High Accuracy Decoding of Dynamical Motion from a Large Retinal Population

Motion tracking is a challenge the visual system has to solve by reading out the retinal population. It is still unclear how the information from different neurons can be combined together to estimate the position of an object. Here we recorded a large population of ganglion cells in a dense patch o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2015-07, Vol.11 (7), p.e1004304-e1004304
Hauptverfasser: Marre, Olivier, Botella-Soler, Vicente, Simmons, Kristina D, Mora, Thierry, Tkačik, Gašper, Berry, 2nd, Michael J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1004304
container_issue 7
container_start_page e1004304
container_title PLoS computational biology
container_volume 11
creator Marre, Olivier
Botella-Soler, Vicente
Simmons, Kristina D
Mora, Thierry
Tkačik, Gašper
Berry, 2nd, Michael J
description Motion tracking is a challenge the visual system has to solve by reading out the retinal population. It is still unclear how the information from different neurons can be combined together to estimate the position of an object. Here we recorded a large population of ganglion cells in a dense patch of salamander and guinea pig retinas while displaying a bar moving diffusively. We show that the bar's position can be reconstructed from retinal activity with a precision in the hyperacuity regime using a linear decoder acting on 100+ cells. We then took advantage of this unprecedented precision to explore the spatial structure of the retina's population code. The classical view would have suggested that the firing rates of the cells form a moving hill of activity tracking the bar's position. Instead, we found that most ganglion cells in the salamander fired sparsely and idiosyncratically, so that their neural image did not track the bar. Furthermore, ganglion cell activity spanned an area much larger than predicted by their receptive fields, with cells coding for motion far in their surround. As a result, population redundancy was high, and we could find multiple, disjoint subsets of neurons that encoded the trajectory with high precision. This organization allows for diverse collections of ganglion cells to represent high-accuracy motion information in a form easily read out by downstream neural circuits.
doi_str_mv 10.1371/journal.pcbi.1004304
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1705057573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_be558c9eb99948838f8b1e07304baa59</doaj_id><sourcerecordid>1693730360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-f9175c82a3a882993310280e4fe8f3933f441c87e246d4498c22b208673db7833</originalsourceid><addsrcrecordid>eNpdUk1v1DAQjRCIfsA_QOAjPezW9tixfUFatYVttQiE4Gw5jpP1KokXJ6m0_74Om1YtJ49n3rw3M3pZ9oHgJQFBLndhjJ1plntb-CXBmAFmr7JTwjksBHD5-ll8kp31_Q7jFKr8bXZCcwKUYDjN7ta-3qKVtWM09oCunQ2l72oUKnR96EzrrWnQ9zD40KEqhhYZtDGxduiXG3ySRz_DfmzMVH-XvalM07v383ue_fl68_tqvdj8-HZ7tdosLAc6LCpFBLeSGjBSUqUACKYSO1Y5WUH6VowRK4WjLC8ZU9JSWlAscwFlISTAefbpyLtvQq_nM_SaCMwxF1xMiNsjogxmp_fRtyYedDBe_0uEWGsTB28bpwvHubTKFUopJiXIShbEYZGOWRjDVeL6MquNRetK67ohmuYF6ctK57e6DveaMakwpYng4kiw_a9tvdroKYcJhZwyck8S9vMsFsPf0fWDbn1vXdOYzoUx7ZgrSKNBjhOUHaE2hr6PrnriJlhPBnm8jJ4MomeDpLaPz9d5anp0BDwAhaG2Wg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1693730360</pqid></control><display><type>article</type><title>High Accuracy Decoding of Dynamical Motion from a Large Retinal Population</title><source>Directory of Open Access Journals (DOAJ)</source><source>PLoS</source><source>MEDLINE</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Marre, Olivier ; Botella-Soler, Vicente ; Simmons, Kristina D ; Mora, Thierry ; Tkačik, Gašper ; Berry, 2nd, Michael J</creator><contributor>Bethge, Matthias</contributor><creatorcontrib>Marre, Olivier ; Botella-Soler, Vicente ; Simmons, Kristina D ; Mora, Thierry ; Tkačik, Gašper ; Berry, 2nd, Michael J ; Bethge, Matthias</creatorcontrib><description>Motion tracking is a challenge the visual system has to solve by reading out the retinal population. It is still unclear how the information from different neurons can be combined together to estimate the position of an object. Here we recorded a large population of