Lack of Dietary Polyunsaturated Fatty Acids Causes Synapse Dysfunction in the Drosophila Visual System
Polyunsaturated fatty acids (PUFAs) are essential nutrients for animals and necessary for the normal functioning of the nervous system. A lack of PUFAs can result from the consumption of a deficient diet or genetic factors, which impact PUFA uptake and metabolism. Both can cause synaptic dysfunction...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-08, Vol.10 (8), p.e0135353-e0135353 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0135353 |
---|---|
container_issue | 8 |
container_start_page | e0135353 |
container_title | PloS one |
container_volume | 10 |
creator | Ziegler, Anna B Ménagé, Cindy Grégoire, Stéphane Garcia, Thibault Ferveur, Jean-François Bretillon, Lionel Grosjean, Yael |
description | Polyunsaturated fatty acids (PUFAs) are essential nutrients for animals and necessary for the normal functioning of the nervous system. A lack of PUFAs can result from the consumption of a deficient diet or genetic factors, which impact PUFA uptake and metabolism. Both can cause synaptic dysfunction, which is associated with numerous disorders. However, there is a knowledge gap linking these neuronal dysfunctions and their underlying molecular mechanisms. Because of its genetic manipulability and its easy, fast, and cheap breeding, Drosophila melanogaster has emerged as an excellent model organism for genetic screens, helping to identify the genetic bases of such events. As a first step towards the understanding of PUFA implications in Drosophila synaptic physiology we designed a breeding medium containing only very low amounts of PUFAs. We then used the fly's visual system, a well-established model for studying signal transmission and neurological disorders, to measure the effects of a PUFA deficiency on synaptic function. Using both visual performance and eye electrophysiology, we found that PUFA deficiency strongly affected synaptic transmission in the fly's visual system. These defects were rescued by diets containing omega-3 or omega-6 PUFAs alone or in combination. In summary, manipulating PUFA contents in the fly's diet was powerful to investigate the role of these nutrients on the fly´s visual synaptic function. This study aims at showing how the first visual synapse of Drosophila can serve as a simple model to study the effects of PUFAs on synapse function. A similar approach could be further used to screen for genetic factors underlying the molecular mechanisms of synaptic dysfunctions associated with altered PUFA levels. |
doi_str_mv | 10.1371/journal.pone.0135353 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1719263492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A426725518</galeid><doaj_id>oai_doaj_org_article_bcf31d20e60b4242980a752ed2b919d1</doaj_id><sourcerecordid>A426725518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c792t-de592ee4fd7ab43cc3baacf279aa1f6b7fdea70752b2ab93641133da1691e6123</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBEQkLsosVf-fANUtUxVqnSEIPdWieO3Xq4cRc7E_33ODSbmmkXyBeJTp7zvj4n5yTJW4ymmBb4843r2gbsdOsaNUWYZvE8S44xp2SSE0SfH7wfJa-8v0Eoo2Wev0yOSE5RiUp2nOglyN-p0-mZUQHaXfrd2V3XeAhdC0HV6TmEsEtn0tQ-nUPnlU-vdg1svUrPdl53jQzGNalp0rCOodZ5t10bC-m18R3YCPugNq-TFxqsV2-G50ny6_zrz_nFZHn5bTGfLSey4CRMapVxohTTdQEVo1LSCkBqUnAArPOq0LWCAhUZqQhUnOYMY0prwDnHKseEniTv97pb67wYWuQFLjCPNTPeE4s9UTu4EdvWbGLVwoER_wKuXQlog5FWiUpqimuCVI4qRhjhJYJorWpSccxrHLW-DG5dtVG1VE1owY5Ex18asxYrdydYliGGiyhwuhdYP0q7mC1FH0OYkOiM7nqzT4NZ62475YPYGC-VtdAo1_U1orLkrGQooh8eoU93YqBWEIs1jXbxjrIXFTNG8oJkGS4jNX2CiqdWGyPj7GkT46OE01FCZIL6E1ZxdrxYXP34f_byesx-PGDXCmxYe2e7fvz8GGR7UMZh9K3SD53FSPSrc98N0a-OGFYnpr07_JkPSfe7Qv8CLwsTPA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1719263492</pqid></control><display><type>article</type><title>Lack of Dietary Polyunsaturated Fatty Acids Causes Synapse Dysfunction in the Drosophila Visual System</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Ziegler, Anna B ; Ménagé, Cindy ; Grégoire, Stéphane ; Garcia, Thibault ; Ferveur, Jean-François ; Bretillon, Lionel ; Grosjean, Yael</creator><creatorcontrib>Ziegler, Anna