Role for Rab10 in Methamphetamine-Induced Behavior

Lipid rafts are specialized, cholesterol-rich membrane compartments that help to organize transmembrane signaling by restricting or promoting interactions with subsets of the cellular proteome. The hypothesis driving this study was that identifying proteins whose relative abundance in rafts is alter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-08, Vol.10 (8), p.e0136167
Hauptverfasser: Vanderwerf, Scott M, Buck, David C, Wilmarth, Phillip A, Sears, Leila M, David, Larry L, Morton, David B, Neve, Kim A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page e0136167
container_title PloS one
container_volume 10
creator Vanderwerf, Scott M
Buck, David C
Wilmarth, Phillip A
Sears, Leila M
David, Larry L
Morton, David B
Neve, Kim A
description Lipid rafts are specialized, cholesterol-rich membrane compartments that help to organize transmembrane signaling by restricting or promoting interactions with subsets of the cellular proteome. The hypothesis driving this study was that identifying proteins whose relative abundance in rafts is altered by the abused psychostimulant methamphetamine would contribute to fully describing the pathways involved in acute and chronic effects of the drug. Using a detergent-free method for preparing rafts from rat brain striatal membranes, we identified density gradient fractions enriched in the raft protein flotillin but deficient in calnexin and the transferrin receptor, markers of non-raft membranes. Dopamine D1- and D2-like receptor binding activity was highly enriched in the raft fractions, but pretreating rats with methamphetamine (2 mg/kg) once or repeatedly for 11 days did not alter the distribution of the receptors. LC-MS analysis of the protein composition of raft fractions from rats treated once with methamphetamine or saline identified methamphetamine-induced changes in the relative abundance of 23 raft proteins, including the monomeric GTP-binding protein Rab10, whose abundance in rafts was decreased 2.1-fold by acute methamphetamine treatment. Decreased raft localization was associated with a selective decrease in the abundance of Rab10 in a membrane fraction that includes synaptic vesicles and endosomes. Inhibiting Rab10 activity by pan-neuronal expression of a dominant-negative Rab10 mutant in Drosophila melanogaster decreased methamphetamine-induced activity and mortality and decreased caffeine-stimulated activity but not mortality, whereas inhibiting Rab10 activity selectively in cholinergic neurons had no effect. These results suggest that activation and redistribution of Rab10 is critical for some of the behavioral effects of psychostimulants.
doi_str_mv 10.1371/journal.pone.0136167
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1718989062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A426228396</galeid><doaj_id>oai_doaj_org_article_bbccf860ffd0488488598a4660ac1895</doaj_id><sourcerecordid>A426228396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-f940d44591ec018b8afa626d1cca0acaf9c85660e2852dcf5c1d070f755777ff3</originalsourceid><addsrcrecordid>eNqNkm2L1DAQx4Mo3t3qNxBdEA580TVJmzR9I5yHDwsnB-vD2zBNk22WttlL0kO_vTm3d2xBQRJImPzmP5OZQegFwSuSl-Ttzo1-gG61d4NeYZJzwstH6JRUOc04xfnjo_sJOgthhzHLBedP0QnltCIFy08R3bhOL43zyw3UBC_tsPyiYwv9vtURejvobD00o9LN8r1u4dY6_ww9MdAF_Xw6F-j7xw_fLj9nV9ef1pcXV5niFY2ZqQrcFAWriFaYiFqAAU55Q5QCDApMpQTjHGsqGG2UYYo0uMSmZKwsS2PyBXp10N13Lsjpu0GSkohKVJjTRKwPRONgJ_fe9uB_SQdW_jE4v5Xgo1WdlnWtlBEcG9PgQoi0WSWgSPFBJT2WtN5N0ca6143SQ_TQzUTnL4Nt5dbdyoIVPE_1X6DXk4B3N6MO8R8pT9QWUlZ2MC6Jqd4GJS-K1BYq8oonavUXKq1G91alhhub7DOHNzOHxET9M25hDEGuv27-n73-MWfPj9hWQxfb4LoxWjeEOVgcQOVdCF6bh8oRLO_m9b4a8m5e5TSvye3lcdUfnO4HNP8N-sXjaw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718989062</pqid></control><display><type>article</type><title>Role for Rab10 in Methamphetamine-Induced Behavior</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Vanderwerf, Scott M ; Buck, David C ; Wilmarth, Phillip A ; Sears, Leila M ; David, Larry L ; Morton, David B ; Neve, Kim A</creator><contributor>Fisone, Gilberto</contributor><creatorcontrib>Vanderwerf, Scott M ; Buck, David C ; Wilmarth, Phillip A ; Sears, Leila M ; David, Larry L ; Morton, David B ; Neve, Kim A ; Fisone, Gilberto</creatorcontrib><description>Lipid rafts are specialized, cholesterol-rich membrane compartments that