Dynamic Change and Target Prediction of Axon-Specific MicroRNAs in Regenerating Sciatic Nerve

Injury to axons in the peripheral nervous system induces rapid and local regenerative responses to form a new growth cone, and to generate a retrogradely transporting injury signal. The evidence for essential roles of intra-axonal protein synthesis during regeneration is now compelling. MicroRNA (mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-09, Vol.10 (9), p.e0137461-e0137461
Hauptverfasser: Phay, Monichan, Kim, Hak Hee, Yoo, Soonmoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0137461
container_issue 9
container_start_page e0137461
container_title PloS one
container_volume 10
creator Phay, Monichan
Kim, Hak Hee
Yoo, Soonmoon
description Injury to axons in the peripheral nervous system induces rapid and local regenerative responses to form a new growth cone, and to generate a retrogradely transporting injury signal. The evidence for essential roles of intra-axonal protein synthesis during regeneration is now compelling. MicroRNA (miRNA) has recently been recognized as a prominent player in post-transcriptional regulation of axonal protein synthesis. Here, we directly contrast temporal changes of miRNA levels in the sciatic nerve following injury, as compared to those in an uninjured nerve using deep sequencing. Small RNAs (
doi_str_mv 10.1371/journal.pone.0137461
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1710303818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A427517545</galeid><doaj_id>oai_doaj_org_article_f894847ae3fd45149fda46d02e499613</doaj_id><sourcerecordid>A427517545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-10e16a92aecff035c01b938405efafb76ea5487281d9716c73e40836a30e1fbf3</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBEQkJw0WLHjhPfIFXlq9LYUDu4Q5brHKeeUrvYybT9e5w1mxq0C-SLWCfPec-Hz0mSlxhNMSnwh0vXeSub6c5ZmKJoogw_So4xJ9mEZYg8PrgfJc9CuEQoJyVjT5OjjBGCC8yPk9-fbqzcGpXON9LWkEpbpRfS19CmPzxURrXG2dTpdHbt7GS1A2V0pL8b5d3ybBZSY9Ml1GDBy9bYOl0pEy8qPQN_Bc-TJ1o2AV4M35Pk55fPF_Nvk9Pzr4v57HSiGM_aCUaAmeSZBKU1IrlCeM1JSVEOWup1wUDmtCyyEle8wEwVBCgqCZMkOuq1JifJ673urnFBDJ0JIpaICCIlLiOx2BOVk5di581W-hvhpBG3BudrIX3MuwGhS05LWkgguqI5plxXkrIKZUA5Z5hErY9DtG69hUqBbb1sRqLjP9ZsRO2uBM3zgpM8CrwbBLz700FoxdYEBU0jLbiuzxvx29SLiL75B324uoGqZSzAWO1iXNWLihnNihwXOe3DTh-g4qkgTkAcI22ifeTwfuQQmRau21p2IYjFavn_7PmvMfv2gN2AbNpNcE3Xz1oYg3QPxmkLwYO-bzJGot-Cu26IfgvEsAXR7dXhA9073Y09-QtV-wA2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1710303818</pqid></control><display><type>article</type><title>Dynamic Change and Target Prediction of Axon-Specific MicroRNAs in Regenerating Sciatic Nerve</title><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Phay, Monichan ; Kim, Hak Hee ; Yoo, Soonmoon</creator><contributor>Di Giovanni, Simone</contributor><creatorcontrib>Phay, Monichan ; Kim, Hak Hee ; Yoo, Soonmoon ; Di Giovanni, Simone</creatorcontrib><description>Injury to axons in the peripheral nervous system induces rapid and local regenerative responses to form a new growth cone, and to generate a retrogradely transporting injury signal. The evidence for essential roles of intra-axonal protein synthesis during regeneration is now compelling. MicroRNA (miRNA) has recently been recognized as a prominent player in post-transcriptional regulation of axonal protein synthesis. Here, we directly contrast temporal changes of miRNA levels in the sciatic nerve following injury, as compared to those in an uninjured nerve using deep sequencing. Small RNAs (&lt;200 nucleotides in length) were fractionated from the proximal nerve stumps to improve the representation of differential miRNA levels. Of 141 axoplasmic miRNAs annotated, 63 rat miRNAs showed significantly differential levels at five time points following injury, compared to an uninjured nerve. The differential changes in miRNA levels responding to injury were processed for hierarchical clustering analyses, and used to predict target mRNAs by Targetscan and miRanda. By overlapping these predicted targets with 2,924 axonally localizing transcripts previously reported, the overlapping set of 214 transcripts was further analyzed by the Gene Ontology enrichment and Ingenuity Pathway Analyses. These results suggest the possibility that the potential targets for these miRNAs play key roles in numerous neurological functions involved in ER stress response, cytoskeleton dynamics, vesicle formation, and neuro-degeneration and-regeneration. Finally, our results suggest that miRNAs could play a direct role in regenerative response and may be manipulated to promote regenerative ability of injured nerves.