Role for Rab10 in Methamphetamine-Induced Behavior
Lipid rafts are specialized, cholesterol-rich membrane compartments that help to organize transmembrane signaling by restricting or promoting interactions with subsets of the cellular proteome. The hypothesis driving this study was that identifying proteins whose relative abundance in rafts is alter...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-08, Vol.10 (8), p.e0136167 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | e0136167 |
container_title | PloS one |
container_volume | 10 |
creator | Vanderwerf, Scott M Buck, David C Wilmarth, Phillip A Sears, Leila M David, Larry L Morton, David B Neve, Kim A |
description | Lipid rafts are specialized, cholesterol-rich membrane compartments that help to organize transmembrane signaling by restricting or promoting interactions with subsets of the cellular proteome. The hypothesis driving this study was that identifying proteins whose relative abundance in rafts is altered by the abused psychostimulant methamphetamine would contribute to fully describing the pathways involved in acute and chronic effects of the drug. Using a detergent-free method for preparing rafts from rat brain striatal membranes, we identified density gradient fractions enriched in the raft protein flotillin but deficient in calnexin and the transferrin receptor, markers of non-raft membranes. Dopamine D1- and D2-like receptor binding activity was highly enriched in the raft fractions, but pretreating rats with methamphetamine (2 mg/kg) once or repeatedly for 11 days did not alter the distribution of the receptors. LC-MS analysis of the protein composition of raft fractions from rats treated once with methamphetamine or saline identified methamphetamine-induced changes in the relative abundance of 23 raft proteins, including the monomeric GTP-binding protein Rab10, whose abundance in rafts was decreased 2.1-fold by acute methamphetamine treatment. Decreased raft localization was associated with a selective decrease in the abundance of Rab10 in a membrane fraction that includes synaptic vesicles and endosomes. Inhibiting Rab10 activity by pan-neuronal expression of a dominant-negative Rab10 mutant in Drosophila melanogaster decreased methamphetamine-induced activity and mortality and decreased caffeine-stimulated activity but not mortality, whereas inhibiting Rab10 activity selectively in cholinergic neurons had no effect. These results suggest that activation and redistribution of Rab10 is critical for some of the behavioral effects of psychostimulants. |
doi_str_mv | 10.1371/journal.pone.0136167 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1718989062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A426228396</galeid><doaj_id>oai_doaj_org_article_bbccf860ffd0488488598a4660ac1895</doaj_id><sourcerecordid>A426228396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-f940d44591ec018b8afa626d1cca0acaf9c85660e2852dcf5c1d070f755777ff3</originalsourceid><addsrcrecordid>eNqNkm2L1DAQx4Mo3t3qNxBdEA580TVJmzR9I5yHDwsnB-vD2zBNk22WttlL0kO_vTm3d2xBQRJImPzmP5OZQegFwSuSl-Ttzo1-gG61d4NeYZJzwstH6JRUOc04xfnjo_sJOgthhzHLBedP0QnltCIFy08R3bhOL43zyw3UBC_tsPyiYwv9vtURejvobD00o9LN8r1u4dY6_ww9MdAF_Xw6F-j7xw_fLj9nV9ef1pcXV5niFY2ZqQrcFAWriFaYiFqAAU55Q5QCDApMpQTjHGsqGG2UYYo0uMSmZKwsS2PyBXp10N13Lsjpu0GSkohKVJjTRKwPRONgJ_fe9uB_SQdW_jE4v5Xgo1WdlnWtlBEcG9PgQoi0WSWgSPFBJT2WtN5N0ca6143SQ_TQzUTnL4Nt5dbdyoIVPE_1X6DXk4B3N6MO8R8pT9QWUlZ2MC6Jqd4GJS-K1BYq8oonavUXKq1G91alhhub7DOHNzOHxET9M25hDEGuv27-n73-MWfPj9hWQxfb4LoxWjeEOVgcQOVdCF6bh8oRLO_m9b4a8m5e5TSvye3lcdUfnO4HNP8N-sXjaw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718989062</pqid></control><display><type>article</type><title>Role for Rab10 in Methamphetamine-Induced Behavior</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Vanderwerf, Scott M ; Buck, David C ; Wilmarth, Phillip A ; Sears, Leila M ; David, Larry L ; Morton, David B ; Neve, Kim A</creator><contributor>Fisone, Gilberto</contributor><creatorcontrib>Vanderwerf, Scott M ; Buck, David C ; Wilmarth, Phillip A ; Sears, Leila M ; David, Larry L ; Morton, David B ; Neve, Kim A ; Fisone, Gilberto</creatorcontrib><description>Lipid rafts are specialized, cholesterol-rich membrane compartments that help to organize transmembrane signaling by restricting or promoting interactions with subsets of