High Accuracy Decoding of Dynamical Motion from a Large Retinal Population
Motion tracking is a challenge the visual system has to solve by reading out the retinal population. It is still unclear how the information from different neurons can be combined together to estimate the position of an object. Here we recorded a large population of ganglion cells in a dense patch o...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2015-07, Vol.11 (7), p.e1004304-e1004304 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1004304 |
---|---|
container_issue | 7 |
container_start_page | e1004304 |
container_title | PLoS computational biology |
container_volume | 11 |
creator | Marre, Olivier Botella-Soler, Vicente Simmons, Kristina D Mora, Thierry Tkačik, Gašper Berry, 2nd, Michael J |
description | Motion tracking is a challenge the visual system has to solve by reading out the retinal population. It is still unclear how the information from different neurons can be combined together to estimate the position of an object. Here we recorded a large population of ganglion cells in a dense patch of salamander and guinea pig retinas while displaying a bar moving diffusively. We show that the bar's position can be reconstructed from retinal activity with a precision in the hyperacuity regime using a linear decoder acting on 100+ cells. We then took advantage of this unprecedented precision to explore the spatial structure of the retina's population code. The classical view would have suggested that the firing rates of the cells form a moving hill of activity tracking the bar's position. Instead, we found that most ganglion cells in the salamander fired sparsely and idiosyncratically, so that their neural image did not track the bar. Furthermore, ganglion cell activity spanned an area much larger than predicted by their receptive fields, with cells coding for motion far in their surround. As a result, population redundancy was high, and we could find multiple, disjoint subsets of neurons that encoded the trajectory with high precision. This organization allows for diverse collections of ganglion cells to represent high-accuracy motion information in a form easily read out by downstream neural circuits. |
doi_str_mv | 10.1371/journal.pcbi.1004304 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1705057573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_be558c9eb99948838f8b1e07304baa59</doaj_id><sourcerecordid>1693730360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-f9175c82a3a882993310280e4fe8f3933f441c87e246d4498c22b208673db7833</originalsourceid><addsrcrecordid>eNpdUk1v1DAQjRCIfsA_QOAjPezW9tixfUFatYVttQiE4Gw5jpP1KokXJ6m0_74Om1YtJ49n3rw3M3pZ9oHgJQFBLndhjJ1plntb-CXBmAFmr7JTwjksBHD5-ll8kp31_Q7jFKr8bXZCcwKUYDjN7ta-3qKVtWM09oCunQ2l72oUKnR96EzrrWnQ9zD40KEqhhYZtDGxduiXG3ySRz_DfmzMVH-XvalM07v383ue_fl68_tqvdj8-HZ7tdosLAc6LCpFBLeSGjBSUqUACKYSO1Y5WUH6VowRK4WjLC8ZU9JSWlAscwFlISTAefbpyLtvQq_nM_SaCMwxF1xMiNsjogxmp_fRtyYedDBe_0uEWGsTB28bpwvHubTKFUopJiXIShbEYZGOWRjDVeL6MquNRetK67ohmuYF6ctK57e6DveaMakwpYng4kiw_a9tvdroKYcJhZwyck8S9vMsFsPf0fWDbn1vXdOYzoUx7ZgrSKNBjhOUHaE2hr6PrnriJlhPBnm8jJ4MomeDpLaPz9d5anp0BDwAhaG2Wg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1693730360</pqid></control><display><type>article</type><title>High Accuracy Decoding of Dynamical Motion from a Large Retinal Population</title><source>Directory of Open Access Journals (DOAJ)</source><source>PLoS</source><source>MEDLINE</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Marre, Olivier ; Botella-Soler, Vicente ; Simmons, Kristina D ; Mora, Thierry ; Tkačik, Gašper ; Berry, 2nd, Michael J</creator><contributor>Bethge, Matthias</contributor><creatorcontrib>Marre, Olivier ; Botella-Soler, Vicente ; Simmons, Kristina D ; Mora, Thierry ; Tkačik, Gašper ; Berry, 2nd, Michael J ; Bethge, Matthias</creatorcontrib><description>Motion tracking is a challenge the visual system has to solve by reading out the retinal population. It is still unclear how the information from different neurons can be combined together to estimate the position of an object. Here we recorded a large population of ganglion cells in a dense patch of salamander and guinea pig retinas while