Enhanced 2,3-Butanediol Production by Optimizing Fermentation Conditions and Engineering Klebsiella oxytoca M1 through Overexpression of Acetoin Reductase
Microbial production of 2,3-butanediol (2,3-BDO) has been attracting increasing interest because of its high value and various industrial applications. In this study, high production of 2,3-BDO using a previously isolated bacterium Klebsiella oxytoca M1 was carried out by optimizing fermentation con...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-09, Vol.10 (9), p.e0138109-e0138109 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0138109 |
---|---|
container_issue | 9 |
container_start_page | e0138109 |
container_title | PloS one |
container_volume | 10 |
creator | Cho, Sukhyeong Kim, Taeyeon Woo, Han Min Lee, Jinwon Kim, Yunje Um, Youngsoon |
description | Microbial production of 2,3-butanediol (2,3-BDO) has been attracting increasing interest because of its high value and various industrial applications. In this study, high production of 2,3-BDO using a previously isolated bacterium Klebsiella oxytoca M1 was carried out by optimizing fermentation conditions and overexpressing acetoin reductase (AR). Supplying complex nitrogen sources and using NaOH as a neutralizing agent were found to enhance specific production and yield of 2,3-BDO. In fed-batch fermentations, 2,3-BDO production increased with the agitation speed (109.6 g/L at 300 rpm vs. 118.5 g/L at 400 rpm) along with significantly reduced formation of by-product, but the yield at 400 rpm was lower than that at 300 rpm (0.40 g/g vs. 0.34 g/g) due to acetoin accumulation at 400 rpm. Because AR catalyzing both acetoin reduction and 2,3-BDO oxidation in K. oxytoca M1 revealed more than 8-fold higher reduction activity than oxidation activity, the engineered K. oxytoca M1 overexpressing the budC encoding AR was used in fed-batch fermentation. Finally, acetoin accumulation was significantly reduced by 43% and enhancement of 2,3-BDO concentration (142.5 g/L), yield (0.42 g/g) and productivity (1.47 g/L/h) was achieved compared to performance with the parent strain. This is by far the highest titer of 2,3-BDO achieved by K. oxytoca strains. This notable result could be obtained by finding favorable fermentation conditions for 2,3-BDO production as well as by utilizing the distinct characteristic of AR in K. oxytoca M1 revealing the nature of reductase. |
doi_str_mv | 10.1371/journal.pone.0138109 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1719284294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A428587074</galeid><doaj_id>oai_doaj_org_article_856e346e85594bcb9301d056ab247143</doaj_id><sourcerecordid>A428587074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-7d6099a9ded7ce95c90372cdd54bbb4baba1981f9a828b22db02a966088d42813</originalsourceid><addsrcrecordid>eNqNk11rFDEUhgdRbK3-A9GBgii4az5mMsmNUEurxcpK_bgN-Tg7mzKbrEmmtP4Uf60z223pSi8kFwknz3lP8ianKJ5jNMW0we_OQx-96qar4GGKMOUYiQfFLhaUTBhB9OGd9U7xJKVzhGrKGXtc7BBGGaei2S3-HPmF8gZsSd7SyYc-Kw_Wha78GoPtTXbBl_qqnK2yW7rfzrflMcQl-KzWW4fBWzeuUqm8LY986zxAHLnPHejkoOtUGS6vcjCq_ILLvIihbxfl7AIiXK4ipDTqhHl5YCAH58szGOuqBE-LR3PVJXi2mfeKH8dH3w8_TU5nH08OD04npql5njSWISGUsGAbA6I2AtGGGGvrSmtdaaUVFhzPheKEa0KsRkQJxhDntiIc073i5bXuqgtJbmxNEjdYEF4RUQ3EyTVhgzqXq-iWKl7JoJxcB0JspYrZmQ4krxnQigGva1FpowVF2KKaKU2qBld00Hq_qdbrJVgzWBlVtyW6vePdQrbhQlY1E5ShQeD1RiCGXz2kLJcumdFnD6Ffn5s0HFEkBnT_H_T-222oVg0XcH4ehrpmFJUHg0E1b1AzUtN7qGFYWDoz_MG5G-JbCW-2EgYmw2VuVZ-SPPl29v_s7Oc2--oOuwDV5UUKXb_-hdtgdQ2aGFKKML81GSM5ttCNG3JsIblpoSHtxd0Huk266Rn6F-LuGEo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1719284294</pqid></control><display><type>article</type><title>Enhanced 