the cellular proteome. The hypothesis driving this study was that identifying proteins whose relative abundance in rafts is altered by the abused psychostimulant methamphetamine would contribute to fully describing the pathways involved in acute and chronic effects of the drug. Using a detergent-free method for preparing rafts from rat brain striatal membranes, we identified density gradient fractions enriched in the raft protein flotillin but deficient in calnexin and the transferrin receptor, markers of non-raft membranes. Dopamine D1- and D2-like receptor binding activity was highly enriched in the raft fractions, but pretreating rats with methamphetamine (2 mg/kg) once or repeatedly for 11 days did not alter the distribution of the receptors. LC-MS analysis of the protein composition of raft fractions from rats treated once with methamphetamine or saline identified methamphetamine-induced changes in the relative abundance of 23 raft proteins, including the monomeric GTP-binding protein Rab10, whose abundance in rafts was decreased 2.1-fold by acute methamphetamine treatment. Decreased raft localization was associated with a selective decrease in the abundance of Rab10 in a membrane fraction that includes synaptic vesicles and endosomes. Inhibiting Rab10 activity by pan-neuronal expression of a dominant-negative Rab10 mutant in Drosophila melanogaster decreased methamphetamine-induced activity and mortality and decreased caffeine-stimulated activity but not mortality, whereas inhibiting Rab10 activity selectively in cholinergic neurons had no effect. These results suggest that activation and redistribution of Rab10 is critical for some of the behavioral effects of psychostimulants.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0136167</identifier><identifier>PMID: 26291453</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Abundance ; Addictions ; Addictive behaviors ; Analysis ; Animals ; Behavior ; Behavior modification ; Biochemistry ; Brain ; Brain - drug effects ; Brain - metabolism ; Caffeine ; Calnexin ; Cholesterol ; Chronic effects ; Cocaine ; Density gradients ; Dopamine ; Dopamine D1 receptors ; Dopamine D2 receptors ; Dopamine Uptake Inhibitors - pharmacology ; Drosophila ; Drosophila melanogaster ; Drosophila melanogaster - drug effects ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; Drosophila Proteins - analysis ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Drug abuse ; Endosomes ; Gene expression ; GTP-binding protein ; Health aspects ; Influence ; Insects ; Laboratory animals ; Lipid rafts ; Lipids ; Localization ; Male ; Membrane Microdomains - drug effects ; Membrane Microdomains - metabolism ; Membranes ; Methamphetamine ; Methamphetamine - pharmacology ; Molecular biology ; Monomeric GTP-Binding Proteins - analysis ; Monomeric GTP-Binding Proteins - genetics ; Monomeric GTP-Binding Proteins - metabolism ; Mortality ; Mutation ; Neostriatum ; Neurosciences ; Protein binding ; Protein composition ; Protein folding ; Proteins ; Proteomes ; rab GTP-Binding Proteins - analysis ; rab GTP-Binding Proteins - metabolism ; Rafts ; Rats ; Rats, Sprague-Dawley ; Receptors ; Receptors, Dopamine - analysis ; Receptors, Dopamine - metabolism ; Relative abundance ; Rodents ; Science ; Signal transduction ; Synaptic vesicles ; Transferrin ; Transferrins</subject><ispartof>PloS one, 2015-08, Vol.10 (8), p.e0136167</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”) Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-f940d44591ec018b8afa626d1cca0acaf9c85660e2852dcf5c1d070f755777ff3</citedby><cites>FETCH-LOGICAL-c692t-f940d44591ec018b8afa626d1cca0acaf9c85660e2852dcf5c1d070f755777ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4546301/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4546301/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23871,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26291453$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Fisone, Gilberto</contributor><creatorcontrib>Vanderwerf, Scott M</creatorcontrib><creatorcontrib>Buck, David C</creatorcontrib><creatorcontrib>Wilmarth, Phillip A</creatorcontrib><creatorcontrib>Sears, Leila M</creatorcontrib><creatorcontrib>David, Larry L</creatorcontrib><creatorcontrib>Morton, David B</creatorcontrib><creatorcontrib>Neve, Kim A</creatorcontrib><title>Role