B ; Ménagé, Cindy ; Grégoire, Stéphane ; Garcia, Thibault ; Ferveur, Jean-François ; Bretillon, Lionel ; Grosjean, Yael</creatorcontrib><description>Polyunsaturated fatty acids (PUFAs) are essential nutrients for animals and necessary for the normal functioning of the nervous system. A lack of PUFAs can result from the consumption of a deficient diet or genetic factors, which impact PUFA uptake and metabolism. Both can cause synaptic dysfunction, which is associated with numerous disorders. However, there is a knowledge gap linking these neuronal dysfunctions and their underlying molecular mechanisms. Because of its genetic manipulability and its easy, fast, and cheap breeding, Drosophila melanogaster has emerged as an excellent model organism for genetic screens, helping to identify the genetic bases of such events. As a first step towards the understanding of PUFA implications in Drosophila synaptic physiology we designed a breeding medium containing only very low amounts of PUFAs. We then used the fly's visual system, a well-established model for studying signal transmission and neurological disorders, to measure the effects of a PUFA deficiency on synaptic function. Using both visual performance and eye electrophysiology, we found that PUFA deficiency strongly affected synaptic transmission in the fly's visual system. These defects were rescued by diets containing omega-3 or omega-6 PUFAs alone or in combination. In summary, manipulating PUFA contents in the fly's diet was powerful to investigate the role of these nutrients on the fly´s visual synaptic function. This study aims at showing how the first visual synapse of Drosophila can serve as a simple model to study the effects of PUFAs on synapse function. A similar approach could be further used to screen for genetic factors underlying the molecular mechanisms of synaptic dysfunctions associated with altered PUFA levels.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0135353</identifier><identifier>PMID: 26308084</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animal biology ; Animals ; Brain ; Breeding ; Diet ; Dietary Fats - metabolism ; Dietary Fats - pharmacology ; Disorders ; Dose-Response Relationship, Drug ; Drosophila ; Drosophila melanogaster ; Drosophila melanogaster - drug effects ; Drosophila melanogaster - metabolism ; Drosophila melanogaster - physiology ; Electrophysiology ; Enzymes ; Essential nutrients ; Fatty acids ; Fatty Acids, Unsaturated - metabolism ; Fatty Acids, Unsaturated - pharmacology ; Food ; Gene expression ; Genetic factors ; Genetic screening ; Genetic testing ; Human health and pathology ; Insects ; Life Sciences ; Lipids ; Metabolism ; Molecular chains ; Molecular modelling ; Nervous system ; Neurological diseases ; Neurophysiology ; Nutrient deficiency ; Nutrients ; Nutritional aspects ; Omega 6 fatty acids ; Polyunsaturated fatty acids ; Rodents ; Sensory Organs ; Signal transmission ; Synapses ; Synapses - drug effects ; Synapses - physiology ; Synaptic transmission ; Synaptic Transmission - drug effects ; Unsaturated fatty acids ; Visual flight ; Visual perception ; Visual Perception - drug effects ; Visual Perception - physiology ; Visual signals ; Visual system</subject><ispartof>PloS one, 2015-08, Vol.10 (8), p.e0135353-e0135353</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Ziegler et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2015 Ziegler et al 2015 Ziegler et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c792t-de592ee4fd7ab43cc3baacf279aa1f6b7fdea70752b2ab93641133da1691e6123</citedby><cites>FETCH-LOGICAL-c792t-de592ee4fd7ab43cc3baacf279aa1f6b7fdea70752b2ab93641133da1691e6123</cites><orcidid>0000-0003-0689-8344 ; 0000-0002-6957-100X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550417/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550417/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26308084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01222420$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ziegler, Anna