ganglion cells in a dense patch of salamander and guinea pig retinas while displaying a bar moving diffusively. We show that the bar's position can be reconstructed from retinal activity with a precision in the hyperacuity regime using a linear decoder acting on 100+ cells. We then took advantage of this unprecedented precision to explore the spatial structure of the retina's population code. The classical view would have suggested that the firing rates of the cells form a moving hill of activity tracking the bar's position. Instead, we found that most ganglion cells in the salamander fired sparsely and idiosyncratically, so that their neural image did not track the bar. Furthermore, ganglion cell activity spanned an area much larger than predicted by their receptive fields, with cells coding for motion far in their surround. As a result, population redundancy was high, and we could find multiple, disjoint subsets of neurons that encoded the trajectory with high precision. This organization allows for diverse collections of ganglion cells to represent high-accuracy motion information in a form easily read out by downstream neural circuits.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1004304</identifier><identifier>PMID: 26132103</identifier><language>eng</language><publisher>United States: PLOS</publisher><subject>Accuracy ; Action Potentials - physiology ; Action Potentials - radiation effects ; Animals ; Biochemistry, Molecular Biology ; Computer Simulation ; Experiments ; Grants ; Guinea Pigs ; Life Sciences ; Light ; Linear algebra ; Models, Neurological ; Motion Perception - physiology ; Motion Perception - radiation effects ; Nerve Net - physiology ; Nerve Net - radiation effects ; Photic Stimulation - methods ; Photoreceptors ; Population ; Retina ; Retinal Ganglion Cells - physiology ; Retinal Ganglion Cells - radiation effects ; Synaptic Transmission - physiology ; Synaptic Transmission - radiation effects ; Urodela ; Vision, Ocular - physiology ; Vision, Ocular - radiation effects</subject><ispartof>PLoS computational biology, 2015-07, Vol.11 (7), p.e1004304-e1004304</ispartof><rights>Attribution</rights><rights>2015 Marre et al 2015 Marre et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Marre O, Botella-Soler V, Simmons KD, Mora T, Tka?ik G, Berry MJ II (2015) High Accuracy Decoding of Dynamical Motion from a Large Retinal Population. PLoS Comput Biol 11(7): e1004304. doi:10.1371/journal.pcbi.1004304</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-f9175c82a3a882993310280e4fe8f3933f441c87e246d4498c22b208673db7833</citedby><cites>FETCH-LOGICAL-c532t-f9175c82a3a882993310280e4fe8f3933f441c87e246d4498c22b208673db7833</cites><orcidid>0000-0002-5456-9361 ; 0000-0002-0090-6190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489022/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489022/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26132103$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01236241$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Bethge, Matthias</contributor><creatorcontrib>Marre, Olivier</creatorcontrib><creatorcontrib>Botella-Soler, Vicente</creatorcontrib><creatorcontrib>Simmons, Kristina D</creatorcontrib><creatorcontrib>Mora, Thierry</creatorcontrib><creatorcontrib>Tkačik, Gašper</creatorcontrib><creatorcontrib>Berry, 2nd, Michael J</creatorcontrib><title>High Accuracy Decoding of Dynamical Motion from a Large Retinal Population</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Motion tracking is a challenge the visual system has to solve by reading out the retinal population. It is still unclear how the information from different neurons can be combined together to estimate the position of an object. Here we recorded a large population of ganglion cells in a dense patch of salamander and guinea pig retinas while displaying a bar moving diffusively. We show that the bar's position can be reconstructed from retinal activity with a precision in the hyperacuity regime using a linear decoder acting on 100+ cells. We then took advantage of this unprecedented precision to explore the spatial structure of the retina's population code. The classical view would have suggested that the