2,3-Butanediol Production by Optimizing Fermentation Conditions and Engineering Klebsiella oxytoca M1 through Overexpression of Acetoin Reductase</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Cho, Sukhyeong ; Kim, Taeyeon ; Woo, Han Min ; Lee, Jinwon ; Kim, Yunje ; Um, Youngsoon</creator><contributor>Du, Chenyu</contributor><creatorcontrib>Cho, Sukhyeong ; Kim, Taeyeon ; Woo, Han Min ; Lee, Jinwon ; Kim, Yunje ; Um, Youngsoon ; Du, Chenyu</creatorcontrib><description>Microbial production of 2,3-butanediol (2,3-BDO) has been attracting increasing interest because of its high value and various industrial applications. In this study, high production of 2,3-BDO using a previously isolated bacterium Klebsiella oxytoca M1 was carried out by optimizing fermentation conditions and overexpressing acetoin reductase (AR). Supplying complex nitrogen sources and using NaOH as a neutralizing agent were found to enhance specific production and yield of 2,3-BDO. In fed-batch fermentations, 2,3-BDO production increased with the agitation speed (109.6 g/L at 300 rpm vs. 118.5 g/L at 400 rpm) along with significantly reduced formation of by-product, but the yield at 400 rpm was lower than that at 300 rpm (0.40 g/g vs. 0.34 g/g) due to acetoin accumulation at 400 rpm. Because AR catalyzing both acetoin reduction and 2,3-BDO oxidation in K. oxytoca M1 revealed more than 8-fold higher reduction activity than oxidation activity, the engineered K. oxytoca M1 overexpressing the budC encoding AR was used in fed-batch fermentation. Finally, acetoin accumulation was significantly reduced by 43% and enhancement of 2,3-BDO concentration (142.5 g/L), yield (0.42 g/g) and productivity (1.47 g/L/h) was achieved compared to performance with the parent strain. This is by far the highest titer of 2,3-BDO achieved by K. oxytoca strains. This notable result could be obtained by finding favorable fermentation conditions for 2,3-BDO production as well as by utilizing the distinct characteristic of AR in K. oxytoca M1 revealing the nature of reductase.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0138109</identifier><identifier>PMID: 26368397</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accumulation ; Acetoin ; Agricultural production ; Alcohol Oxidoreductases - biosynthesis ; Alcohol Oxidoreductases - genetics ; Bacillus licheniformis ; Bacterial Proteins - biosynthesis ; Bacterial Proteins - genetics ; Batch culture ; Biodiesel fuels ; Biosynthesis ; Butanediol ; Butylene Glycols - metabolism ; Chemical engineering ; Clean technology ; Dehydrogenases ; Energy ; Fermentation ; Gene Expression ; Industrial applications ; Klebsiella ; Klebsiella oxytoca ; Klebsiella oxytoca - enzymology ; Klebsiella oxytoca - genetics ; Klebsiella pneumoniae ; Metabolic Engineering ; Metabolism ; Metabolites ; Microorganisms ; Nitrogen ; Nitrogen sources ; Oxidation ; Reductase ; Reduction ; Science ; Yield</subject><ispartof>PloS one, 2015-09, Vol.10 (9), p.e0138109-e0138109</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Cho et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Cho et al 2015 Cho