B</creatorcontrib><creatorcontrib>Ménagé, Cindy</creatorcontrib><creatorcontrib>Grégoire, Stéphane</creatorcontrib><creatorcontrib>Garcia, Thibault</creatorcontrib><creatorcontrib>Ferveur, Jean-François</creatorcontrib><creatorcontrib>Bretillon, Lionel</creatorcontrib><creatorcontrib>Grosjean, Yael</creatorcontrib><title>Lack of Dietary Polyunsaturated Fatty Acids Causes Synapse Dysfunction in the Drosophila Visual System</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Polyunsaturated fatty acids (PUFAs) are essential nutrients for animals and necessary for the normal functioning of the nervous system. A lack of PUFAs can result from the consumption of a deficient diet or genetic factors, which impact PUFA uptake and metabolism. Both can cause synaptic dysfunction, which is associated with numerous disorders. However, there is a knowledge gap linking these neuronal dysfunctions and their underlying molecular mechanisms. Because of its genetic manipulability and its easy, fast, and cheap breeding, Drosophila melanogaster has emerged as an excellent model organism for genetic screens, helping to identify the genetic bases of such events. As a first step towards the understanding of PUFA implications in Drosophila synaptic physiology we designed a breeding medium containing only very low amounts of PUFAs. We then used the fly's visual system, a well-established model for studying signal transmission and neurological disorders, to measure the effects of a PUFA deficiency on synaptic function. Using both visual performance and eye electrophysiology, we found that PUFA deficiency strongly affected synaptic transmission in the fly's visual system. These defects were rescued by diets containing omega-3 or omega-6 PUFAs alone or in combination. In summary, manipulating PUFA contents in the fly's diet was powerful to investigate the role of these nutrients on the fly´s visual synaptic function. This study aims at showing how the first visual synapse of Drosophila can serve as a simple model to study the effects of PUFAs on synapse function. A similar approach could be further used to screen for genetic factors underlying the molecular mechanisms of synaptic dysfunctions associated with altered PUFA levels.</description><subject>Animal biology</subject><subject>Animals</subject><subject>Brain</subject><subject>Breeding</subject><subject>Diet</subject><subject>Dietary Fats - metabolism</subject><subject>Dietary Fats - pharmacology</subject><subject>Disorders</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - drug effects</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila melanogaster - physiology</subject><subject>Electrophysiology</subject><subject>Enzymes</subject><subject>Essential nutrients</subject><subject>Fatty acids</subject><subject>Fatty Acids, Unsaturated - metabolism</subject><subject>Fatty Acids, Unsaturated - pharmacology</subject><subject>Food</subject><subject>Gene expression</subject><subject>Genetic factors</subject><subject>Genetic screening</subject><subject>Genetic testing</subject><subject>Human health and pathology</subject><subject>Insects</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Metabolism</subject><subject>Molecular chains</subject><subject>Molecular modelling</subject><subject>Nervous system</subject><subject>Neurological diseases</subject><subject>Neurophysiology</subject><subject>Nutrient deficiency</subject><subject>Nutrients</subject><subject>Nutritional aspects</subject><subject>Omega 6 fatty acids</subject><subject>Polyunsaturated fatty acids</subject><subject>Rodents</subject><subject>Sensory Organs</subject><subject>Signal transmission</subject><subject>Synapses</subject><subject>Synapses - drug effects</subject><subject>Synapses - physiology</subject><subject>Synaptic transmission</subject><subject>Synaptic Transmission - drug effects</subject><subject>Unsaturated fatty acids</subject><subject>Visual flight</subject><subject>Visual perception</subject><subject>Visual Perception - drug effects</subject><subject>Visual Perception - physiology</subject><subject>Visual signals</subject><subject>Visual