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0137461</identifier><identifier>PMID: 26331719</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Axon guidance ; Axons ; Biomedical research ; Cellular stress response ; Cluster analysis ; Clustering ; Comparative analysis ; Cytoskeleton ; Degeneration ; Gene regulation ; Genetic aspects ; Genomics ; Injuries ; Injury analysis ; Kinases ; Localization ; Male ; MicroRNA ; MicroRNAs ; MicroRNAs - physiology ; Miranda ; miRNA ; Nerve Regeneration - genetics ; Nerves ; Nervous system ; Nucleotides ; Pain ; Peripheral nervous system ; Physiological aspects ; Polymerase Chain Reaction ; Post-transcription ; Predictions ; Protein biosynthesis ; Protein synthesis ; Proteins ; Rats ; Rats, Sprague-Dawley ; Regeneration ; Ribonucleic acid ; RNA ; Sciatic nerve ; Sciatic Nerve - physiology ; Sequence Analysis, RNA ; Spinal cord injuries</subject><ispartof>PloS one, 2015-09, Vol.10 (9), p.e0137461-e0137461</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Phay et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Phay et al 2015 Phay et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-10e16a92aecff035c01b938405efafb76ea5487281d9716c73e40836a30e1fbf3</citedby><cites>FETCH-LOGICAL-c692t-10e16a92aecff035c01b938405efafb76ea5487281d9716c73e40836a30e1fbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4557935/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4557935/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26331719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Di Giovanni, Simone</contributor><creatorcontrib>Phay, Monichan</creatorcontrib><creatorcontrib>Kim, Hak Hee</creatorcontrib><creatorcontrib>Yoo, Soonmoon</creatorcontrib><title>Dynamic Change and Target Prediction of Axon-Specific MicroRNAs in Regenerating Sciatic Nerve</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Injury to axons in the peripheral nervous system induces rapid and local regenerative responses to form a new growth cone, and to generate a retrogradely transporting injury signal. The evidence for essential roles of intra-axonal protein synthesis during regeneration is now compelling. MicroRNA (miRNA) has recently been recognized as a prominent player in post-transcriptional regulation of axonal protein synthesis. Here, we directly contrast temporal changes of miRNA levels in the sciatic nerve following injury, as compared to those in an uninjured nerve using deep sequencing. Small RNAs (&lt;200 nucleotides in length) were fractionated from the proximal nerve stumps to improve the representation of differential miRNA levels. Of 141 axoplasmic miRNAs annotated, 63 rat miRNAs showed significantly differential levels at five time points following injury, compared to an uninjured nerve. The differential changes in miRNA levels responding to injury were processed for hierarchical clustering analyses, and used to predict target mRNAs by Targetscan and miRanda. By overlapping these predicted targets with 2,924 axonally localizing transcripts previously reported, the overlapping set of 214 transcripts was further analyzed by the Gene Ontology enrichment and Ingenuity Pathway Analyses. These results suggest the possibility that the potential targets for these miRNAs play key roles in numerous neurological functions involved in ER stress response, cytoskeleton dynamics, vesicle formation, and neuro-degeneration and-regeneration. Finally, our results suggest that miRNAs could play a direct role in regenerative response and may be manipulated to promote regenerative ability of injured nerves.