et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-7d6099a9ded7ce95c90372cdd54bbb4baba1981f9a828b22db02a966088d42813</citedby><cites>FETCH-LOGICAL-c758t-7d6099a9ded7ce95c90372cdd54bbb4baba1981f9a828b22db02a966088d42813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4569360/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4569360/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26368397$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Du, Chenyu</contributor><creatorcontrib>Cho, Sukhyeong</creatorcontrib><creatorcontrib>Kim, Taeyeon</creatorcontrib><creatorcontrib>Woo, Han Min</creatorcontrib><creatorcontrib>Lee, Jinwon</creatorcontrib><creatorcontrib>Kim, Yunje</creatorcontrib><creatorcontrib>Um, Youngsoon</creatorcontrib><title>Enhanced 2,3-Butanediol Production by Optimizing Fermentation Conditions and Engineering Klebsiella oxytoca M1 through Overexpression of Acetoin Reductase</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Microbial production of 2,3-butanediol (2,3-BDO) has been attracting increasing interest because of its high value and various industrial applications. In this study, high production of 2,3-BDO using a previously isolated bacterium Klebsiella oxytoca M1 was carried out by optimizing fermentation conditions and overexpressing acetoin reductase (AR). Supplying complex nitrogen sources and using NaOH as a neutralizing agent were found to enhance specific production and yield of 2,3-BDO. In fed-batch fermentations, 2,3-BDO production increased with the agitation speed (109.6 g/L at 300 rpm vs. 118.5 g/L at 400 rpm) along with significantly reduced formation of by-product, but the yield at 400 rpm was lower than that at 300 rpm (0.40 g/g vs. 0.34 g/g) due to acetoin accumulation at 400 rpm. Because AR catalyzing both acetoin reduction and 2,3-BDO oxidation in K. oxytoca M1 revealed more than 8-fold higher reduction activity than oxidation activity, the engineered K. oxytoca M1 overexpressing the budC encoding AR was used in fed-batch fermentation. Finally, acetoin accumulation was significantly reduced by 43% and enhancement of 2,3-BDO concentration (142.5 g/L), yield (0.42 g/g) and productivity (1.47 g/L/h) was achieved compared to performance with the parent strain. This is by far the highest titer of 2,3-BDO achieved by K. oxytoca strains. This notable result could be obtained by finding favorable fermentation conditions for 2,3-BDO production as well as by utilizing the distinct characteristic of AR in K. oxytoca M1 revealing the nature of reductase.</description><subject>Accumulation</subject><subject>Acetoin</subject><subject>Agricultural production</subject><subject>Alcohol Oxidoreductases - biosynthesis</subject><subject>Alcohol Oxidoreductases - genetics</subject><subject>Bacillus licheniformis</subject><subject>Bacterial Proteins - biosynthesis</subject><subject>Bacterial Proteins - genetics</subject><subject>Batch culture</subject><subject>Biodiesel fuels</subject><subject>Biosynthesis</subject><subject>Butanediol</subject><subject>Butylene Glycols - metabolism</subject><subject>Chemical engineering</subject><subject>Clean technology</subject><subject>Dehydrogenases</subject><subject>Energy</subject><subject>Fermentation</subject><subject>Gene Expression</subject><subject>Industrial applications</subject><subject>Klebsiella</subject><subject>Klebsiella oxytoca</subject><subject>Klebsiella oxytoca - enzymology</subject><subject>Klebsiella oxytoca - genetics</subject><subject>Klebsiella pneumoniae</subject><subject>Metabolic Engineering</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Microorganisms</subject><subject>Nitrogen</subject><subject>Nitrogen