displaying a bar moving diffusively. We show that the bar's position can be reconstructed from retinal activity with a precision in the hyperacuity regime using a linear decoder acting on 100+ cells. We then took advantage of this unprecedented precision to explore the spatial structure of the retina's population code. The classical view would have suggested that the firing rates of the cells form a moving hill of activity tracking the bar's position. Instead, we found that most ganglion cells in the salamander fired sparsely and idiosyncratically, so that their neural image did not track the bar. Furthermore, ganglion cell activity spanned an area much larger than predicted by their receptive fields, with cells coding for motion far in their surround. As a result, population redundancy was high, and we could find multiple, disjoint subsets of neurons that encoded the trajectory with high precision. This organization allows for diverse collections of ganglion cells to represent high-accuracy motion information in a form easily read out by downstream neural circuits.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1004304</identifier><identifier>PMID: 26132103</identifier><language>eng</language><publisher>United States: PLOS</publisher><subject>Accuracy ; Action Potentials - physiology ; Action Potentials - radiation effects ; Animals ; Biochemistry, Molecular Biology ; Computer Simulation ; Experiments ; Grants ; Guinea Pigs ; Life Sciences ; Light ; Linear algebra ; Models, Neurological ; Motion Perception - physiology ; Motion Perception - radiation effects ; Nerve Net - physiology ; Nerve Net - radiation effects ; Photic Stimulation - methods ; Photoreceptors ; Population ; Retina ; Retinal Ganglion Cells - physiology ; Retinal Ganglion Cells - radiation effects ; Synaptic Transmission - physiology ; Synaptic Transmission - radiation effects ; Urodela ; Vision, Ocular - physiology ; Vision, Ocular - radiation effects</subject><ispartof>PLoS computational biology, 2015-07, Vol.11 (7), p.e1004304-e1004304</ispartof><rights>Attribution</rights><rights>2015 Marre et al 2015 Marre et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Marre O, Botella-Soler V, Simmons KD, Mora T, Tka?ik G, Berry MJ II (2015) High Accuracy Decoding of Dynamical Motion from a Large Retinal Population. PLoS Comput Biol 11(7): e1004304. doi:10.1371/journal.pcbi.1004304</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-f9175c82a3a882993310280e4fe8f3933f441c87e246d4498c22b208673db7833</citedby><cites>FETCH-LOGICAL-c532t-f9175c82a3a882993310280e4fe8f3933f441c87e246d4498c22b208673db7833</cites><orcidid>0000-0002-5456-9361 ; 0000-0002-0090-6190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489022/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489022/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26132103$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01236241$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Bethge, Matthias</contributor><creatorcontrib>Marre, Olivier</creatorcontrib><creatorcontrib>Botella-Soler, Vicente</creatorcontrib><creatorcontrib>Simmons, Kristina D</creatorcontrib><creatorcontrib>Mora, Thierry</creatorcontrib><creatorcontrib>Tkačik, Gašper</creatorcontrib><creatorcontrib>Berry, 2nd, Michael J</creatorcontrib><title>High Accuracy Decoding of Dynamical Motion from a Large Retinal Population</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Motion tracking is a challenge the visual system has to solve by reading out the retinal population. It is still unclear how the information from different neurons can be combined together to estimate the position of an object. Here we recorded a large population of ganglion cells in a dense patch of salamander and guinea pig retinas while displaying a bar moving diffusively. We show that the bar's position can be reconstructed from retinal activity with a precision in the hyperacuity regime using a linear decoder acting on 100+ cells. We then took advantage of this unprecedented precision to explore the spatial structure of the retina's population code. The classical view would have suggested that the firing rates of the cells form a moving hill of