help to organize transmembrane signaling by restricting or promoting interactions with subsets of the cellular proteome. The hypothesis driving this study was that identifying proteins whose relative abundance in rafts is altered by the abused psychostimulant methamphetamine would contribute to fully describing the pathways involved in acute and chronic effects of the drug. Using a detergent-free method for preparing rafts from rat brain striatal membranes, we identified density gradient fractions enriched in the raft protein flotillin but deficient in calnexin and the transferrin receptor, markers of non-raft membranes. Dopamine D1- and D2-like receptor binding activity was highly enriched in the raft fractions, but pretreating rats with methamphetamine (2 mg/kg) once or repeatedly for 11 days did not alter the distribution of the receptors. LC-MS analysis of the protein composition of raft fractions from rats treated once with methamphetamine or saline identified methamphetamine-induced changes in the relative abundance of 23 raft proteins, including the monomeric GTP-binding protein Rab10, whose abundance in rafts was decreased 2.1-fold by acute methamphetamine treatment. Decreased raft localization was associated with a selective decrease in the abundance of Rab10 in a membrane fraction that includes synaptic vesicles and endosomes. Inhibiting Rab10 activity by pan-neuronal expression of a dominant-negative Rab10 mutant in Drosophila melanogaster decreased methamphetamine-induced activity and mortality and decreased caffeine-stimulated activity but not mortality, whereas inhibiting Rab10 activity selectively in cholinergic neurons had no effect. These results suggest that activation and redistribution of Rab10 is critical for some of the behavioral effects of psychostimulants.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0136167</identifier><identifier>PMID: 26291453</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Abundance ; Addictions ; Addictive behaviors ; Analysis ; Animals ; Behavior ; Behavior modification ; Biochemistry ; Brain ; Brain - drug effects ; Brain - metabolism ; Caffeine ; Calnexin ; Cholesterol ; Chronic effects ; Cocaine ; Density gradients ; Dopamine ; Dopamine D1 receptors ; Dopamine D2 receptors ; Dopamine Uptake Inhibitors - pharmacology ; Drosophila ; Drosophila melanogaster ; Drosophila melanogaster - drug effects ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; Drosophila Proteins - analysis ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Drug abuse ; Endosomes ; Gene expression ; GTP-binding protein ; Health aspects ; Influence ; Insects ; Laboratory animals ; Lipid rafts ; Lipids ; Localization ; Male ; Membrane Microdomains - drug effects ; Membrane Microdomains - metabolism ; Membranes ; Methamphetamine ; Methamphetamine - pharmacology ; Molecular biology ; Monomeric GTP-Binding Proteins - analysis ; Monomeric GTP-Binding Proteins - genetics ; Monomeric GTP-Binding Proteins - metabolism ; Mortality ; Mutation ; Neostriatum ; Neurosciences ; Protein binding ; Protein composition ; Protein folding ; Proteins ; Proteomes ; rab GTP-Binding Proteins - analysis ; rab GTP-Binding Proteins - metabolism ; Rafts ; Rats ; Rats, Sprague-Dawley ; Receptors ; Receptors, Dopamine - analysis ; Receptors, Dopamine - metabolism ; Relative abundance ; Rodents ; Science ; Signal transduction ; Synaptic vesicles ; Transferrin ; Transferrins</subject><ispartof>PloS one, 2015-08, Vol.10 (8), p.e0136167</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”) Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-f940d44591ec018b8afa626d1cca0acaf9c85660e2852dcf5c1d070f755777ff3</citedby><cites>FETCH-LOGICAL-c692t-f940d44591ec018b8afa626d1cca0acaf9c85660e2852dcf5c1d070f755777ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4546301/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4546301/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23871,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26291453$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Fisone, Gilberto</contributor><creatorcontrib>Vanderwerf, Scott M</creatorcontrib><creatorcontrib>Buck, David C</creatorcontrib><creatorcontrib>Wilmarth, Phillip A</creatorcontrib><creatorcontrib>Sears, Leila M</creatorcontrib><creatorcontrib>David, Larry L</creatorcontrib><creatorcontrib>Morton, David