for Rab10 in Methamphetamine-Induced Behavior</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Lipid rafts are specialized, cholesterol-rich membrane compartments that help to organize transmembrane signaling by restricting or promoting interactions with subsets of the cellular proteome. The hypothesis driving this study was that identifying proteins whose relative abundance in rafts is altered by the abused psychostimulant methamphetamine would contribute to fully describing the pathways involved in acute and chronic effects of the drug. Using a detergent-free method for preparing rafts from rat brain striatal membranes, we identified density gradient fractions enriched in the raft protein flotillin but deficient in calnexin and the transferrin receptor, markers of non-raft membranes. Dopamine D1- and D2-like receptor binding activity was highly enriched in the raft fractions, but pretreating rats with methamphetamine (2 mg/kg) once or repeatedly for 11 days did not alter the distribution of the receptors. LC-MS analysis of the protein composition of raft fractions from rats treated once with methamphetamine or saline identified methamphetamine-induced changes in the relative abundance of 23 raft proteins, including the monomeric GTP-binding protein Rab10, whose abundance in rafts was decreased 2.1-fold by acute methamphetamine treatment. Decreased raft localization was associated with a selective decrease in the abundance of Rab10 in a membrane fraction that includes synaptic vesicles and endosomes. Inhibiting Rab10 activity by pan-neuronal expression of a dominant-negative Rab10 mutant in Drosophila melanogaster decreased methamphetamine-induced activity and mortality and decreased caffeine-stimulated activity but not mortality, whereas inhibiting Rab10 activity selectively in cholinergic neurons had no effect. These results suggest that activation and redistribution of Rab10 is critical for some of the behavioral effects of psychostimulants.</description><subject>Abundance</subject><subject>Addictions</subject><subject>Addictive behaviors</subject><subject>Analysis</subject><subject>Animals</subject><subject>Behavior</subject><subject>Behavior modification</subject><subject>Biochemistry</subject><subject>Brain</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Caffeine</subject><subject>Calnexin</subject><subject>Cholesterol</subject><subject>Chronic effects</subject><subject>Cocaine</subject><subject>Density gradients</subject><subject>Dopamine</subject><subject>Dopamine D1 receptors</subject><subject>Dopamine D2 receptors</subject><subject>Dopamine Uptake Inhibitors - pharmacology</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - drug effects</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - analysis</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Drug abuse</subject><subject>Endosomes</subject><subject>Gene expression</subject><subject>GTP-binding protein</subject><subject>Health aspects</subject><subject>Influence</subject><subject>Insects</subject><subject>Laboratory animals</subject><subject>Lipid rafts</subject><subject>Lipids</subject><subject>Localization</subject><subject>Male</subject><subject>Membrane Microdomains - drug effects</subject><subject>Membrane Microdomains - metabolism</subject><subject>Membranes</subject><subject>Methamphetamine</subject><subject>Methamphetamine - pharmacology</subject><subject>Molecular biology</subject><subject>Monomeric GTP-Binding Proteins - analysis</subject><subject>Monomeric GTP-Binding Proteins - genetics</subject><subject>Monomeric GTP-Binding Proteins - metabolism</subject><subject>Mortality</subject><subject>Mutation</subject><subject>Neostriatum</subject><subject>Neurosciences</subject><subject>Protein binding</subject><subject>Protein composition</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Proteomes</subject><subject>rab GTP-Binding Proteins - analysis</subject><subject>rab GTP-Binding Proteins - metabolism</subject><subject>Rafts</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors</subject><subject>Receptors, Dopamine - analysis</subject><subject>Receptors, Dopamine - metabolism</subject><subject>Relative abundance</subject><subject>Rodents</subject><subject>Science</subject><subject>Signal transduction</subject><subject>Synaptic