the STRF tends toward grouping in different areas of frequency-time and we demonstrate that group sparsity-inducing penalties applied to GLM estimates of STRFs reduces the background noise while preserving the complex internal structure. The contribution of local spiking activity to the high-gamma power signal was factored out of the STRF using the GLM method, and this contribution was significant in 85 percent of the cases. Although the GLM methods have been used to estimate STRFs in animals, this study examines the detailed structure directly from auditory cortex in the awake human brain. We used this approach to identify an abrupt change in the best frequency of estimated STRFs along posteromedial-to-anterolateral recording locations along the long axis of Heschl's gyrus. This change correlates well with a proposed transition from core to non-core auditory fields previously identified using the temporal response properties of Heschl's gyrus recordings elicited by click-train stimuli.</description><subject>Analysis</subject><subject>Auditory Cortex - pathology</subject><subject>Auditory Cortex - physiopathology</subject><subject>Background noise</subject><subject>Brain</subject><subject>Communication</subject><subject>Cortex (auditory)</subject><subject>Cortex (temporal)</subject><subject>Electrodes</subject><subject>Epidemiology</subject><subject>Epilepsy - pathology</subject><subject>Epilepsy - physiopathology</subject><subject>Estimates</subject><subject>Estimation</subject><subject>Frequency</subject><subject>Gamma Rhythm</subject><subject>Generalized linear models</subject><subject>Human behavior</subject><subject>Human subjects</subject><subject>Humans</subject><subject>Laboratory animals</subject><subject>Models, Neurological</subject><subject>Neurons</subject><subject>Neurophysiology</subject><subject>Neurosciences</subject><subject>Neurosurgery</subject><subject>NMR</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Nuclear magnetic resonance</subject><subject>Regression analysis</subject><subject>Regularization</subject><subject>Sparsity</subject><subject>Statistical models</subject><subject>Stimuli</subject><subject>Temporal Lobe - pathology</subject><subject>Temporal Lobe - physiopathology</subject><subject>Temporal variations</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11r2zAUhs3YWLtu_2BsgsHYLpxZ1pd9M8jC2gQ6Ck27WyHbx4mKbbmSXNZ_P6VxSzx6MXQhcfS8r6RzdKLoPU5mmAj87cYMtlPNrDcdzJIQyjF7ER3jnKQxTxPy8mB9FL1x7iZJGMk4fx0dpZxwkeDkOOrWvbIO0LqH0lsTX0HbG6sadAkl9F7fATrV0FQO_VAOKmQ69GtovI6vO-2R6iq01JttfKbaVgWNC7dx4JDu0HJoVYfmQ6W9sfdoYayHP2-jV7VqHLwb55Po-vTn1WIZn1-crRbz87jkeerjQmSFgkKlImeCkqKuKg6sLgsuhGIEFKdVoaggNStYxQsgUOcVE4QSwnkhyEn0ce_bN8bJMVVOYoHzNKOE5YFY7YnKqBvZW90qey-N0vIhYOxGKut12YAsakZpJjihKqWFgJxyEBmUmDOOIS-D1_fxtKFooSqh8yGFE9PpTqe3cmPuJGU8pykOBl9GA2tuB3BettqV0DSqAzM83DsVGcZ5FtBP_6DPv26kNio8QHe1CeeWO1M5p2nGslD9ndfsGSqMClpdhn9V6xCfCL5OBIEJRfUbNTgnV-vL_2cvfk_ZzwfsFlTjt840g9fhO01BugdLa5yzUD8lGSdy1xaP2ZC7tpBjWwTZh8MCPYke-4D8BbYuB_s</recordid><startdate>20150914</startdate><enddate>20150914</enddate><creator>Jenison, Rick L</creator><creator>Reale, Richard A</creator><creator>Armstrong, Amanda L</creator><creator>Oya, Hiroyuki</creator><creator>Kawasaki, Hiroto</creator><creator>Howard, 3rd, Matthew A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150914</creationdate><title>Sparse Spectro-Temporal Receptive Fields Based on Multi-Unit and High-Gamma Responses in Human Auditory Cortex</title><author>Jenison, Rick L ; Reale, Richard A ; Armstrong, Amanda L ; Oya, Hiroyuki ; Kawasaki, Hiroto ; Howard, 3rd, Matthew A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-b78baeba2795743bfdd6e5fcb677a53ea64dba473f5b5d6be3ef9d57343366b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Auditory Cortex - pathology</topic><topic>Auditory Cortex - physiopathology</topic><topic>Background noise</topic><topic>Brain</topic><topic>Communication</topic><topic>Cortex (auditory)</topic><topic>Cortex (temporal)</topic><topic>Electrodes</topic><topic>Epidemiology</topic><topic>Epilepsy - pathology</topic><topic>Epilepsy - physiopathology</topic><topic>Estimates</topic><topic>Estimation</topic><topic>Frequency</topic><topic>Gamma Rhythm</topic><topic>Generalized linear models</topic><topic>Human behavior</topic><topic>Human subjects</topic><topic>Humans</topic><topic>Laboratory animals</topic><topic>Models, Neurological</topic><topic>Neurons</topic><topic>Neurophysiology</topic><topic>Neurosciences</topic><topic>Neurosurgery</topic><topic>NMR</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Nuclear magnetic resonance</topic><topic>Regression