Genetic Ablation of CD38 Protects against Western Diet-Induced Exercise Intolerance and Metabolic Inflexibility
Nicotinamide adenine dinucleotide (NAD+) is a key cofactor required for essential metabolic oxidation-reduction reactions. It also regulates various cellular activities, including gene expression, signaling, DNA repair and calcium homeostasis. Intracellular NAD+ levels are tightly regulated and ofte...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-08, Vol.10 (8), p.e0134927-e0134927 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0134927 |
---|---|
container_issue | 8 |
container_start_page | e0134927 |
container_title | PloS one |
container_volume | 10 |
creator | Chiang, Shian-Huey Harrington, W Wallace Luo, Guizhen Milliken, Naphtali O Ulrich, John C Chen, Jing Rajpal, Deepak K Qian, Ying Carpenter, Tiffany Murray, Rusty Geske, Robert S Stimpson, Stephen A Kramer, Henning F Haffner, Curt D Becherer, J David Preugschat, Frank Billin, Andrew N |
description | Nicotinamide adenine dinucleotide (NAD+) is a key cofactor required for essential metabolic oxidation-reduction reactions. It also regulates various cellular activities, including gene expression, signaling, DNA repair and calcium homeostasis. Intracellular NAD+ levels are tightly regulated and often respond rapidly to nutritional and environmental changes. Numerous studies indicate that elevating NAD+ may be therapeutically beneficial in the context of numerous diseases. However, the role of NAD+ on skeletal muscle exercise performance is poorly understood. CD38, a multi-functional membrane receptor and enzyme, consumes NAD+ to generate products such as cyclic-ADP-ribose. CD38 knockout mice show elevated tissue and blood NAD+ level. Chronic feeding of high-fat, high-sucrose diet to wild type mice leads to exercise intolerance and reduced metabolic flexibility. Loss of CD38 by genetic mutation protects mice from diet-induced metabolic deficit. These animal model results suggest that elevation of tissue NAD+ through genetic ablation of CD38 can profoundly alter energy homeostasis in animals that are maintained on a calorically-excessive Western diet. |
doi_str_mv | 10.1371/journal.pone.0134927 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1708482739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A426228468</galeid><doaj_id>oai_doaj_org_article_6c250288d3cf48f0b41fe25918c4ad63</doaj_id><sourcerecordid>A426228468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-47c10b9aeb624aebe2af7440a8716658f6e5b09e2432388d1867a587f63969093</originalsourceid><addsrcrecordid>eNqNk11rFDEUhgdRbK3-A9EBQfRi13xNkrkpLG2tC5WKn5chkzmzTckma5KR9t-b7W5LV3ohgSQkz3lP8ianql5iNMVU4A-XYYxeu-kqeJgiTFlLxKNqH7eUTDhB9PG9-V71LKVLhBoqOX9a7RFOpGBS7FfhFDxka-pZ53S2wddhqI-Oqay_xJDB5FTrhbY-5foXpAzR18cW8mTu-9FAX59cQTQ2QT33OTiI2huote_rz5B1F1xRnvvBwZXtrLP5-nn1ZNAuwYvteFD9-Hjy_ejT5Oz8dH40O5sY0cg8YcJg1LUaOk5Y6YHoQTCGtBSY80YOHJoOtUAYJVTKHksudCPFwGnLW9TSg-r1RnflQlJbr5LCAkkmiaBrYr4h-qAv1SrapY7XKmirbhZCXCgdizMOFDekQaSkoWZgckAdwwOQpsXSMN1zWrQOt9nGbgm9AZ-jdjuiuzveXqhF-KNYwzjGrAi82wrE8HssRqulTQac0x7CeHPuRpCWYFzQN_-gD99uSy10uYD1Qyh5zVpUzVh5fiIZl4WaPkCV1sPSmvKxBlvWdwLe7wQUJsNVXugxJTX_9vX_2fOfu-zbe-wFaJcvUnDj-kemXZBtQBNDShGGO5MxUuu6uHVDretCbeuihL26_0B3QbeFQP8CJzgG0g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1708482739</pqid></control><display><type>article</type><title>Genetic Ablation of CD38 Protects against Western Diet-Induced Exercise Intolerance and Metabolic Inflexibility</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chiang, Shian-Huey ; Harrington, W Wallace ; Luo, Guizhen ; Milliken, Naphtali O ; Ulrich, John C ; Chen, Jing ; Rajpal, Deepak K ; Qian, Ying ; Carpenter, Tiffany ; Murray, Rusty ; Geske, Robert S ; Stimpson, Stephen A ; Kramer, Henning F ; Haffner, Curt D ; Becherer, J David ; Preugschat, Frank ; Billin, Andrew N</creator><contributor>Kanzaki, Makoto</contributor><creatorcontrib>Chiang, Shian-Huey ; Harrington, W Wallace ; Luo, Guizhen ; Milliken, Naphtali O ; Ulrich, John C ; Chen, Jing ; Rajpal, Deepak K ; Qian, Ying ; Carpenter, Tiffany ; Murray, Rusty ; Geske, Robert S ; Stimpson, Stephen A ; Kramer, Henning F ; Haffner, Curt D ; Becherer, J David ; Preugschat, Frank ; Billin, Andrew N ; Kanzaki, Makoto</creatorcontrib><description>Nicotinamide adenine dinucleotide (NAD+) is a key cofactor required for essential metabolic oxidation-reduction reactions. It also regulates various cellular activities, including gene expression, signaling, DNA repair and calcium homeostasis. Intracellular NAD+ levels are tightly regulated and often respond rapidly to nutritional and environmental changes. Numerous studies indicate that elevating NAD+ may be therapeutically beneficial in the context of numerous diseases. However, the role of NAD+ on skeletal muscle exercise performance is poorly understood. CD38, a multi-functional membrane receptor and enzyme, consumes NAD+ to generate products such as cyclic-ADP-ribose. CD38 knockout mice show elevated tissue and blood NAD+ level. Chronic feeding of high-fat, high-sucrose diet to wild type mice leads to exercise intolerance and reduced metabolic flexibility. Loss of CD38 by genetic mutation protects mice from diet-induced metabolic deficit. These animal model results suggest that elevation of tissue NAD+ through genetic ablation of CD38 can profoundly alter energy homeostasis in animals that are maintained on a calorically-excessive Western diet.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0134927</identifier><identifier>PMID: 26287487</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Ablation ; Ablation (Surgery) ; Adenine ; Adenosine diphosphate ; ADP-ribosyl Cyclase - metabolism ; ADP-ribosyl Cyclase 1 - genetics ; ADP-ribosyl Cyclase 1 - metabolism ; Aging ; Animal tissues ; Animals ; Biological products ; Biology ; Body fat ; Calcium ; Calcium (intracellular) ; Calcium homeostasis ; CD38 antigen ; Chemical reduction ; Cyclic ADP-ribose ; Cyclic ADP-Ribose - metabolism ; Deoxyribonucleic acid ; Diabetes ; Diet ; Diet, Western - adverse effects ; Disease ; DNA ; DNA repair ; Energy balance ; Environmental changes ; Enzymes ; Flexibility ; Gene expression ; Genetic research ; High fat diet ; Homeostasis ; Insulin resistance ; Intolerance ; Intracellular signalling ; Laboratory animals ; Male ; Metabolic Diseases - genetics ; Metabolic Diseases - metabolism ; Metabolic syndrome ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Muscle, Skeletal - metabolism ; Muscles ; Musculoskeletal system ; Mutation ; NAD ; NAD - metabolism ; Niacinamide ; Nicotinamide ; Nicotinamide adenine dinucleotide ; Nutrition research ; Obesity ; Oxidation ; Oxidation-Reduction ; Oxidation-reduction potential ; Oxidative stress ; Physical Conditioning, Animal - physiology ; Physiology ; Purines ; Redox reactions ; Ribose ; Rodents ; Skeletal muscle ; Sucrose ; Sugar</subject><ispartof>PloS one, 2015-08, Vol.10 (8), p.e0134927-e0134927</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Chiang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Chiang