activity tracking the bar's position. Instead, we found that most ganglion cells in the salamander fired sparsely and idiosyncratically, so that their neural image did not track the bar. Furthermore, ganglion cell activity spanned an area much larger than predicted by their receptive fields, with cells coding for motion far in their surround. As a result, population redundancy was high, and we could find multiple, disjoint subsets of neurons that encoded the trajectory with high precision. This organization allows for diverse collections of ganglion cells to represent high-accuracy motion information in a form easily read out by downstream neural circuits.</description><subject>Accuracy</subject><subject>Action Potentials - physiology</subject><subject>Action Potentials - radiation effects</subject><subject>Animals</subject><subject>Biochemistry, Molecular Biology</subject><subject>Computer Simulation</subject><subject>Experiments</subject><subject>Grants</subject><subject>Guinea Pigs</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Linear algebra</subject><subject>Models, Neurological</subject><subject>Motion Perception - physiology</subject><subject>Motion Perception - radiation effects</subject><subject>Nerve Net - physiology</subject><subject>Nerve Net - radiation effects</subject><subject>Photic Stimulation - methods</subject><subject>Photoreceptors</subject><subject>Population</subject><subject>Retina</subject><subject>Retinal Ganglion Cells - physiology</subject><subject>Retinal Ganglion Cells - radiation effects</subject><subject>Synaptic Transmission - physiology</subject><subject>Synaptic Transmission - radiation effects</subject><subject>Urodela</subject><subject>Vision, Ocular - physiology</subject><subject>Vision, Ocular - radiation effects</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpdUk1v1DAQjRCIfsA_QOAjPezW9tixfUFatYVttQiE4Gw5jpP1KokXJ6m0_74Om1YtJ49n3rw3M3pZ9oHgJQFBLndhjJ1plntb-CXBmAFmr7JTwjksBHD5-ll8kp31_Q7jFKr8bXZCcwKUYDjN7ta-3qKVtWM09oCunQ2l72oUKnR96EzrrWnQ9zD40KEqhhYZtDGxduiXG3ySRz_DfmzMVH-XvalM07v383ue_fl68_tqvdj8-HZ7tdosLAc6LCpFBLeSGjBSUqUACKYSO1Y5WUH6VowRK4WjLC8ZU9JSWlAscwFlISTAefbpyLtvQq_nM_SaCMwxF1xMiNsjogxmp_fRtyYedDBe_0uEWGsTB28bpwvHubTKFUopJiXIShbEYZGOWRjDVeL6MquNRetK67ohmuYF6ctK57e6DveaMakwpYng4kiw_a9tvdroKYcJhZwyck8S9vMsFsPf0fWDbn1vXdOYzoUx7ZgrSKNBjhOUHaE2hr6PrnriJlhPBnm8jJ4MomeDpLaPz9d5anp0BDwAhaG2Wg</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Marre, Olivier</creator><creator>Botella-Soler, Vicente</creator><creator>Simmons, Kristina D</creator><creator>Mora, Thierry</creator><creator>Tkačik, Gašper</creator><creator>Berry, 2nd, Michael J</creator><general>PLOS</general><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5456-9361</orcidid><orcidid>https://orcid.org/0000-0002-0090-6190</orcidid></search><sort><creationdate>201507</creationdate><title>High Accuracy Decoding of Dynamical Motion from a Large Retinal Population</title><author>Marre, Olivier ; Botella-Soler, Vicente ; Simmons, Kristina D ; Mora, Thierry ; Tkačik, Gašper ; Berry, 2nd, Michael J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-f9175c82a3a882993310280e4fe8f3933f441c87e246d4498c22b208673db7833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Action Potentials - physiology</topic><topic>Action Potentials - radiation effects</topic><topic>Animals</topic><topic>Biochemistry, Molecular Biology</topic><topic>Computer Simulation</topic><topic>Experiments</topic><topic>Grants</topic><topic>Guinea Pigs</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Linear algebra</topic><topic>Models, Neurological</topic><topic>Motion Perception - physiology</topic><topic>Motion Perception - radiation effects</topic><topic>Nerve Net - physiology</topic><topic>Nerve Net - radiation effects</topic><topic>Photic Stimulation - methods</topic><topic>Photoreceptors</topic><topic>Population</topic><topic>Retina</topic><topic>Retinal Ganglion Cells - physiology</topic><topic>Retinal Ganglion Cells - radiation effects</topic><topic>Synaptic Transmission - physiology</topic><topic>Synaptic Transmission - radiation effects</topic><topic>Urodela</topic><topic>Vision, Ocular - physiology</topic><topic>Vision, Ocular - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marre, Olivier</creatorcontrib><creatorcontrib>Botella-Soler, Vicente</creatorcontrib><creatorcontrib>Simmons, Kristina D</creatorcontrib><creatorcontrib>Mora, Thierry</creatorcontrib><creatorcontrib>Tkačik, Gašper</creatorcontrib><creatorcontrib>Berry, 2nd, Michael J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marre, Olivier</au><au>Botella-Soler, Vicente</au><au>Simmons, Kristina D</au><au>Mora, Thierry</au><au>Tkačik, Gašper</au><au>Berry, 2nd, Michael J</au><au>Bethge, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Accuracy Decoding of Dynamical Motion from a Large Retinal Population</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2015-07</date><risdate>2015</risdate><volume>11</volume><issue>7</issue><spage>e1004304</spage><epage>e1004304</epage><pages>e1004304-e1004304</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Motion tracking is a challenge the visual system has to solve by reading out the retinal population. It is still unclear how the information from different neurons can be combined together to estimate the position of an object. Here we recorded a large population of ganglion cells in a dense patch of salamander and guinea pig retinas while displaying a bar moving diffusively. We show that the bar's position can be reconstructed from retinal activity with a precision in the hyperacuity regime using a linear decoder acting on 100+ cells. We then took advantage of this unprecedented precision to explore the spatial structure of the retina's population code. The classical view would have suggested that the firing rates of the cells form a moving hill of activity tracking the bar's position. Instead, we found that most ganglion cells in the salamander fired sparsely and idiosyncratically, so that their neural image did not track the bar. Furthermore, ganglion cell activity spanned an area much larger than predicted by their receptive fields, with cells coding for motion far in their surround. As a result, population redundancy was high, and we could find multiple, disjoint subsets of neurons that encoded the trajectory with high precision. This organization allows for diverse collections of ganglion cells to represent high-accuracy motion information in a form easily read out by downstream neural circuits.</abstract><cop>United States</cop><pub>PLOS</pub><pmid>26132103</pmid><doi>10.1371/journal.pcbi.1004304</doi><orcidid>https://orcid.org/0000-0002-5456-9361</orcidid><orcidid>https://orcid.org/0000-0002-0090-6190</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2015-07, Vol.11 (7), p.e1004304-e1004304 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1705057573 |
source | Directory of Open Access Journals (DOAJ); PLoS; MEDLINE; PubMed Central; EZB Electronic Journals Library |
subjects | Accuracy Action Potentials - physiology Action Potentials - radiation effects Animals Biochemistry, Molecular Biology Computer Simulation Experiments Grants Guinea Pigs Life Sciences Light Linear algebra Models, Neurological Motion Perception - physiology Motion Perception - radiation effects Nerve Net - physiology Nerve Net - radiation effects Photic Stimulation - methods Photoreceptors Population Retina Retinal Ganglion Cells - physiology Retinal Ganglion Cells - radiation effects Synaptic Transmission - physiology Synaptic Transmission - radiation effects Urodela Vision, Ocular - physiology Vision, Ocular - radiation effects |
title | High Accuracy Decoding of Dynamical Motion from a Large Retinal Population |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A53%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Accuracy%20Decoding%20of%20Dynamical%20Motion%20from%20a%20Large%20Retinal%20Population&rft.jtitle=PLoS%20computational%20biology&rft.au=Marre,%20Olivier&rft.date=2015-07&rft.volume=11&rft.issue=7&rft.spage=e1004304&rft.epage=e1004304&rft.pages=e1004304-e1004304&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1004304&rft_dat=%3Cproquest_plos_%3E1693730360%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1693730360&rft_id=info:pmid/26132103&rft_doaj_id=oai_doaj_org_article_be558c9eb99948838f8b1e07304baa59&rfr_iscdi=true |