vesicles</subject><subject>Transferrin</subject><subject>Transferrins</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkm2L1DAQx4Mo3t3qNxBdEA580TVJmzR9I5yHDwsnB-vD2zBNk22WttlL0kO_vTm3d2xBQRJImPzmP5OZQegFwSuSl-Ttzo1-gG61d4NeYZJzwstH6JRUOc04xfnjo_sJOgthhzHLBedP0QnltCIFy08R3bhOL43zyw3UBC_tsPyiYwv9vtURejvobD00o9LN8r1u4dY6_ww9MdAF_Xw6F-j7xw_fLj9nV9ef1pcXV5niFY2ZqQrcFAWriFaYiFqAAU55Q5QCDApMpQTjHGsqGG2UYYo0uMSmZKwsS2PyBXp10N13Lsjpu0GSkohKVJjTRKwPRONgJ_fe9uB_SQdW_jE4v5Xgo1WdlnWtlBEcG9PgQoi0WSWgSPFBJT2WtN5N0ca6143SQ_TQzUTnL4Nt5dbdyoIVPE_1X6DXk4B3N6MO8R8pT9QWUlZ2MC6Jqd4GJS-K1BYq8oonavUXKq1G91alhhub7DOHNzOHxET9M25hDEGuv27-n73-MWfPj9hWQxfb4LoxWjeEOVgcQOVdCF6bh8oRLO_m9b4a8m5e5TSvye3lcdUfnO4HNP8N-sXjaw</recordid><startdate>20150820</startdate><enddate>20150820</enddate><creator>Vanderwerf, Scott M</creator><creator>Buck, David C</creator><creator>Wilmarth, Phillip A</creator><creator>Sears, Leila M</creator><creator>David, Larry L</creator><creator>Morton, David B</creator><creator>Neve, Kim A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150820</creationdate><title>Role for Rab10 in Methamphetamine-Induced Behavior</title><author>Vanderwerf, Scott M ; Buck, David C ; Wilmarth, Phillip A ; Sears, Leila M ; David, Larry L ; Morton, David B ; Neve, Kim A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-f940d44591ec018b8afa626d1cca0acaf9c85660e2852dcf5c1d070f755777ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Abundance</topic><topic>Addictions</topic><topic>Addictive behaviors</topic><topic>Analysis</topic><topic>Animals</topic><topic>Behavior</topic><topic>Behavior modification</topic><topic>Biochemistry</topic><topic>Brain</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Caffeine</topic><topic>Calnexin</topic><topic>Cholesterol</topic><topic>Chronic effects</topic><topic>Cocaine</topic><topic>Density gradients</topic><topic>Dopamine</topic><topic>Dopamine D1 receptors</topic><topic>Dopamine D2 receptors</topic><topic>Dopamine Uptake Inhibitors - pharmacology</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - drug effects</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - analysis</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Drug abuse</topic><topic>Endosomes</topic><topic>Gene expression</topic><topic>GTP-binding protein</topic><topic>Health aspects</topic><topic>Influence</topic><topic>Insects</topic><topic>Laboratory animals</topic><topic>Lipid rafts</topic><topic>Lipids</topic><topic>Localization</topic><topic>Male</topic><topic>Membrane Microdomains - drug effects</topic><topic>Membrane Microdomains - metabolism</topic><topic>Membranes</topic><topic>Methamphetamine</topic><topic>Methamphetamine - pharmacology</topic><topic>Molecular biology</topic><topic>Monomeric GTP-Binding Proteins - analysis</topic><topic>Monomeric GTP-Binding Proteins - genetics</topic><topic>Monomeric GTP-Binding Proteins - metabolism</topic><topic>Mortality</topic><topic>Mutation</topic><topic>Neostriatum</topic><topic>Neurosciences</topic><topic>Protein binding</topic><topic>Protein composition</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Proteomes</topic><topic>rab GTP-Binding Proteins - analysis</topic><topic>rab GTP-Binding Proteins - metabolism</topic><topic>Rafts</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors</topic><topic>Receptors, Dopamine - analysis</topic><topic>Receptors, Dopamine - metabolism</topic><topic>Relative abundance</topic><topic>Rodents</topic><topic>Science</topic><topic>Signal transduction</topic><topic>Synaptic vesicles</topic><topic>Transferrin</topic><topic>Transferrins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vanderwerf, Scott M</creatorcontrib><creatorcontrib>Buck, David C</creatorcontrib><creatorcontrib>Wilmarth, Phillip A</creatorcontrib><creatorcontrib>Sears, Leila M</creatorcontrib><creatorcontrib>David, Larry L</creatorcontrib><creatorcontrib>Morton, David B</creatorcontrib><creatorcontrib>Neve, Kim A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vanderwerf, Scott M</au><au>Buck, David C</au><au>Wilmarth, Phillip A</au><au>Sears, Leila M</au><au>David, Larry L</au><au>Morton, David B</au><au>Neve, Kim A</au><au>Fisone, Gilberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role for Rab10 in Methamphetamine-Induced