B</creatorcontrib><creatorcontrib>Neve, Kim A</creatorcontrib><title>Role for Rab10 in Methamphetamine-Induced Behavior</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Lipid rafts are specialized, cholesterol-rich membrane compartments that help to organize transmembrane signaling by restricting or promoting interactions with subsets of the cellular proteome. The hypothesis driving this study was that identifying proteins whose relative abundance in rafts is altered by the abused psychostimulant methamphetamine would contribute to fully describing the pathways involved in acute and chronic effects of the drug. Using a detergent-free method for preparing rafts from rat brain striatal membranes, we identified density gradient fractions enriched in the raft protein flotillin but deficient in calnexin and the transferrin receptor, markers of non-raft membranes. Dopamine D1- and D2-like receptor binding activity was highly enriched in the raft fractions, but pretreating rats with methamphetamine (2 mg/kg) once or repeatedly for 11 days did not alter the distribution of the receptors. LC-MS analysis of the protein composition of raft fractions from rats treated once with methamphetamine or saline identified methamphetamine-induced changes in the relative abundance of 23 raft proteins, including the monomeric GTP-binding protein Rab10, whose abundance in rafts was decreased 2.1-fold by acute methamphetamine treatment. Decreased raft localization was associated with a selective decrease in the abundance of Rab10 in a membrane fraction that includes synaptic vesicles and endosomes. Inhibiting Rab10 activity by pan-neuronal expression of a dominant-negative Rab10 mutant in Drosophila melanogaster decreased methamphetamine-induced activity and mortality and decreased caffeine-stimulated activity but not mortality, whereas inhibiting Rab10 activity selectively in cholinergic neurons had no effect. These results suggest that activation and redistribution of Rab10 is critical for some of the behavioral effects of psychostimulants.</description><subject>Abundance</subject><subject>Addictions</subject><subject>Addictive behaviors</subject><subject>Analysis</subject><subject>Animals</subject><subject>Behavior</subject><subject>Behavior modification</subject><subject>Biochemistry</subject><subject>Brain</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Caffeine</subject><subject>Calnexin</subject><subject>Cholesterol</subject><subject>Chronic effects</subject><subject>Cocaine</subject><subject>Density gradients</subject><subject>Dopamine</subject><subject>Dopamine D1 receptors</subject><subject>Dopamine D2 receptors</subject><subject>Dopamine Uptake Inhibitors - pharmacology</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - drug effects</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - analysis</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Drug abuse</subject><subject>Endosomes</subject><subject>Gene expression</subject><subject>GTP-binding protein</subject><subject>Health aspects</subject><subject>Influence</subject><subject>Insects</subject><subject>Laboratory animals</subject><subject>Lipid rafts</subject><subject>Lipids</subject><subject>Localization</subject><subject>Male</subject><subject>Membrane Microdomains - drug effects</subject><subject>Membrane Microdomains - metabolism</subject><subject>Membranes</subject><subject>Methamphetamine</subject><subject>Methamphetamine - pharmacology</subject><subject>Molecular biology</subject><subject>Monomeric GTP-Binding Proteins - analysis</subject><subject>Monomeric GTP-Binding Proteins - genetics</subject><subject>Monomeric GTP-Binding Proteins - metabolism</subject><subject>Mortality</subject><subject>Mutation</subject><subject>Neostriatum</subject><subject>Neurosciences</subject><subject>Protein binding</subject><subject>Protein composition</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Proteomes</subject><subject>rab GTP-Binding Proteins - analysis</subject><subject>rab GTP-Binding Proteins - metabolism</subject><subject>Rafts</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors</subject><subject>Receptors, Dopamine - analysis</subject><subject>Receptors, Dopamine - metabolism</subject><subject>Relative abundance</subject><subject>Rodents</subject><subject>Science</subject><subject>Signal