analysis</topic><topic>Regularization</topic><topic>Sparsity</topic><topic>Statistical models</topic><topic>Stimuli</topic><topic>Temporal Lobe - pathology</topic><topic>Temporal Lobe - physiopathology</topic><topic>Temporal variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jenison, Rick L</creatorcontrib><creatorcontrib>Reale, Richard A</creatorcontrib><creatorcontrib>Armstrong, Amanda L</creatorcontrib><creatorcontrib>Oya, Hiroyuki</creatorcontrib><creatorcontrib>Kawasaki, Hiroto</creatorcontrib><creatorcontrib>Howard, 3rd, Matthew A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jenison, Rick L</au><au>Reale, Richard A</au><au>Armstrong, Amanda L</au><au>Oya, Hiroyuki</au><au>Kawasaki, Hiroto</au><au>Howard, 3rd, Matthew A</au><au>Malmierca, Manuel S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse Spectro-Temporal Receptive Fields Based on Multi-Unit and High-Gamma Responses in Human Auditory Cortex</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-09-14</date><risdate>2015</risdate><volume>10</volume><issue>9</issue><spage>e0137915</spage><epage>e0137915</epage><pages>e0137915-e0137915</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Spectro-Temporal Receptive Fields (STRFs) were estimated from both multi-unit sorted clusters and high-gamma power responses in human auditory cortex. Intracranial electrophysiological recordings were used to measure responses to a random chord sequence of Gammatone stimuli. Traditional methods for estimating STRFs from single-unit recordings, such as spike-triggered-averages, tend to be noisy and are less robust to other response signals such as local field potentials. We present an extension to recently advanced methods for estimating STRFs from generalized linear models (GLM). A new variant of regression using regularization that penalizes non-zero coefficients is described, which results in a sparse solution. The frequency-time structure of the STRF tends toward grouping in different areas of frequency-time and we demonstrate that group sparsity-inducing penalties applied to GLM estimates of STRFs reduces the background noise while preserving the complex internal structure. The contribution of local spiking activity to the high-gamma power signal was factored out of the STRF using the GLM method, and this contribution was significant in 85 percent of the cases. Although the GLM methods have been used to estimate STRFs in animals, this study examines the detailed structure directly from auditory cortex in the awake human brain. We used this approach to identify an abrupt change in the best frequency of estimated STRFs along posteromedial-to-anterolateral recording locations along the long axis of Heschl's gyrus. This change correlates well with a proposed transition from core to non-core auditory fields previously identified using the temporal response properties of Heschl's gyrus recordings elicited by click-train stimuli.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26367010</pmid><doi>10.1371/journal.pone.0137915</doi><tpages>e0137915</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-09, Vol.10 (9), p.e0137915-e0137915
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1719284359
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Auditory Cortex - pathology
Auditory Cortex - physiopathology
Background noise
Brain
Communication
Cortex (auditory)
Cortex (temporal)
Electrodes
Epidemiology
Epilepsy - pathology
Epilepsy - physiopathology
Estimates
Estimation
Frequency
Gamma Rhythm
Generalized linear models
Human behavior
Human subjects
Humans
Laboratory animals
Models, Neurological
Neurons
Neurophysiology
Neurosciences
Neurosurgery
NMR
Noise
Noise reduction
Nuclear magnetic resonance
Regression analysis
Regularization
Sparsity
Statistical models
Stimuli
Temporal Lobe - pathology
Temporal Lobe - physiopathology
Temporal variations
title Sparse Spectro-Temporal Receptive Fields Based on Multi-Unit and High-Gamma Responses in Human Auditory Cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A31%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20Spectro-Temporal%20Receptive%20Fields%20Based%20on%20Multi-Unit%20and%20High-Gamma%20Responses%20in%20Human%20Auditory%20Cortex&rft.jtitle=PloS%20one&rft.au=Jenison,%20Rick%20L&rft.date=2015-09-14&rft.volume=10&rft.issue=9&rft.spage=e0137915&rft.epage=e0137915&rft.pages=e0137915-e0137915&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0137915&rft_dat=%3Cgale_plos_%3EA428587018%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1719284359&rft_id=info:pmid/26367010&rft_galeid=A428587018&rft_doaj_id=oai_doaj_org_article_bf54487634a24b7e946e78ec16561e9c&rfr_iscdi=true