Behavior</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-08-20</date><risdate>2015</risdate><volume>10</volume><issue>8</issue><spage>e0136167</spage><pages>e0136167-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Lipid rafts are specialized, cholesterol-rich membrane compartments that help to organize transmembrane signaling by restricting or promoting interactions with subsets of the cellular proteome. The hypothesis driving this study was that identifying proteins whose relative abundance in rafts is altered by the abused psychostimulant methamphetamine would contribute to fully describing the pathways involved in acute and chronic effects of the drug. Using a detergent-free method for preparing rafts from rat brain striatal membranes, we identified density gradient fractions enriched in the raft protein flotillin but deficient in calnexin and the transferrin receptor, markers of non-raft membranes. Dopamine D1- and D2-like receptor binding activity was highly enriched in the raft fractions, but pretreating rats with methamphetamine (2 mg/kg) once or repeatedly for 11 days did not alter the distribution of the receptors. LC-MS analysis of the protein composition of raft fractions from rats treated once with methamphetamine or saline identified methamphetamine-induced changes in the relative abundance of 23 raft proteins, including the monomeric GTP-binding protein Rab10, whose abundance in rafts was decreased 2.1-fold by acute methamphetamine treatment. Decreased raft localization was associated with a selective decrease in the abundance of Rab10 in a membrane fraction that includes synaptic vesicles and endosomes. Inhibiting Rab10 activity by pan-neuronal expression of a dominant-negative Rab10 mutant in Drosophila melanogaster decreased methamphetamine-induced activity and mortality and decreased caffeine-stimulated activity but not mortality, whereas inhibiting Rab10 activity selectively in cholinergic neurons had no effect. These results suggest that activation and redistribution of Rab10 is critical for some of the behavioral effects of psychostimulants.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26291453</pmid><doi>10.1371/journal.pone.0136167</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-08, Vol.10 (8), p.e0136167 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1718989062 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Abundance Addictions Addictive behaviors Analysis Animals Behavior Behavior modification Biochemistry Brain Brain - drug effects Brain - metabolism Caffeine Calnexin Cholesterol Chronic effects Cocaine Density gradients Dopamine Dopamine D1 receptors Dopamine D2 receptors Dopamine Uptake Inhibitors - pharmacology Drosophila Drosophila melanogaster Drosophila melanogaster - drug effects Drosophila melanogaster - genetics Drosophila melanogaster - metabolism Drosophila Proteins - analysis Drosophila Proteins - genetics Drosophila Proteins - metabolism Drug abuse Endosomes Gene expression GTP-binding protein Health aspects Influence Insects Laboratory animals Lipid rafts Lipids Localization Male Membrane Microdomains - drug effects Membrane Microdomains - metabolism Membranes Methamphetamine Methamphetamine - pharmacology Molecular biology Monomeric GTP-Binding Proteins - analysis Monomeric GTP-Binding Proteins - genetics Monomeric GTP-Binding Proteins - metabolism Mortality Mutation Neostriatum Neurosciences Protein binding Protein composition Protein folding Proteins Proteomes rab GTP-Binding Proteins - analysis rab GTP-Binding Proteins - metabolism Rafts Rats Rats, Sprague-Dawley Receptors Receptors, Dopamine - analysis Receptors, Dopamine - metabolism Relative abundance Rodents Science Signal transduction Synaptic vesicles Transferrin Transferrins |
title | Role for Rab10 in Methamphetamine-Induced Behavior |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A42%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20for%20Rab10%20in%20Methamphetamine-Induced%20Behavior&rft.jtitle=PloS%20one&rft.au=Vanderwerf,%20Scott%20M&rft.date=2015-08-20&rft.volume=10&rft.issue=8&rft.spage=e0136167&rft.pages=e0136167-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0136167&rft_dat=%3Cgale_plos_%3EA426228396%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718989062&rft_id=info:pmid/26291453&rft_galeid=A426228396&rft_doaj_id=oai_doaj_org_article_bbccf860ffd0488488598a4660ac1895&rfr_iscdi=true |