transduction</subject><subject>Synaptic vesicles</subject><subject>Transferrin</subject><subject>Transferrins</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkm2L1DAQx4Mo3t3qNxBdEA580TVJmzR9I5yHDwsnB-vD2zBNk22WttlL0kO_vTm3d2xBQRJImPzmP5OZQegFwSuSl-Ttzo1-gG61d4NeYZJzwstH6JRUOc04xfnjo_sJOgthhzHLBedP0QnltCIFy08R3bhOL43zyw3UBC_tsPyiYwv9vtURejvobD00o9LN8r1u4dY6_ww9MdAF_Xw6F-j7xw_fLj9nV9ef1pcXV5niFY2ZqQrcFAWriFaYiFqAAU55Q5QCDApMpQTjHGsqGG2UYYo0uMSmZKwsS2PyBXp10N13Lsjpu0GSkohKVJjTRKwPRONgJ_fe9uB_SQdW_jE4v5Xgo1WdlnWtlBEcG9PgQoi0WSWgSPFBJT2WtN5N0ca6143SQ_TQzUTnL4Nt5dbdyoIVPE_1X6DXk4B3N6MO8R8pT9QWUlZ2MC6Jqd4GJS-K1BYq8oonavUXKq1G91alhhub7DOHNzOHxET9M25hDEGuv27-n73-MWfPj9hWQxfb4LoxWjeEOVgcQOVdCF6bh8oRLO_m9b4a8m5e5TSvye3lcdUfnO4HNP8N-sXjaw</recordid><startdate>20150820</startdate><enddate>20150820</enddate><creator>Vanderwerf, Scott M</creator><creator>Buck, David C</creator><creator>Wilmarth, Phillip A</creator><creator>Sears, Leila M</creator><creator>David, Larry L</creator><creator>Morton, David B</creator><creator>Neve, Kim A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150820</creationdate><title>Role for Rab10 in Methamphetamine-Induced Behavior</title><author>Vanderwerf, Scott M ; Buck, David C ; Wilmarth, Phillip A ; Sears, Leila M ; David, Larry L ; Morton, David B ; Neve, Kim A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-f940d44591ec018b8afa626d1cca0acaf9c85660e2852dcf5c1d070f755777ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Abundance</topic><topic>Addictions</topic><topic>Addictive behaviors</topic><topic>Analysis</topic><topic>Animals</topic><topic>Behavior</topic><topic>Behavior modification</topic><topic>Biochemistry</topic><topic>Brain</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Caffeine</topic><topic>Calnexin</topic><topic>Cholesterol</topic><topic>Chronic effects</topic><topic>Cocaine</topic><topic>Density gradients</topic><topic>Dopamine</topic><topic>Dopamine D1 receptors</topic><topic>Dopamine D2 receptors</topic><topic>Dopamine Uptake Inhibitors - pharmacology</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - drug effects</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - analysis</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Drug abuse</topic><topic>Endosomes</topic><topic>Gene expression</topic><topic>GTP-binding protein</topic><topic>Health aspects</topic><topic>Influence</topic><topic>Insects</topic><topic>Laboratory animals</topic><topic>Lipid rafts</topic><topic>Lipids</topic><topic>Localization</topic><topic>Male</topic><topic>Membrane Microdomains - drug effects</topic><topic>Membrane Microdomains - metabolism</topic><topic>Membranes</topic><topic>Methamphetamine</topic><topic>Methamphetamine - pharmacology</topic><topic>Molecular biology</topic><topic>Monomeric GTP-Binding Proteins - analysis</topic><topic>Monomeric GTP-Binding Proteins - genetics</topic><topic>Monomeric GTP-Binding Proteins - metabolism</topic><topic>Mortality</topic><topic>Mutation</topic><topic>Neostriatum</topic><topic>Neurosciences</topic><topic>Protein binding</topic><topic>Protein composition</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Proteomes</topic><topic>rab GTP-Binding Proteins - analysis</topic><topic>rab GTP-Binding Proteins - metabolism</topic><topic>Rafts</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors</topic><topic>Receptors, Dopamine - analysis</topic><topic>Receptors, Dopamine - metabolism</topic><topic>Relative abundance</topic><topic>Rodents</topic><topic>Science</topic><topic>Signal transduction</topic><topic>Synaptic vesicles</topic><topic>Transferrin</topic><topic>Transferrins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vanderwerf, Scott M</creatorcontrib><creatorcontrib>Buck, David C</creatorcontrib><creatorcontrib>Wilmarth, Phillip A</creatorcontrib><creatorcontrib>Sears, Leila M</creatorcontrib><creatorcontrib>David, Larry L</creatorcontrib><creatorcontrib>Morton, David B</creatorcontrib><creatorcontrib>Neve, Kim A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vanderwerf, Scott M</au><au>Buck, David C</au><au>Wilmarth, Phillip A</au><au>Sears, Leila M</au><au>David, Larry L</au><au>Morton, David B</au><au>Neve, Kim A</au><au>Fisone, Gilberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role for Rab10 in Methamphetamine-Induced