sources</subject><subject>Oxidation</subject><subject>Reductase</subject><subject>Reduction</subject><subject>Science</subject><subject>Yield</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rFDEUhgdRbK3-A9GBgii4az5mMsmNUEurxcpK_bgN-Tg7mzKbrEmmtP4Uf60z223pSi8kFwknz3lP8ianKJ5jNMW0we_OQx-96qar4GGKMOUYiQfFLhaUTBhB9OGd9U7xJKVzhGrKGXtc7BBGGaei2S3-HPmF8gZsSd7SyYc-Kw_Wha78GoPtTXbBl_qqnK2yW7rfzrflMcQl-KzWW4fBWzeuUqm8LY986zxAHLnPHejkoOtUGS6vcjCq_ILLvIihbxfl7AIiXK4ipDTqhHl5YCAH58szGOuqBE-LR3PVJXi2mfeKH8dH3w8_TU5nH08OD04npql5njSWISGUsGAbA6I2AtGGGGvrSmtdaaUVFhzPheKEa0KsRkQJxhDntiIc073i5bXuqgtJbmxNEjdYEF4RUQ3EyTVhgzqXq-iWKl7JoJxcB0JspYrZmQ4krxnQigGva1FpowVF2KKaKU2qBld00Hq_qdbrJVgzWBlVtyW6vePdQrbhQlY1E5ShQeD1RiCGXz2kLJcumdFnD6Ffn5s0HFEkBnT_H_T-222oVg0XcH4ehrpmFJUHg0E1b1AzUtN7qGFYWDoz_MG5G-JbCW-2EgYmw2VuVZ-SPPl29v_s7Oc2--oOuwDV5UUKXb_-hdtgdQ2aGFKKML81GSM5ttCNG3JsIblpoSHtxd0Huk266Rn6F-LuGEo</recordid><startdate>20150914</startdate><enddate>20150914</enddate><creator>Cho, Sukhyeong</creator><creator>Kim, Taeyeon</creator><creator>Woo, Han Min</creator><creator>Lee, Jinwon</creator><creator>Kim, Yunje</creator><creator>Um, Youngsoon</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150914</creationdate><title>Enhanced 2,3-Butanediol Production by Optimizing Fermentation Conditions and Engineering Klebsiella oxytoca M1 through Overexpression of Acetoin Reductase</title><author>Cho, Sukhyeong ; Kim, Taeyeon ; Woo, Han Min ; Lee, Jinwon ; Kim, Yunje ; Um, Youngsoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-7d6099a9ded7ce95c90372cdd54bbb4baba1981f9a828b22db02a966088d42813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accumulation</topic><topic>Acetoin</topic><topic>Agricultural production</topic><topic>Alcohol Oxidoreductases - biosynthesis</topic><topic>Alcohol Oxidoreductases - genetics</topic><topic>Bacillus licheniformis</topic><topic>Bacterial Proteins - biosynthesis</topic><topic>Bacterial Proteins - genetics</topic><topic>Batch culture</topic><topic>Biodiesel fuels</topic><topic>Biosynthesis</topic><topic>Butanediol</topic><topic>Butylene Glycols - metabolism</topic><topic>Chemical engineering</topic><topic>Clean technology</topic><topic>Dehydrogenases</topic><topic>Energy</topic><topic>Fermentation</topic><topic>Gene Expression</topic><topic>Industrial applications</topic><topic>Klebsiella</topic><topic>Klebsiella oxytoca</topic><topic>Klebsiella oxytoca - enzymology</topic><topic>Klebsiella oxytoca - genetics</topic><topic>Klebsiella pneumoniae</topic><topic>Metabolic Engineering</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Microorganisms</topic><topic>Nitrogen</topic><topic>Nitrogen sources</topic><topic>Oxidation</topic><topic>Reductase</topic><topic>Reduction</topic><topic>Science</topic><topic>Yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Sukhyeong</creatorcontrib><creatorcontrib>Kim, Taeyeon</creatorcontrib><creatorcontrib>Woo, Han Min</creatorcontrib><creatorcontrib>Lee, Jinwon</creatorcontrib><creatorcontrib>Kim, Yunje</creatorcontrib><creatorcontrib>Um, Youngsoon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Sukhyeong</au><au>Kim, Taeyeon</au><au>Woo, Han Min</au><au>Lee, Jinwon</au><au>Kim, Yunje</au><au>Um, Youngsoon</au><au>Du, Chenyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced 2,3-Butanediol Production by Optimizing Fermentation Conditions and Engineering Klebsiella oxytoca M1 through Overexpression of Acetoin Reductase</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-09-14</date><risdate>2015</risdate><volume>10</volume><issue>9</issue><spage>e0138109</spage><epage>e0138109</epage><pages>e0138109-e0138109</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Microbial