Path Models of Vocal Emotion Communication

We propose to use a comprehensive path model of vocal emotion communication, encompassing encoding, transmission, and decoding processes, to empirically model data sets on emotion expression and recognition. The utility of the approach is demonstrated for two data sets from two different cultures an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-09, Vol.10 (9), p.e0136675-e0136675
Hauptverfasser: Bänziger, Tanja, Hosoya, Georg, Scherer, Klaus R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0136675
container_issue 9
container_start_page e0136675
container_title PloS one
container_volume 10
creator Bänziger, Tanja
Hosoya, Georg
Scherer, Klaus R
description We propose to use a comprehensive path model of vocal emotion communication, encompassing encoding, transmission, and decoding processes, to empirically model data sets on emotion expression and recognition. The utility of the approach is demonstrated for two data sets from two different cultures and languages, based on corpora of vocal emotion enactment by professional actors and emotion inference by naïve listeners. Lens model equations, hierarchical regression, and multivariate path analysis are used to compare the relative contributions of objectively measured acoustic cues in the enacted expressions and subjective voice cues as perceived by listeners to the variance in emotion inference from vocal expressions for four emotion families (fear, anger, happiness, and sadness). While the results confirm the central role of arousal in vocal emotion communication, the utility of applying an extended path modeling framework is demonstrated by the identification of unique combinations of distal cues and proximal percepts carrying information about specific emotion families, independent of arousal. The statistical models generated show that more sophisticated acoustic parameters need to be developed to explain the distal underpinnings of subjective voice quality percepts that account for much of the variance in emotion inference, in particular voice instability and roughness. The general approach advocated here, as well as the specific results, open up new research strategies for work in psychology (specifically emotion and social perception research) and engineering and computer science (specifically research and development in the domain of affective computing, particularly on automatic emotion detection and synthetic emotion expression in avatars).
doi_str_mv 10.1371/journal.pone.0136675
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1710982718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A427623062</galeid><doaj_id>oai_doaj_org_article_07c1ad21a74541aca100af4504514db7</doaj_id><sourcerecordid>A427623062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c730t-bc22fe25da5145c471286295bd649f0e99cf9eba10801b1a71f912eb203150023</originalsourceid><addsrcrecordid>eNqNk1tv0zAUxyMEYmPwDRBUmoQAKcV3Jy9IVRlQaWiIS1-tE8dpXTlxiRMu3x5nzaYG7QHlwbH9O_9z8TlJ8hSjOaYSv9n5vm3Azfe-MXOEqRCS30tOcU5JKgii94_-T5JHIewQ4jQT4mFyQgQlHElxmrz-DN129smXxoWZr2Zrr8HNLmrfWd_Mlr6u-8ZqGHaPkwcVuGCejOtZ8v39xbflx_Ty6sNqubhMtaSoSwtNSGUIL4FjxjWTmGSC5LwoBcsrZPJcV7kpAKMM4QKDxFWOiSlimJgjROhZ8vygu3c-qDHNoLDEKM-IxFkkVgei9LBT-9bW0P5RHqy6PvDtRkHbWe2MQlJjKEl0wzjDoKNbBBXjiMXoykJGrfSgFX6ZfV9M1N7Z9eJarbZ9o4hgYuDfjtH1RW1KbZquBTcxm940dqs2_qdinAuB8ijwchRo_Y_ehC6qB22cg8b4fsgzQvHhMhrR83_Qu6sxUhuICdum8tGvHkTVghEpCEViqOr8Dip-pamtjj1U2Xg-MXg1MYhMZ353G-hDUKuvX_6fvVpP2RdH7NaA67bBu35osTAF2QHUrQ-hNdVtkTFSwwjcVEMNI6DGEYhmz44f6NbopufpXyzS_ZI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1710982718</pqid></control><display><type>article</type><title>Path Models of Vocal Emotion Communication</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SWEPUB Freely available online</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Bänziger, Tanja ; Hosoya, Georg ; Scherer, Klaus R</creator><contributor>Reby, David</contributor><creatorcontrib>Bänziger, Tanja ; Hosoya, Georg ; Scherer, Klaus R ; Reby, David</creatorcontrib><description>We propose to use a comprehensive path model of vocal emotion communication, encompassing encoding, transmission, and decoding processes, to empirically model data sets on emotion expression and recognition. The utility of the approach is demonstrated for two data sets from two different cultures and languages, based on corpora of vocal emotion enactment by professional actors and emotion inference by naïve listeners. Lens model equations, hierarchical regression, and multivariate path analysis are used to compare the relative contributions of objectively measured acoustic cues in the enacted expressions and subjective voice cues as perceived by listeners to the variance in emotion inference from vocal expressions for four emotion families (fear, anger, happiness, and sadness). While the results confirm the central role of arousal in vocal emotion communication, the utility of applying an extended path modeling framework is demonstrated by the identification of unique combinations of distal cues and proximal percepts carrying information about specific emotion families, independent of arousal. The statistical models generated show that more sophisticated acoustic parameters need to be developed to explain the distal underpinnings of subjective voice quality percepts that account for much of the variance in emotion inference, in particular voice instability and roughness. The general approach advocated here, as well as the specific results, open up new research strategies for work in psychology (specifically emotion and social perception research) and engineering and computer science (specifically research and development in the domain of affective computing, particularly on automatic emotion detection and synthetic emotion expression in avatars).