Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling

MHC class I (MHC-I) molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s) underlying activity-dependent MHC-I expression using hippocam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-08, Vol.10 (8), p.e0135223-e0135223
Hauptverfasser: Lv, Dan, Shen, Yuqing, Peng, Yaqin, Liu, Jiane, Miao, Fengqin, Zhang, Jianqiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0135223
container_issue 8
container_start_page e0135223
container_title PloS one
container_volume 10
creator Lv, Dan
Shen, Yuqing
Peng, Yaqin
Liu, Jiane
Miao, Fengqin
Zhang, Jianqiong
description MHC class I (MHC-I) molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s) underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA) treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC) is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade.
doi_str_mv 10.1371/journal.pone.0135223
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1708528840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A425311425</galeid><doaj_id>oai_doaj_org_article_13b87512f23f4ac29bb33fcbc82a7241</doaj_id><sourcerecordid>A425311425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-778abc9482f2305cb003268fde9d43a5b43d51478a8a8ce597b0416345e652ba3</originalsourceid><addsrcrecordid>eNqNkl1v0zAUhiMEYqPwDxBYQkJw0eLPfNxMqspglQYTG3Br2Y6TunLjYifV-u9x1mxq0C7QkWzLfs5r-5w3SV4jOEMkQ5_WrvONsLOta_QMIsIwJk-SU1QQPE0xJE-P1ifJixDWEDKSp-nz5ASnOCWkgKfJj--68y7qgG8XC7CwIgSwBOe3W69DMK4BywCudd1Z0eoSyD2Yq9bsTLsHn73Z6QYshFWm24AbU0cV09Qvk2eVsEG_GuZJ8uvL-c_FxfTy6utyMb-cqrTA7TTLciFVQXNcYQKZkhASnOZVqYuSEsEkJSVDNFIxlGZFJiFFKaFMpwxLQSbJ24Pu1rrAh2oEjjKYM5znFEZieSBKJ9Z8681G-D13wvC7DedrLnxrlNUcEZlnDPVvqahQuJCSkEpJlWORYYqi1tlwWyc3ulS6ab2wI9HxSWNWvHY7ThnBDPUCHwYB7_50OrR8Y4LS1opGu-7u3bGrRZ716Lt_0Md_N1C1iB8wTeXivaoX5XOKGUGoHyfJ7BEqRqk3RkXrVCbujxI-jhIi0-rbthZdCHx5c_3_7NXvMfv-iF1pYdtVcLZro8nCGKQHUHkXgtfVQ5ER5L3z76vBe-fzwfkx7c1xgx6S7q1O_gJ1i_so</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1708528840</pqid></control><display><type>article</type><title>Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Lv, Dan ; Shen, Yuqing ; Peng, Yaqin ; Liu, Jiane ; Miao, Fengqin ; Zhang, Jianqiong</creator><contributor>Yang, Yanmin</contributor><creatorcontrib>Lv, Dan ; Shen, Yuqing ; Peng, Yaqin ; Liu, Jiane ; Miao, Fengqin ; Zhang, Jianqiong ; Yang, Yanmin</creatorcontrib><description>MHC class I (MHC-I) molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s) underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA) treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC) is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0135223</identifier><identifier>PMID: 26263390</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Activation ; Animals ; Brain ; Brain research ; Calcium ; Calcium ions ; Calcium Signaling ; Calcium signalling ; Cell Line ; Cellular signal transduction ; Cyclic AMP response element-binding protein ; Cyclic AMP Response Element-Binding Protein - metabolism ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Deoxyribonucleic acid ; Developmental plasticity ; DNA ; Education ; Gene expression ; Gene Expression Regulation - drug effects ; Genes, MHC Class I ; Genetic engineering ; Hippocampus ; Hippocampus - metabolism ; Immune system ; Immunology ; Interferon regulatory factor 1 ; Interferon Regulatory Factor-1 - metabolism ; Kainic acid ; Kainic Acid - pharmacology ; Kinases ; Laboratories ; Major histocompatibility complex ; MAP kinase ; MAP Kinase Signaling System - drug effects ; Medical schools ; Mice ; Molecular chains ; Nervous system ; Neurons ; Neurons - metabolism ; Neurosciences ; NF-kappa B - metabolism ; NF-κB protein ; Phosphorylation ; Protein kinase C ; Protein Kinase C - metabolism ; Proteins ; Pyramidal Cells - metabolism ; Relaying ; RNA, Messenger ; Signal transduction ; Synapses - metabolism ; Synaptic plasticity ; Synaptogenesis ; Transcription factors ; Tumor necrosis factor-TNF</subject><ispartof>PloS one, 2015-08, Vol.10 (8), p.e0135223-e0135223</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Lv et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Lv et al 2015 Lv