system</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBEQkLsosVf-fANUtUxVqnSEIPdWieO3Xq4cRc7E_33ODSbmmkXyBeJTp7zvj4n5yTJW4ymmBb4843r2gbsdOsaNUWYZvE8S44xp2SSE0SfH7wfJa-8v0Eoo2Wev0yOSE5RiUp2nOglyN-p0-mZUQHaXfrd2V3XeAhdC0HV6TmEsEtn0tQ-nUPnlU-vdg1svUrPdl53jQzGNalp0rCOodZ5t10bC-m18R3YCPugNq-TFxqsV2-G50ny6_zrz_nFZHn5bTGfLSey4CRMapVxohTTdQEVo1LSCkBqUnAArPOq0LWCAhUZqQhUnOYMY0prwDnHKseEniTv97pb67wYWuQFLjCPNTPeE4s9UTu4EdvWbGLVwoER_wKuXQlog5FWiUpqimuCVI4qRhjhJYJorWpSccxrHLW-DG5dtVG1VE1owY5Ex18asxYrdydYliGGiyhwuhdYP0q7mC1FH0OYkOiM7nqzT4NZ62475YPYGC-VtdAo1_U1orLkrGQooh8eoU93YqBWEIs1jXbxjrIXFTNG8oJkGS4jNX2CiqdWGyPj7GkT46OE01FCZIL6E1ZxdrxYXP34f_byesx-PGDXCmxYe2e7fvz8GGR7UMZh9K3SD53FSPSrc98N0a-OGFYnpr07_JkPSfe7Qv8CLwsTPA</recordid><startdate>20150826</startdate><enddate>20150826</enddate><creator>Ziegler, Anna B</creator><creator>Ménagé, Cindy</creator><creator>Grégoire, Stéphane</creator><creator>Garcia, Thibault</creator><creator>Ferveur, Jean-François</creator><creator>Bretillon, Lionel</creator><creator>Grosjean, Yael</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0689-8344</orcidid><orcidid>https://orcid.org/0000-0002-6957-100X</orcidid></search><sort><creationdate>20150826</creationdate><title>Lack of Dietary Polyunsaturated Fatty Acids Causes Synapse Dysfunction in the Drosophila Visual System</title><author>Ziegler, Anna B ; Ménagé, Cindy ; Grégoire, Stéphane ; Garcia, Thibault ; Ferveur, Jean-François ; Bretillon, Lionel ; Grosjean, Yael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c792t-de592ee4fd7ab43cc3baacf279aa1f6b7fdea70752b2ab93641133da1691e6123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animal biology</topic><topic>Animals</topic><topic>Brain</topic><topic>Breeding</topic><topic>Diet</topic><topic>Dietary Fats - metabolism</topic><topic>Dietary Fats - pharmacology</topic><topic>Disorders</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - drug effects</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila melanogaster - physiology</topic><topic>Electrophysiology</topic><topic>Enzymes</topic><topic>Essential nutrients</topic><topic>Fatty acids</topic><topic>Fatty Acids, Unsaturated - metabolism</topic><topic>Fatty Acids, Unsaturated - pharmacology</topic><topic>Food</topic><topic>Gene expression</topic><topic>Genetic factors</topic><topic>Genetic screening</topic><topic>Genetic testing</topic><topic>Human health and pathology</topic><topic>Insects</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Metabolism</topic><topic>Molecular chains</topic><topic>Molecular modelling</topic><topic>Nervous system</topic><topic>Neurological diseases</topic><topic>Neurophysiology</topic><topic>Nutrient deficiency</topic><topic>Nutrients</topic><topic>Nutritional aspects</topic><topic>Omega 6 fatty acids</topic><topic>Polyunsaturated fatty acids</topic><topic>Rodents</topic><topic>Sensory Organs</topic><topic>Signal transmission</topic><topic>Synapses</topic><topic>Synapses - drug effects</topic><topic>Synapses - physiology</topic><topic>Synaptic transmission</topic><topic>Synaptic Transmission - drug effects</topic><topic>Unsaturated fatty acids</topic><topic>Visual flight</topic><topic>Visual perception</topic><topic>Visual Perception - drug effects</topic><topic>Visual Perception - physiology</topic><topic>Visual signals</topic><topic>Visual system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ziegler, Anna B</creatorcontrib><creatorcontrib>Ménagé, Cindy</creatorcontrib><creatorcontrib>Grégoire, Stéphane</creatorcontrib><creatorcontrib>Garcia, Thibault</creatorcontrib><creatorcontrib>Ferveur, Jean-François</creatorcontrib><creatorcontrib>Bretillon, Lionel</creatorcontrib><creatorcontrib>Grosjean, Yael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ziegler, Anna B</au><au>Ménagé, Cindy</au><au>Grégoire, Stéphane</au><au>Garcia, Thibault</au><au>Ferveur, Jean-François</au><au>Bretillon, Lionel</au><au>Grosjean, Yael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lack of Dietary Polyunsaturated Fatty Acids Causes Synapse Dysfunction in the Drosophila Visual System</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-08-26</date><risdate>2015</risdate><volume>10</volume><issue>8</issue><spage>e0135353</spage><epage>e0135353</epage><pages>e0135353-e0135353</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Polyunsaturated