production of 2,3-butanediol (2,3-BDO) has been attracting increasing interest because of its high value and various industrial applications. In this study, high production of 2,3-BDO using a previously isolated bacterium Klebsiella oxytoca M1 was carried out by optimizing fermentation conditions and overexpressing acetoin reductase (AR). Supplying complex nitrogen sources and using NaOH as a neutralizing agent were found to enhance specific production and yield of 2,3-BDO. In fed-batch fermentations, 2,3-BDO production increased with the agitation speed (109.6 g/L at 300 rpm vs. 118.5 g/L at 400 rpm) along with significantly reduced formation of by-product, but the yield at 400 rpm was lower than that at 300 rpm (0.40 g/g vs. 0.34 g/g) due to acetoin accumulation at 400 rpm. Because AR catalyzing both acetoin reduction and 2,3-BDO oxidation in K. oxytoca M1 revealed more than 8-fold higher reduction activity than oxidation activity, the engineered K. oxytoca M1 overexpressing the budC encoding AR was used in fed-batch fermentation. Finally, acetoin accumulation was significantly reduced by 43% and enhancement of 2,3-BDO concentration (142.5 g/L), yield (0.42 g/g) and productivity (1.47 g/L/h) was achieved compared to performance with the parent strain. This is by far the highest titer of 2,3-BDO achieved by K. oxytoca strains. This notable result could be obtained by finding favorable fermentation conditions for 2,3-BDO production as well as by utilizing the distinct characteristic of AR in K. oxytoca M1 revealing the nature of reductase.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26368397</pmid><doi>10.1371/journal.pone.0138109</doi><tpages>e0138109</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-09, Vol.10 (9), p.e0138109-e0138109 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1719284294 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Accumulation Acetoin Agricultural production Alcohol Oxidoreductases - biosynthesis Alcohol Oxidoreductases - genetics Bacillus licheniformis Bacterial Proteins - biosynthesis Bacterial Proteins - genetics Batch culture Biodiesel fuels Biosynthesis Butanediol Butylene Glycols - metabolism Chemical engineering Clean technology Dehydrogenases Energy Fermentation Gene Expression Industrial applications Klebsiella Klebsiella oxytoca Klebsiella oxytoca - enzymology Klebsiella oxytoca - genetics Klebsiella pneumoniae Metabolic Engineering Metabolism Metabolites Microorganisms Nitrogen Nitrogen sources Oxidation Reductase Reduction Science Yield |
title | Enhanced 2,3-Butanediol Production by Optimizing Fermentation Conditions and Engineering Klebsiella oxytoca M1 through Overexpression of Acetoin Reductase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A10%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%202,3-Butanediol%20Production%20by%20Optimizing%20Fermentation%20Conditions%20and%20Engineering%20Klebsiella%20oxytoca%20M1%20through%20Overexpression%20of%20Acetoin%20Reductase&rft.jtitle=PloS%20one&rft.au=Cho,%20Sukhyeong&rft.date=2015-09-14&rft.volume=10&rft.issue=9&rft.spage=e0138109&rft.epage=e0138109&rft.pages=e0138109-e0138109&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0138109&rft_dat=%3Cgale_plos_%3EA428587074%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1719284294&rft_id=info:pmid/26368397&rft_galeid=A428587074&rft_doaj_id=oai_doaj_org_article_856e346e85594bcb9301d056ab247143&rfr_iscdi=true |