et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-778abc9482f2305cb003268fde9d43a5b43d51478a8a8ce597b0416345e652ba3</citedby><cites>FETCH-LOGICAL-c692t-778abc9482f2305cb003268fde9d43a5b43d51478a8a8ce597b0416345e652ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4532511/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4532511/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26263390$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Yang, Yanmin</contributor><creatorcontrib>Lv, Dan</creatorcontrib><creatorcontrib>Shen, Yuqing</creatorcontrib><creatorcontrib>Peng, Yaqin</creatorcontrib><creatorcontrib>Liu, Jiane</creatorcontrib><creatorcontrib>Miao, Fengqin</creatorcontrib><creatorcontrib>Zhang, Jianqiong</creatorcontrib><title>Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>MHC class I (MHC-I) molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s) underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA) treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC) is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade.</description><subject>Activation</subject><subject>Animals</subject><subject>Brain</subject><subject>Brain research</subject><subject>Calcium</subject><subject>Calcium ions</subject><subject>Calcium Signaling</subject><subject>Calcium signalling</subject><subject>Cell Line</subject><subject>Cellular signal transduction</subject><subject>Cyclic AMP response element-binding protein</subject><subject>Cyclic AMP Response Element-Binding Protein - metabolism</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental plasticity</subject><subject>DNA</subject><subject>Education</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Genes, MHC Class I</subject><subject>Genetic engineering</subject><subject>Hippocampus</subject><subject>Hippocampus - metabolism</subject><subject>Immune system</subject><subject>Immunology</subject><subject>Interferon regulatory factor 1</subject><subject>Interferon Regulatory Factor-1 - metabolism</subject><subject>Kainic acid</subject><subject>Kainic Acid - pharmacology</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Major histocompatibility complex</subject><subject>MAP kinase</subject><subject>MAP Kinase Signaling System - drug effects</subject><subject>Medical schools</subject><subject>Mice</subject><subject>Molecular chains</subject><subject>Nervous system</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurosciences</subject><subject>NF-kappa B - metabolism</subject><subject>NF-κB protein</subject><subject>Phosphorylation</subject><subject>Protein kinase C</subject><subject>Protein Kinase C - metabolism</subject><subject>Proteins</subject><subject>Pyramidal Cells - metabolism</subject><subject>Relaying</subject><subject>RNA, Messenger</subject><subject>Signal transduction</subject><subject>Synapses - metabolism</subject><subject>Synaptic plasticity</subject><subject>Synaptogenesis</subject><subject>Transcription factors</subject><subject>Tumor necrosis factor-TNF</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1v0zAUhiMEYqPwDxBYQkJw0eLPfNxMqspglQYTG3Br2Y6TunLjYifV-u9x1mxq0C7QkWzLfs5r-5w3SV4jOEMkQ5_WrvONsLOta_QMIsIwJk-SU1QQPE0xJE-P1ifJixDWEDKSp-nz5ASnOCWkgKfJj--68y7qgG8XC7CwIgSwBOe3W69DMK4BywCudd1Z0eoSyD2Yq9bsTLsHn73Z6QYshFWm24AbU0cV09Qvk2eVsEG_GuZJ8uvL-c_FxfTy6utyMb-cqrTA7TTLciFVQXNcYQKZkhASnOZVqYuSEsEkJSVDNFIxlGZFJiFFKaFMpwxLQSbJ24Pu1rrAh2oEjjKYM5znFEZieSBKJ9Z8681G-D13wvC7DedrLnxrlNUcEZlnDPVvqahQuJCSkEpJlWORYYqi1tlwWyc3ulS6ab2wI9HxSWNWvHY7ThnBDPUCHwYB7_50OrR8Y4LS1opGu-7u3bGrRZ716Lt_0Md_N1C1iB8wTeXivaoX5XOKGUGoHyfJ7BEqRqk3RkXrVCbujxI-jhIi0-rbthZdCHx5c_3_7NXvMfv-iF1pYdtVcLZro8nCGKQHUHkXgtfVQ5ER5L3z76vBe-fzwfkx7c1xgx6S7q1O_gJ1i_so</recordid><startdate>20150811</startdate><enddate>20150811</enddate><creator>Lv, Dan</creator><creator>Shen, Yuqing</creator><creator>Peng, Yaqin</creator><creator>Liu, Jiane</creator><creator>Miao, Fengqin</creator><creator>Zhang, Jianqiong</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150811</creationdate><title>Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling</title><author>Lv, Dan ; Shen, Yuqing ; Peng, Yaqin ; Liu, Jiane ; Miao, Fengqin ; Zhang, Jianqiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-778abc9482f2305cb003268fde9d43a5b43d51478a8a8ce597b0416345e652ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Activation</topic><topic>Animals</topic><topic>Brain</topic><topic>Brain research</topic><topic>Calcium</topic><topic>Calcium ions</topic><topic>Calcium Signaling</topic><topic>Calcium signalling</topic><topic>Cell Line</topic><topic>Cellular signal transduction</topic><topic>Cyclic AMP response element-binding