</description><subject>Animals</subject><subject>Axon guidance</subject><subject>Axons</subject><subject>Biomedical research</subject><subject>Cellular stress response</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Comparative analysis</subject><subject>Cytoskeleton</subject><subject>Degeneration</subject><subject>Gene regulation</subject><subject>Genetic aspects</subject><subject>Genomics</subject><subject>Injuries</subject><subject>Injury analysis</subject><subject>Kinases</subject><subject>Localization</subject><subject>Male</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>MicroRNAs - physiology</subject><subject>Miranda</subject><subject>miRNA</subject><subject>Nerve Regeneration - genetics</subject><subject>Nerves</subject><subject>Nervous system</subject><subject>Nucleotides</subject><subject>Pain</subject><subject>Peripheral nervous system</subject><subject>Physiological aspects</subject><subject>Polymerase Chain Reaction</subject><subject>Post-transcription</subject><subject>Predictions</subject><subject>Protein biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Regeneration</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sciatic nerve</subject><subject>Sciatic Nerve - physiology</subject><subject>Sequence Analysis, RNA</subject><subject>Spinal cord injuries</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBEQkJw0WLHjhPfIFXlq9LYUDu4Q5brHKeeUrvYybT9e5w1mxq0C-SLWCfPec-Hz0mSlxhNMSnwh0vXeSub6c5ZmKJoogw_So4xJ9mEZYg8PrgfJc9CuEQoJyVjT5OjjBGCC8yPk9-fbqzcGpXON9LWkEpbpRfS19CmPzxURrXG2dTpdHbt7GS1A2V0pL8b5d3ybBZSY9Ml1GDBy9bYOl0pEy8qPQN_Bc-TJ1o2AV4M35Pk55fPF_Nvk9Pzr4v57HSiGM_aCUaAmeSZBKU1IrlCeM1JSVEOWup1wUDmtCyyEle8wEwVBCgqCZMkOuq1JifJ673urnFBDJ0JIpaICCIlLiOx2BOVk5di581W-hvhpBG3BudrIX3MuwGhS05LWkgguqI5plxXkrIKZUA5Z5hErY9DtG69hUqBbb1sRqLjP9ZsRO2uBM3zgpM8CrwbBLz700FoxdYEBU0jLbiuzxvx29SLiL75B324uoGqZSzAWO1iXNWLihnNihwXOe3DTh-g4qkgTkAcI22ifeTwfuQQmRau21p2IYjFavn_7PmvMfv2gN2AbNpNcE3Xz1oYg3QPxmkLwYO-bzJGot-Cu26IfgvEsAXR7dXhA9073Y09-QtV-wA2</recordid><startdate>20150902</startdate><enddate>20150902</enddate><creator>Phay, Monichan</creator><creator>Kim, Hak Hee</creator><creator>Yoo, Soonmoon</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150902</creationdate><title>Dynamic Change and Target Prediction of Axon-Specific MicroRNAs in Regenerating Sciatic Nerve</title><author>Phay, Monichan ; Kim, Hak Hee ; Yoo, Soonmoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-10e16a92aecff035c01b938405efafb76ea5487281d9716c73e40836a30e1fbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Axon guidance</topic><topic>Axons</topic><topic>Biomedical research</topic><topic>Cellular stress response</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Comparative analysis</topic><topic>Cytoskeleton</topic><topic>Degeneration</topic><topic>Gene regulation</topic><topic>Genetic aspects</topic><topic>Genomics</topic><topic>Injuries</topic><topic>Injury analysis</topic><topic>Kinases</topic><topic>Localization</topic><topic>Male</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>MicroRNAs - physiology</topic><topic>Miranda</topic><topic>miRNA</topic><topic>Nerve Regeneration - genetics</topic><topic>Nerves</topic><topic>Nervous system</topic><topic>Nucleotides</topic><topic>Pain</topic><topic>Peripheral nervous system</topic><topic>Physiological aspects</topic><topic>Polymerase Chain Reaction</topic><topic>Post-transcription</topic><topic>Predictions</topic><topic>Protein biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Regeneration</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sciatic nerve</topic><topic>Sciatic Nerve - physiology</topic><topic>Sequence Analysis, RNA</topic><topic>Spinal cord injuries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phay, Monichan</creatorcontrib><creatorcontrib>Kim, Hak Hee</creatorcontrib><creatorcontrib>Yoo, Soonmoon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>test</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phay, Monichan</au><au>Kim, Hak