</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0136675</identifier><identifier>PMID: 26325076</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acoustic properties ; Acoustics ; Affective computing ; Analysis ; Arousal ; Avatars ; Communication ; Cues ; Datasets ; Decoding ; Emotions ; Expressed Emotion ; Facial expression ; Humans ; Hypothesis testing ; Inference ; Mathematical models ; Models, Statistical ; Nonverbal communication ; Perceptions ; Physiology ; Psychology ; R&amp;D ; Regression analysis ; Regression models ; Research &amp; development ; Speech ; Stability ; Statistical analysis ; Statistical models ; Studies ; Variance ; Voice ; Voice communication</subject><ispartof>PloS one, 2015-09, Vol.10 (9), p.e0136675-e0136675</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Bänziger et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Bänziger et al 2015 Bänziger et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c730t-bc22fe25da5145c471286295bd649f0e99cf9eba10801b1a71f912eb203150023</citedby><cites>FETCH-LOGICAL-c730t-bc22fe25da5145c471286295bd649f0e99cf9eba10801b1a71f912eb203150023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4556609/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4556609/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26325076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-26467$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Reby, David</contributor><creatorcontrib>Bänziger, Tanja</creatorcontrib><creatorcontrib>Hosoya, Georg</creatorcontrib><creatorcontrib>Scherer, Klaus R</creatorcontrib><title>Path Models of Vocal Emotion Communication</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We propose to use a comprehensive path model of vocal emotion communication, encompassing encoding, transmission, and decoding processes, to empirically model data sets on emotion expression and recognition. The utility of the approach is demonstrated for two data sets from two different cultures and languages, based on corpora of vocal emotion enactment by professional actors and emotion inference by naïve listeners. Lens model equations, hierarchical regression, and multivariate path analysis are used to compare the relative contributions of objectively measured acoustic cues in the enacted expressions and subjective voice cues as perceived by listeners to the variance in emotion inference from vocal expressions for four emotion families (fear, anger, happiness, and sadness). While the results confirm the central role of arousal in vocal emotion communication, the utility of applying an extended path modeling framework is demonstrated by the identification of unique combinations of distal cues and proximal percepts carrying information about specific emotion families, independent of arousal. The statistical models generated show that more sophisticated acoustic parameters need to be developed to explain the distal underpinnings of subjective voice quality percepts that account for much of the variance in emotion inference, in particular voice instability and roughness. The general approach advocated here, as well as the specific results, open up new research strategies for work in psychology (specifically emotion and social perception research) and engineering and computer science (specifically research and development in the domain of affective computing, particularly on automatic emotion detection and synthetic emotion expression in avatars).</description><subject>Acoustic properties</subject><subject>Acoustics</subject><subject>Affective computing</subject><subject>Analysis</subject><subject>Arousal</subject><subject>Avatars</subject><subject>Communication</subject><subject>Cues</subject><subject>Datasets</subject><subject>Decoding</subject><subject>Emotions</subject><subject>Expressed Emotion</subject><subject>Facial expression</subject><subject>Humans</subject><subject>Hypothesis testing</subject><subject>Inference</subject><subject>Mathematical models</subject><subject>Models, Statistical</subject><subject>Nonverbal communication</subject><subject>Perceptions</subject><subject>Physiology</subject><subject>Psychology</subject><subject>R&amp;D</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Research &amp; development</subject><subject>Speech</subject><subject>Stability</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Studies</subject><subject>Variance</subject><subject>Voice</subject><subject>Voice communication</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1tv0zAUxyMEYmPwDRBUmoQAKcV3Jy9IVRlQaWiIS1-tE8dpXTlxiRMu3x5nzaYG7QHlwbH9O_9z8TlJ8hSjOaYSv9n5vm3Azfe-MXOEqRCS30tOcU5JKgii94_-T5JHIewQ4jQT4mFyQgQlHElxmrz-DN129smXxoWZr2Zrr8HNLmrfWd_Mlr6u-8ZqGHaPkwcVuGCejOtZ8v39xbflx_Ty6sNqubhMtaSoSwtNSGUIL4FjxjWTmGSC5LwoBcsrZPJcV7kpAKMM4QKDxFWOiSlimJgjROhZ8vygu3c-qDHNoLDEKM-IxFkkVgei9LBT-9bW0P5RHqy6PvDtRkHbWe2MQlJjKEl0wzjDoKNbBBXjiMXoykJGrfSgFX6ZfV9M1N7Z9eJarbZ9o4hgYuDfjtH1RW1KbZquBTcxm940dqs2_qdinAuB8ijwchRo_Y_ehC6qB22cg8b4fsgzQvHhMhrR83_Qu6sxUhuICdum8tGvHkTVghEpCEViqOr8Dip-pamtjj1U2Xg-MXg1MYhMZ353G-hDUKuvX_6fvVpP2RdH7NaA67bBu35osTAF2QHUrQ-hNdVtkTFSwwjcVEMNI6DGEYhmz44f6NbopufpXyzS_ZI</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Bänziger, Tanja</creator><creator>Hosoya, Georg</creator><creator>Scherer, Klaus