et al 2015 Chiang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-47c10b9aeb624aebe2af7440a8716658f6e5b09e2432388d1867a587f63969093</citedby><cites>FETCH-LOGICAL-c758t-47c10b9aeb624aebe2af7440a8716658f6e5b09e2432388d1867a587f63969093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4546114/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4546114/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2932,23875,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26287487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kanzaki, Makoto</contributor><creatorcontrib>Chiang, Shian-Huey</creatorcontrib><creatorcontrib>Harrington, W Wallace</creatorcontrib><creatorcontrib>Luo, Guizhen</creatorcontrib><creatorcontrib>Milliken, Naphtali O</creatorcontrib><creatorcontrib>Ulrich, John C</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Rajpal, Deepak K</creatorcontrib><creatorcontrib>Qian, Ying</creatorcontrib><creatorcontrib>Carpenter, Tiffany</creatorcontrib><creatorcontrib>Murray, Rusty</creatorcontrib><creatorcontrib>Geske, Robert S</creatorcontrib><creatorcontrib>Stimpson, Stephen A</creatorcontrib><creatorcontrib>Kramer, Henning F</creatorcontrib><creatorcontrib>Haffner, Curt D</creatorcontrib><creatorcontrib>Becherer, J David</creatorcontrib><creatorcontrib>Preugschat, Frank</creatorcontrib><creatorcontrib>Billin, Andrew N</creatorcontrib><title>Genetic Ablation of CD38 Protects against Western Diet-Induced Exercise Intolerance and Metabolic Inflexibility</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Nicotinamide adenine dinucleotide (NAD+) is a key cofactor required for essential metabolic oxidation-reduction reactions. It also regulates various cellular activities, including gene expression, signaling, DNA repair and calcium homeostasis. Intracellular NAD+ levels are tightly regulated and often respond rapidly to nutritional and environmental changes. Numerous studies indicate that elevating NAD+ may be therapeutically beneficial in the context of numerous diseases. However, the role of NAD+ on skeletal muscle exercise performance is poorly understood. CD38, a multi-functional membrane receptor and enzyme, consumes NAD+ to generate products such as cyclic-ADP-ribose. CD38 knockout mice show elevated tissue and blood NAD+ level. Chronic feeding of high-fat, high-sucrose diet to wild type mice leads to exercise intolerance and reduced metabolic flexibility. Loss of CD38 by genetic mutation protects mice from diet-induced metabolic deficit. These animal model results suggest that elevation of tissue NAD+ through genetic ablation of CD38 can profoundly alter energy homeostasis in animals that are maintained on a calorically-excessive Western diet.</description><subject>Ablation</subject><subject>Ablation (Surgery)</subject><subject>Adenine</subject><subject>Adenosine diphosphate</subject><subject>ADP-ribosyl Cyclase - metabolism</subject><subject>ADP-ribosyl Cyclase 1 - genetics</subject><subject>ADP-ribosyl Cyclase 1 - metabolism</subject><subject>Aging</subject><subject>Animal tissues</subject><subject>Animals</subject><subject>Biological products</subject><subject>Biology</subject><subject>Body fat</subject><subject>Calcium</subject><subject>Calcium (intracellular)</subject><subject>Calcium homeostasis</subject><subject>CD38 antigen</subject><subject>Chemical reduction</subject><subject>Cyclic ADP-ribose</subject><subject>Cyclic ADP-Ribose - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>Diabetes</subject><subject>Diet</subject><subject>Diet, Western - adverse effects</subject><subject>Disease</subject><subject>DNA</subject><subject>DNA repair</subject><subject>Energy balance</subject><subject>Environmental changes</subject><subject>Enzymes</subject><subject>Flexibility</subject><subject>Gene expression</subject><subject>Genetic research</subject><subject>High fat diet</subject><subject>Homeostasis</subject><subject>Insulin resistance</subject><subject>Intolerance</subject><subject>Intracellular signalling</subject><subject>Laboratory animals</subject><subject>Male</subject><subject>Metabolic Diseases - genetics</subject><subject>Metabolic Diseases - metabolism</subject><subject>Metabolic syndrome</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Mutation</subject><subject>NAD</subject><subject>NAD - metabolism</subject><subject>Niacinamide</subject><subject>Nicotinamide</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Nutrition research</subject><subject>Obesity</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidation-reduction potential</subject><subject>Oxidative stress</subject><subject>Physical Conditioning, Animal - physiology</subject><subject>Physiology</subject><subject>Purines</subject><subject>Redox reactions</subject><subject>Ribose</subject><subject>Rodents</subject><subject>Skeletal muscle</subject><subject>Sucrose</subject><subject>Sugar</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rFDEUhgdRbK3-A9EBQfRi13xNkrkpLG2tC5WKn5chkzmzTckma5KR9t-b7W5LV3ohgSQkz3lP8ianql5iNMVU4A-XYYxeu-kqeJgiTFlLxKNqH7eUTDhB9PG9-V71LKVLhBoqOX9a7RFOpGBS7FfhFDxka-pZ53S2wddhqI-Oqay_xJDB5FTrhbY-5foXpAzR18cW8mTu-9FAX59cQTQ2QT33OTiI2huote_rz5B1F1xRnvvBwZXtrLP5-nn1ZNAuwYvteFD9-Hjy_ejT5Oz8dH40O5sY0cg8YcJg1LUaOk5Y6YHoQTCGtBSY80YOHJoOtUAYJVTKHksudCPFwGnLW9TSg-r1RnflQlJbr5LCAkkmiaBrYr4h-qAv1SrapY7XKmirbhZCXCgdizMOFDekQaSkoWZgckAdwwOQpsXSMN1zWrQOt9nGbgm9AZ-jdjuiuzveXqhF-KNYwzjGrAi82wrE8HssRqulTQac0x7CeHPuRpCWYFzQN_-gD99uSy10uYD1Qyh5zVpUzVh5fiIZl4WaPkCV1sPSmvKxBlvWdwLe7wQUJsNVXugxJTX_9vX_2fOfu-zbe-wFaJcvUnDj-kemXZBtQBNDShGGO5MxUuu6uHVDretCbeuihL26_0B3QbeFQP8CJzgG0g</recordid><startdate>20150819</startdate><enddate>20150819</enddate><creator>Chiang, Shian-Huey</creator><creator>Harrington, W Wallace</creator><creator>Luo, Guizhen</creator><creator>Milliken, Naphtali O</creator><creator>Ulrich, John C</creator><creator>Chen, Jing</creator><creator>Rajpal, Deepak K</creator><creator>Qian, Ying</creator><creator>Carpenter, Tiffany</creator><creator>Murray, Rusty</creator><creator>Geske, Robert S</creator><creator>Stimpson, Stephen A</creator><creator>Kramer, Henning F</creator><creator>Haffner, Curt D</creator><creator>Becherer, J David</creator><creator>Preugschat, Frank</creator><creator>Billin, Andrew N</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150819</creationdate><title>Genetic Ablation of CD38 Protects against Western Diet-Induced Exercise Intolerance and Metabolic Inflexibility</title><author>Chiang, Shian-Huey ; Harrington, W Wallace ; Luo, Guizhen ; Milliken, Naphtali O ; Ulrich, John C ; Chen, Jing ; Rajpal, Deepak K ; Qian, Ying ; Carpenter, Tiffany ; Murray, Rusty ; Geske, Robert S ; Stimpson, Stephen A ; Kramer, Henning F ; Haffner, Curt D ; Becherer, J David ; Preugschat, Frank ; Billin, Andrew N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-47c10b9aeb624aebe2af7440a8716658f6e5b09e2432388d1867a587f63969093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Ablation</topic><topic>Ablation (Surgery)</topic><topic>Adenine</topic><topic>Adenosine diphosphate</topic><topic>ADP-ribosyl Cyclase - metabolism</topic><topic>ADP-ribosyl Cyclase 1 - genetics</topic><topic>ADP-ribosyl Cyclase 1 - metabolism</topic><topic>Aging</topic><topic>Animal tissues</topic><topic>Animals</topic><topic>Biological products</topic><topic>Biology</topic><topic>Body fat</topic><topic>Calcium</topic><topic>Calcium (intracellular)</topic><topic>Calcium homeostasis</topic><topic>CD38 antigen</topic><topic>Chemical reduction</topic><topic>Cyclic ADP-ribose</topic><topic>Cyclic ADP-Ribose - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>Diabetes</topic><topic>Diet</topic><topic>Diet, Western - adverse effects</topic><topic>Disease</topic><topic>DNA</topic><topic>DNA repair</topic><topic>Energy balance</topic><topic>Environmental changes</topic><topic>Enzymes</topic><topic>Flexibility</topic><topic>Gene expression</topic><topic>Genetic research</topic><topic>High fat diet</topic><topic>Homeostasis</topic><topic>Insulin resistance</topic><topic>Intolerance</topic><topic>Intracellular signalling</topic><topic>Laboratory animals</topic><topic>Male</topic><topic>Metabolic Diseases - genetics</topic><topic>Metabolic Diseases - metabolism</topic><topic>Metabolic syndrome</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Mutation</topic><topic>NAD</topic><topic>NAD - metabolism</topic><topic>Niacinamide</topic><topic>Nicotinamide</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Nutrition research</topic><topic>Obesity</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidation-reduction potential</topic><topic>Oxidative stress</topic><topic>Physical Conditioning, Animal - physiology</topic><topic>Physiology</topic><topic>Purines</topic><topic>Redox reactions</topic><topic>Ribose</topic><topic>Rodents</topic><topic>Skeletal muscle</topic><topic>Sucrose</topic><topic>Sugar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiang, Shian-Huey</creatorcontrib><creatorcontrib>Harrington, W Wallace</creatorcontrib><creatorcontrib>Luo, Guizhen</creatorcontrib><creatorcontrib>Milliken, Naphtali O</creatorcontrib><creatorcontrib>Ulrich, John C</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Rajpal, Deepak K</creatorcontrib><creatorcontrib>Qian, Ying</creatorcontrib><creatorcontrib>Carpenter, Tiffany</creatorcontrib><creatorcontrib>Murray, Rusty</creatorcontrib><creatorcontrib>Geske, Robert S</creatorcontrib><creatorcontrib>Stimpson, Stephen A</creatorcontrib><creatorcontrib>Kramer, Henning F</creatorcontrib><creatorcontrib>Haffner, Curt D</creatorcontrib><creatorcontrib>Becherer, J David</creatorcontrib><creatorcontrib>Preugschat, Frank</creatorcontrib><creatorcontrib>Billin, Andrew N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiang, Shian-Huey</au><au>Harrington, W Wallace</au><au>Luo, Guizhen</au><au>Milliken, Naphtali O</au><au>Ulrich, John C</au><au>Chen, Jing</au><au>Rajpal, Deepak K</au><au>Qian, Ying</au><au>Carpenter, Tiffany</au><au>Murray, Rusty</au><au>Geske, Robert S</au><au>Stimpson, Stephen A</au><au>Kramer, Henning F</au><au>Haffner, Curt D</au><au>Becherer, J David</au><au>Preugschat, Frank</au><au>Billin, Andrew N</au><au>Kanzaki, Makoto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Ablation of CD38 Protects against Western Diet-Induced Exercise Intolerance and Metabolic Inflexibility</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-08-19</date><risdate>2015</risdate><volume>10</volume><issue>8</issue><spage>e0134927</spage><epage>e0134927</epage><pages>e0134927-e0134927</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Nicotinamide