Hee</au><au>Yoo, Soonmoon</au><au>Di Giovanni, Simone</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Change and Target Prediction of Axon-Specific MicroRNAs in Regenerating Sciatic Nerve</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-09-02</date><risdate>2015</risdate><volume>10</volume><issue>9</issue><spage>e0137461</spage><epage>e0137461</epage><pages>e0137461-e0137461</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Injury to axons in the peripheral nervous system induces rapid and local regenerative responses to form a new growth cone, and to generate a retrogradely transporting injury signal. The evidence for essential roles of intra-axonal protein synthesis during regeneration is now compelling. MicroRNA (miRNA) has recently been recognized as a prominent player in post-transcriptional regulation of axonal protein synthesis. Here, we directly contrast temporal changes of miRNA levels in the sciatic nerve following injury, as compared to those in an uninjured nerve using deep sequencing. Small RNAs (&lt;200 nucleotides in length) were fractionated from the proximal nerve stumps to improve the representation of differential miRNA levels. Of 141 axoplasmic miRNAs annotated, 63 rat miRNAs showed significantly differential levels at five time points following injury, compared to an uninjured nerve. The differential changes in miRNA levels responding to injury were processed for hierarchical clustering analyses, and used to predict target mRNAs by Targetscan and miRanda. By overlapping these predicted targets with 2,924 axonally localizing transcripts previously reported, the overlapping set of 214 transcripts was further analyzed by the Gene Ontology enrichment and Ingenuity Pathway Analyses. These results suggest the possibility that the potential targets for these miRNAs play key roles in numerous neurological functions involved in ER stress response, cytoskeleton dynamics, vesicle formation, and neuro-degeneration and-regeneration. Finally, our results suggest that miRNAs could play a direct role in regenerative response and may be manipulated to promote regenerative ability of injured nerves.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26331719</pmid><doi>10.1371/journal.pone.0137461</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-09, Vol.10 (9), p.e0137461-e0137461
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1710303818
source MEDLINE; Full-Text Journals in Chemistry (Open access); DOAJ Directory of Open Access Journals; Public Library of Science; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Axon guidance
Axons
Biomedical research
Cellular stress response
Cluster analysis
Clustering
Comparative analysis
Cytoskeleton
Degeneration
Gene regulation
Genetic aspects
Genomics
Injuries
Injury analysis
Kinases
Localization
Male
MicroRNA
MicroRNAs
MicroRNAs - physiology
Miranda
miRNA
Nerve Regeneration - genetics
Nerves
Nervous system
Nucleotides
Pain
Peripheral nervous system
Physiological aspects
Polymerase Chain Reaction
Post-transcription
Predictions
Protein biosynthesis
Protein synthesis
Proteins
Rats
Rats, Sprague-Dawley
Regeneration
Ribonucleic acid
RNA
Sciatic nerve
Sciatic Nerve - physiology
Sequence Analysis, RNA
Spinal cord injuries
title Dynamic Change and Target Prediction of Axon-Specific MicroRNAs in Regenerating Sciatic Nerve
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A37%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Change%20and%20Target%20Prediction%20of%20Axon-Specific%20MicroRNAs%20in%20Regenerating%20Sciatic%20Nerve&rft.jtitle=PloS%20one&rft.au=Phay,%20Monichan&rft.date=2015-09-02&rft.volume=10&rft.issue=9&rft.spage=e0137461&rft.epage=e0137461&rft.pages=e0137461-e0137461&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0137461&rft_dat=%3Cgale_plos_%3EA427517545%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1710303818&rft_id=info:pmid/26331719&rft_galeid=A427517545&rft_doaj_id=oai_doaj_org_article_f894847ae3fd45149fda46d02e499613&rfr_iscdi=true