fatty acids (PUFAs) are essential nutrients for animals and necessary for the normal functioning of the nervous system. A lack of PUFAs can result from the consumption of a deficient diet or genetic factors, which impact PUFA uptake and metabolism. Both can cause synaptic dysfunction, which is associated with numerous disorders. However, there is a knowledge gap linking these neuronal dysfunctions and their underlying molecular mechanisms. Because of its genetic manipulability and its easy, fast, and cheap breeding, Drosophila melanogaster has emerged as an excellent model organism for genetic screens, helping to identify the genetic bases of such events. As a first step towards the understanding of PUFA implications in Drosophila synaptic physiology we designed a breeding medium containing only very low amounts of PUFAs. We then used the fly's visual system, a well-established model for studying signal transmission and neurological disorders, to measure the effects of a PUFA deficiency on synaptic function. Using both visual performance and eye electrophysiology, we found that PUFA deficiency strongly affected synaptic transmission in the fly's visual system. These defects were rescued by diets containing omega-3 or omega-6 PUFAs alone or in combination. In summary, manipulating PUFA contents in the fly's diet was powerful to investigate the role of these nutrients on the fly´s visual synaptic function. This study aims at showing how the first visual synapse of Drosophila can serve as a simple model to study the effects of PUFAs on synapse function. A similar approach could be further used to screen for genetic factors underlying the molecular mechanisms of synaptic dysfunctions associated with altered PUFA levels.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26308084</pmid><doi>10.1371/journal.pone.0135353</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0689-8344</orcidid><orcidid>https://orcid.org/0000-0002-6957-100X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-08, Vol.10 (8), p.e0135353-e0135353 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1719263492 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Animal biology Animals Brain Breeding Diet Dietary Fats - metabolism Dietary Fats - pharmacology Disorders Dose-Response Relationship, Drug Drosophila Drosophila melanogaster Drosophila melanogaster - drug effects Drosophila melanogaster - metabolism Drosophila melanogaster - physiology Electrophysiology Enzymes Essential nutrients Fatty acids Fatty Acids, Unsaturated - metabolism Fatty Acids, Unsaturated - pharmacology Food Gene expression Genetic factors Genetic screening Genetic testing Human health and pathology Insects Life Sciences Lipids Metabolism Molecular chains Molecular modelling Nervous system Neurological diseases Neurophysiology Nutrient deficiency Nutrients Nutritional aspects Omega 6 fatty acids Polyunsaturated fatty acids Rodents Sensory Organs Signal transmission Synapses Synapses - drug effects Synapses - physiology Synaptic transmission Synaptic Transmission - drug effects Unsaturated fatty acids Visual flight Visual perception Visual Perception - drug effects Visual Perception - physiology Visual signals Visual system |
title | Lack of Dietary Polyunsaturated Fatty Acids Causes Synapse Dysfunction in the Drosophila Visual System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A00%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lack%20of%20Dietary%20Polyunsaturated%20Fatty%20Acids%20Causes%20Synapse%20Dysfunction%20in%20the%20Drosophila%20Visual%20System&rft.jtitle=PloS%20one&rft.au=Ziegler,%20Anna%20B&rft.date=2015-08-26&rft.volume=10&rft.issue=8&rft.spage=e0135353&rft.epage=e0135353&rft.pages=e0135353-e0135353&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0135353&rft_dat=%3Cgale_plos_%3EA426725518%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1719263492&rft_id=info:pmid/26308084&rft_galeid=A426725518&rft_doaj_id=oai_doaj_org_article_bcf31d20e60b4242980a752ed2b919d1&rfr_iscdi=true |