protein</topic><topic>Cyclic AMP Response Element-Binding Protein - metabolism</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental plasticity</topic><topic>DNA</topic><topic>Education</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Genes, MHC Class I</topic><topic>Genetic engineering</topic><topic>Hippocampus</topic><topic>Hippocampus - metabolism</topic><topic>Immune system</topic><topic>Immunology</topic><topic>Interferon regulatory factor 1</topic><topic>Interferon Regulatory Factor-1 - metabolism</topic><topic>Kainic acid</topic><topic>Kainic Acid - pharmacology</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Major histocompatibility complex</topic><topic>MAP kinase</topic><topic>MAP Kinase Signaling System - drug effects</topic><topic>Medical schools</topic><topic>Mice</topic><topic>Molecular chains</topic><topic>Nervous system</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurosciences</topic><topic>NF-kappa B - metabolism</topic><topic>NF-κB protein</topic><topic>Phosphorylation</topic><topic>Protein kinase C</topic><topic>Protein Kinase C - metabolism</topic><topic>Proteins</topic><topic>Pyramidal Cells - metabolism</topic><topic>Relaying</topic><topic>RNA, Messenger</topic><topic>Signal transduction</topic><topic>Synapses - metabolism</topic><topic>Synaptic plasticity</topic><topic>Synaptogenesis</topic><topic>Transcription factors</topic><topic>Tumor necrosis factor-TNF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Dan</creatorcontrib><creatorcontrib>Shen, Yuqing</creatorcontrib><creatorcontrib>Peng, Yaqin</creatorcontrib><creatorcontrib>Liu, Jiane</creatorcontrib><creatorcontrib>Miao, Fengqin</creatorcontrib><creatorcontrib>Zhang, Jianqiong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Dan</au><au>Shen, Yuqing</au><au>Peng, Yaqin</au><au>Liu, Jiane</au><au>Miao, Fengqin</au><au>Zhang, Jianqiong</au><au>Yang, Yanmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-08-11</date><risdate>2015</risdate><volume>10</volume><issue>8</issue><spage>e0135223</spage><epage>e0135223</epage><pages>e0135223-e0135223</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>MHC class I (MHC-I) molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s) underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA) treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC) is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26263390</pmid><doi>10.1371/journal.pone.0135223</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-08, Vol.10 (8), p.e0135223-e0135223
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1708528840
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Activation
Animals
Brain
Brain research
Calcium
Calcium ions
Calcium Signaling
Calcium signalling
Cell Line
Cellular signal transduction
Cyclic AMP response element-binding protein
Cyclic AMP Response Element-Binding Protein - metabolism
Cyclic AMP-Dependent Protein Kinases - metabolism
Deoxyribonucleic acid
Developmental plasticity
DNA
Education
Gene expression
Gene Expression Regulation - drug effects
Genes, MHC Class I
Genetic engineering
Hippocampus
Hippocampus - metabolism
Immune system
Immunology
Interferon regulatory factor 1
Interferon Regulatory Factor-1 - metabolism
Kainic acid
Kainic Acid - pharmacology
Kinases
Laboratories
Major histocompatibility complex
MAP kinase
MAP Kinase Signaling System - drug effects
Medical schools
Mice
Molecular chains
Nervous system
Neurons
Neurons - metabolism
Neurosciences
NF-kappa B - metabolism
NF-κB protein
Phosphorylation
Protein kinase C
Protein Kinase C - metabolism
Proteins
Pyramidal Cells - metabolism
Relaying
RNA, Messenger
Signal transduction
Synapses - metabolism
Synaptic plasticity
Synaptogenesis
Transcription factors
Tumor necrosis factor-TNF
title Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A15%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuronal%20MHC%20Class%20I%20Expression%20Is%20Regulated%20by%20Activity%20Driven%20Calcium%20Signaling&rft.jtitle=PloS%20one&rft.au=Lv,%20Dan&rft.date=2015-08-11&rft.volume=10&rft.issue=8&rft.spage=e0135223&rft.epage=e0135223&rft.pages=e0135223-e0135223&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0135223&rft_dat=%3Cgale_plos_%3EA425311425%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1708528840&rft_id=info:pmid/26263390&rft_galeid=A425311425&rft_doaj_id=oai_doaj_org_article_13b87512f23f4ac29bb33fcbc82a7241&rfr_iscdi=true