R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AKRZP</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG5</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20150901</creationdate><title>Path Models of Vocal Emotion Communication</title><author>Bänziger, Tanja ; Hosoya, Georg ; Scherer, Klaus R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c730t-bc22fe25da5145c471286295bd649f0e99cf9eba10801b1a71f912eb203150023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acoustic properties</topic><topic>Acoustics</topic><topic>Affective computing</topic><topic>Analysis</topic><topic>Arousal</topic><topic>Avatars</topic><topic>Communication</topic><topic>Cues</topic><topic>Datasets</topic><topic>Decoding</topic><topic>Emotions</topic><topic>Expressed Emotion</topic><topic>Facial expression</topic><topic>Humans</topic><topic>Hypothesis testing</topic><topic>Inference</topic><topic>Mathematical models</topic><topic>Models, Statistical</topic><topic>Nonverbal communication</topic><topic>Perceptions</topic><topic>Physiology</topic><topic>Psychology</topic><topic>R&amp;D</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Research &amp; development</topic><topic>Speech</topic><topic>Stability</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Studies</topic><topic>Variance</topic><topic>Voice</topic><topic>Voice communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bänziger, Tanja</creatorcontrib><creatorcontrib>Hosoya, Georg</creatorcontrib><creatorcontrib>Scherer, Klaus R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Mittuniversitetet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Mittuniversitetet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bänziger, Tanja</au><au>Hosoya, Georg</au><au>Scherer, Klaus R</au><au>Reby, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Path Models of Vocal Emotion Communication</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>10</volume><issue>9</issue><spage>e0136675</spage><epage>e0136675</epage><pages>e0136675-e0136675</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We propose to use a comprehensive path model of vocal emotion communication, encompassing encoding, transmission, and decoding processes, to empirically model data sets on emotion expression and recognition. The utility of the approach is demonstrated for two data sets from two different cultures and languages, based on corpora of vocal emotion enactment by professional actors and emotion inference by naïve listeners. Lens model equations, hierarchical regression, and multivariate path analysis are used to compare the relative contributions of objectively measured acoustic cues in the enacted expressions and subjective voice cues as perceived by listeners to the variance in emotion inference from vocal expressions for four emotion families (fear, anger, happiness, and sadness). While the results confirm the central role of arousal in vocal emotion communication, the utility of applying an extended path modeling framework is demonstrated by the identification of unique combinations of distal cues and proximal percepts carrying information about specific emotion families, independent of arousal. The statistical models generated show that more sophisticated acoustic parameters need to be developed to explain the distal underpinnings of subjective voice quality percepts that account for much of the variance in emotion inference, in particular voice instability and roughness. The general approach advocated here, as well as the specific results, open up new research strategies for work in psychology (specifically emotion and social perception research) and engineering and computer science (specifically research and development in the domain of affective computing, particularly on automatic emotion detection and synthetic emotion expression in avatars).</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26325076</pmid><doi>10.1371/journal.pone.0136675</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-09, Vol.10 (9), p.e0136675-e0136675
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1710982718
source MEDLINE; DOAJ Directory of Open Access Journals; SWEPUB Freely available online; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acoustic properties
Acoustics
Affective computing
Analysis
Arousal
Avatars
Communication
Cues
Datasets
Decoding
Emotions
Expressed Emotion
Facial expression
Humans
Hypothesis testing
Inference
Mathematical models
Models, Statistical
Nonverbal communication
Perceptions
Physiology
Psychology
R&D
Regression analysis
Regression models
Research & development
Speech
Stability
Statistical analysis
Statistical models
Studies
Variance
Voice
Voice communication
title Path Models of Vocal Emotion Communication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Path%20Models%20of%20Vocal%20Emotion%20Communication&rft.jtitle=PloS%20one&rft.au=B%C3%A4nziger,%20Tanja&rft.date=2015-09-01&rft.volume=10&rft.issue=9&rft.spage=e0136675&rft.epage=e0136675&rft.pages=e0136675-e0136675&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0136675&rft_dat=%3Cgale_plos_%3EA427623062%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1710982718&rft_id=info:pmid/26325076&rft_galeid=A427623062&rft_doaj_id=oai_doaj_org_article_07c1ad21a74541aca100af4504514db7&rfr_iscdi=true