firing rates of the cells form a moving hill of activity tracking the bar's position. Instead, we found that most ganglion cells in the salamander fired sparsely and idiosyncratically, so that their neural image did not track the bar. Furthermore, ganglion cell activity spanned an area much larger than predicted by their receptive fields, with cells coding for motion far in their surround. As a result, population redundancy was high, and we could find multiple, disjoint subsets of neurons that encoded the trajectory with high precision. This organization allows for diverse collections of ganglion cells to represent high-accuracy motion information in a form easily read out by downstream neural circuits.</description><subject>Accuracy</subject><subject>Action Potentials - physiology</subject><subject>Action Potentials - radiation effects</subject><subject>Animals</subject><subject>Biochemistry, Molecular Biology</subject><subject>Computer Simulation</subject><subject>Experiments</subject><subject>Grants</subject><subject>Guinea Pigs</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Linear algebra</subject><subject>Models, Neurological</subject><subject>Motion Perception - physiology</subject><subject>Motion Perception - radiation effects</subject><subject>Nerve Net - physiology</subject><subject>Nerve Net - radiation effects</subject><subject>Photic Stimulation - methods</subject><subject>Photoreceptors</subject><subject>Population</subject><subject>Retina</subject><subject>Retinal Ganglion Cells - physiology</subject><subject>Retinal Ganglion Cells - radiation effects</subject><subject>Synaptic Transmission - physiology</subject><subject>Synaptic Transmission - radiation effects</subject><subject>Urodela</subject><subject>Vision, Ocular - physiology</subject><subject>Vision, Ocular - radiation effects</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpdUk1v1DAQjRCIfsA_QOAjPezW9tixfUFatYVttQiE4Gw5jpP1KokXJ6m0_74Om1YtJ49n3rw3M3pZ9oHgJQFBLndhjJ1plntb-CXBmAFmr7JTwjksBHD5-ll8kp31_Q7jFKr8bXZCcwKUYDjN7ta-3qKVtWM09oCunQ2l72oUKnR96EzrrWnQ9zD40KEqhhYZtDGxduiXG3ySRz_DfmzMVH-XvalM07v383ue_fl68_tqvdj8-HZ7tdosLAc6LCpFBLeSGjBSUqUACKYSO1Y5WUH6VowRK4WjLC8ZU9JSWlAscwFlISTAefbpyLtvQq_nM_SaCMwxF1xMiNsjogxmp_fRtyYedDBe_0uEWGsTB28bpwvHubTKFUopJiXIShbEYZGOWRjDVeL6MquNRetK67ohmuYF6ctK57e6DveaMakwpYng4kiw_a9tvdroKYcJhZwyck8S9vMsFsPf0fWDbn1vXdOYzoUx7ZgrSKNBjhOUHaE2hr6PrnriJlhPBnm8jJ4MomeDpLaPz9d5anp0BDwAhaG2Wg</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Marre, Olivier</creator><creator>Botella-Soler, Vicente</creator><creator>Simmons, Kristina D</creator><creator>Mora, Thierry</creator><creator>Tkačik, Gašper</creator><creator>Berry, 2nd, Michael J</creator><general>PLOS</general><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5456-9361</orcidid><orcidid>https://orcid.org/0000-0002-0090-6190</orcidid></search><sort><creationdate>201507</creationdate><title>High Accuracy Decoding of Dynamical Motion from a Large Retinal Population</title><author>Marre, Olivier ; Botella-Soler, Vicente ; Simmons, Kristina D ; Mora, Thierry ; Tkačik, Gašper ; Berry, 2nd, Michael J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-f9175c82a3a882993310280e4fe8f3933f441c87e246d4498c22b208673db7833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Action Potentials - physiology</topic><topic>Action Potentials - radiation effects</topic><topic>Animals</topic><topic>Biochemistry, Molecular Biology</topic><topic>Computer Simulation</topic><topic>Experiments</topic><topic>Grants</topic><topic>Guinea Pigs</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Linear algebra</topic><topic>Models, Neurological</topic><topic>Motion Perception - physiology</topic><topic>Motion Perception - radiation effects</topic><topic>Nerve Net - physiology</topic><topic>Nerve Net - radiation effects</topic><topic>Photic Stimulation - methods</topic><topic>Photoreceptors</topic><topic>Population</topic><topic>Retina</topic><topic>Retinal Ganglion Cells - physiology</topic><topic>Retinal Ganglion Cells - radiation effects</topic><topic>Synaptic Transmission - physiology</topic><topic>Synaptic Transmission - radiation effects</topic><topic>Urodela</topic><topic>Vision, Ocular - physiology</topic><topic>Vision, Ocular - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marre, Olivier</creatorcontrib><creatorcontrib>Botella-Soler, Vicente</creatorcontrib><creatorcontrib>Simmons, Kristina D</creatorcontrib><creatorcontrib>Mora, Thierry</creatorcontrib><creatorcontrib>Tkačik, Gašper</creatorcontrib><creatorcontrib>Berry, 2nd, Michael J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marre, Olivier</au><au>Botella-Soler, Vicente</au><au>Simmons, Kristina D</au><au>Mora, Thierry</au><au>Tkačik, Gašper</au><au>Berry, 2nd, Michael J</au><au>Bethge, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Accuracy Decoding of Dynamical Motion from a Large Retinal Population</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2015-07</date><risdate>2015</risdate><volume>11</volume><issue>7</issue><spage>e1004304</spage><epage>e1004304</epage><pages>e1004304-e1004304</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Motion tracking is a challenge the visual system has to solve by reading out the retinal population. It is still unclear how the information from different neurons can be combined together to estimate the position of an object. Here we recorded a large population of ganglion cells in a dense patch of salamander and guinea pig retinas while displaying a bar moving diffusively. We show that the bar's position can be reconstructed from retinal activity with a precision in the hyperacuity regime using a linear decoder acting on 100+ cells. We then took advantage of this unprecedented precision to explore the spatial structure of the retina's population code. The classical view would have suggested that the firing rates of the cells form a moving hill of activity tracking the bar's position. Instead, we found that most ganglion cells in the salamander fired sparsely and idiosyncratically, so that their neural image did not track the bar. Furthermore, ganglion cell activity spanned an area much larger than predicted by their receptive fields, with cells coding for motion far in their surround. As a result, population redundancy was high, and we could find multiple, disjoint subsets of neurons that encoded the trajectory with high precision. This organization allows for diverse collections of ganglion cells to represent high-accuracy motion information in a form easily read out by downstream neural circuits.</abstract><cop>United States</cop><pub>PLOS</pub><pmid>26132103</pmid><doi>10.1371/journal.pcbi.1004304</doi><orcidid>https://orcid.org/0000-0002-5456-9361</orcidid><orcidid>https://orcid.org/0000-0002-0090-6190</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2015-07, Vol.11 (7), p.e1004304-e1004304
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1705057573
source Directory of Open Access Journals (DOAJ); PLoS; MEDLINE; PubMed Central; EZB Electronic Journals Library
subjects Accuracy
Action Potentials - physiology
Action Potentials - radiation effects
Animals
Biochemistry, Molecular Biology
Computer Simulation
Experiments
Grants
Guinea Pigs
Life Sciences
Light
Linear algebra
Models, Neurological
Motion Perception - physiology
Motion Perception - radiation effects
Nerve Net - physiology
Nerve Net - radiation effects
Photic Stimulation - methods
Photoreceptors
Population
Retina
Retinal Ganglion Cells - physiology
Retinal Ganglion Cells - radiation effects
Synaptic Transmission - physiology
Synaptic Transmission - radiation effects
Urodela
Vision, Ocular - physiology
Vision, Ocular - radiation effects
title High Accuracy Decoding of Dynamical Motion from a Large Retinal Population
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A53%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Accuracy%20Decoding%20of%20Dynamical%20Motion%20from%20a%20Large%20Retinal%20Population&rft.jtitle=PLoS%20computational%20biology&rft.au=Marre,%20Olivier&rft.date=2015-07&rft.volume=11&rft.issue=7&rft.spage=e1004304&rft.epage=e1004304&rft.pages=e1004304-e1004304&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1004304&rft_dat=%3Cproquest_plos_%3E1693730360%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1693730360&rft_id=info:pmid/26132103&rft_doaj_id=oai_doaj_org_article_be558c9eb99948838f8b1e07304baa59&rfr_iscdi=true