adenine dinucleotide (NAD+) is a key cofactor required for essential metabolic oxidation-reduction reactions. It also regulates various cellular activities, including gene expression, signaling, DNA repair and calcium homeostasis. Intracellular NAD+ levels are tightly regulated and often respond rapidly to nutritional and environmental changes. Numerous studies indicate that elevating NAD+ may be therapeutically beneficial in the context of numerous diseases. However, the role of NAD+ on skeletal muscle exercise performance is poorly understood. CD38, a multi-functional membrane receptor and enzyme, consumes NAD+ to generate products such as cyclic-ADP-ribose. CD38 knockout mice show elevated tissue and blood NAD+ level. Chronic feeding of high-fat, high-sucrose diet to wild type mice leads to exercise intolerance and reduced metabolic flexibility. Loss of CD38 by genetic mutation protects mice from diet-induced metabolic deficit. These animal model results suggest that elevation of tissue NAD+ through genetic ablation of CD38 can profoundly alter energy homeostasis in animals that are maintained on a calorically-excessive Western diet.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26287487</pmid><doi>10.1371/journal.pone.0134927</doi><tpages>e0134927</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-08, Vol.10 (8), p.e0134927-e0134927 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1708482739 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Ablation Ablation (Surgery) Adenine Adenosine diphosphate ADP-ribosyl Cyclase - metabolism ADP-ribosyl Cyclase 1 - genetics ADP-ribosyl Cyclase 1 - metabolism Aging Animal tissues Animals Biological products Biology Body fat Calcium Calcium (intracellular) Calcium homeostasis CD38 antigen Chemical reduction Cyclic ADP-ribose Cyclic ADP-Ribose - metabolism Deoxyribonucleic acid Diabetes Diet Diet, Western - adverse effects Disease DNA DNA repair Energy balance Environmental changes Enzymes Flexibility Gene expression Genetic research High fat diet Homeostasis Insulin resistance Intolerance Intracellular signalling Laboratory animals Male Metabolic Diseases - genetics Metabolic Diseases - metabolism Metabolic syndrome Mice Mice, Inbred C57BL Mice, Knockout Muscle, Skeletal - metabolism Muscles Musculoskeletal system Mutation NAD NAD - metabolism Niacinamide Nicotinamide Nicotinamide adenine dinucleotide Nutrition research Obesity Oxidation Oxidation-Reduction Oxidation-reduction potential Oxidative stress Physical Conditioning, Animal - physiology Physiology Purines Redox reactions Ribose Rodents Skeletal muscle Sucrose Sugar |
title | Genetic Ablation of CD38 Protects against Western Diet-Induced Exercise Intolerance and Metabolic Inflexibility |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T02%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Ablation%20of%20CD38%20Protects%20against%20Western%20Diet-Induced%20Exercise%20Intolerance%20and%20Metabolic%20Inflexibility&rft.jtitle=PloS%20one&rft.au=Chiang,%20Shian-Huey&rft.date=2015-08-19&rft.volume=10&rft.issue=8&rft.spage=e0134927&rft.epage=e0134927&rft.pages=e0134927-e0134927&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0134927&rft_dat=%3Cgale_plos_%3EA426228468%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1708482739&rft_id=info:pmid/26287487&rft_galeid=A426228468&rft_doaj_id=oai_doaj_org_article_6c250288d3cf48f0b41fe25918c4ad63&rfr_iscdi=true |