Behavior</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-08-20</date><risdate>2015</risdate><volume>10</volume><issue>8</issue><spage>e0136167</spage><pages>e0136167-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Lipid rafts are specialized, cholesterol-rich membrane compartments that help to organize transmembrane signaling by restricting or promoting interactions with subsets of the cellular proteome. The hypothesis driving this study was that identifying proteins whose relative abundance in rafts is altered by the abused psychostimulant methamphetamine would contribute to fully describing the pathways involved in acute and chronic effects of the drug. Using a detergent-free method for preparing rafts from rat brain striatal membranes, we identified density gradient fractions enriched in the raft protein flotillin but deficient in calnexin and the transferrin receptor, markers of non-raft membranes. Dopamine D1- and D2-like receptor binding activity was highly enriched in the raft fractions, but pretreating rats with methamphetamine (2 mg/kg) once or repeatedly for 11 days did not alter the distribution of the receptors. LC-MS analysis of the protein composition of raft fractions from rats treated once with methamphetamine or saline identified methamphetamine-induced changes in the relative abundance of 23 raft proteins, including the monomeric GTP-binding protein Rab10, whose abundance in rafts was decreased 2.1-fold by acute methamphetamine treatment. Decreased raft localization was associated with a selective decrease in the abundance of Rab10 in a membrane fraction that includes synaptic vesicles and endosomes. Inhibiting Rab10 activity by pan-neuronal expression of a dominant-negative Rab10 mutant in Drosophila melanogaster decreased methamphetamine-induced activity and mortality and decreased caffeine-stimulated activity but not mortality, whereas inhibiting Rab10 activity selectively in cholinergic neurons had no effect. These results suggest that activation and redistribution of Rab10 is critical for some of the behavioral effects of psychostimulants.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26291453</pmid><doi>10.1371/journal.pone.0136167</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-08, Vol.10 (8), p.e0136167
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1718989062
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Abundance
Addictions
Addictive behaviors
Analysis
Animals
Behavior
Behavior modification
Biochemistry
Brain
Brain - drug effects
Brain - metabolism
Caffeine
Calnexin
Cholesterol
Chronic effects
Cocaine
Density gradients
Dopamine
Dopamine D1 receptors
Dopamine D2 receptors
Dopamine Uptake Inhibitors - pharmacology
Drosophila
Drosophila melanogaster
Drosophila melanogaster - drug effects
Drosophila melanogaster - genetics
Drosophila melanogaster - metabolism
Drosophila Proteins - analysis
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Drug abuse
Endosomes
Gene expression
GTP-binding protein
Health aspects
Influence
Insects
Laboratory animals
Lipid rafts
Lipids
Localization
Male
Membrane Microdomains - drug effects
Membrane Microdomains - metabolism
Membranes
Methamphetamine
Methamphetamine - pharmacology
Molecular biology
Monomeric GTP-Binding Proteins - analysis
Monomeric GTP-Binding Proteins - genetics
Monomeric GTP-Binding Proteins - metabolism
Mortality
Mutation
Neostriatum
Neurosciences
Protein binding
Protein composition
Protein folding
Proteins
Proteomes
rab GTP-Binding Proteins - analysis
rab GTP-Binding Proteins - metabolism
Rafts
Rats
Rats, Sprague-Dawley
Receptors
Receptors, Dopamine - analysis
Receptors, Dopamine - metabolism
Relative abundance
Rodents
Science
Signal transduction
Synaptic vesicles
Transferrin
Transferrins
title Role for Rab10 in Methamphetamine-Induced Behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A42%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20for%20Rab10%20in%20Methamphetamine-Induced%20Behavior&rft.jtitle=PloS%20one&rft.au=Vanderwerf,%20Scott%20M&rft.date=2015-08-20&rft.volume=10&rft.issue=8&rft.spage=e0136167&rft.pages=e0136167-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0136167&rft_dat=%3Cgale_plos_%3EA426228396%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718989062&rft_id=info:pmid/26291453&rft_galeid=A426228396&rft_doaj_id=oai_doaj_org_article_bbccf860ffd0488488598a4660ac1895&rfr_iscdi=true