In Silico Generation of Peptides by Replica Exchange Monte Carlo: Docking-Based Optimization of Maltose-Binding-Protein Ligands

Short peptides can be designed in silico and synthesized through automated techniques, making them advantageous and versatile protein binders. A number of docking-based algorithms allow for a computational screening of peptides as binders. Here we developed ex-novo peptides targeting the maltose sit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-08, Vol.10 (8), p.e0133571-e0133571
Hauptverfasser: Russo, Anna, Scognamiglio, Pasqualina Liana, Hong Enriquez, Rolando Pablo, Santambrogio, Carlo, Grandori, Rita, Marasco, Daniela, Giordano, Antonio, Scoles, Giacinto, Fortuna, Sara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0133571
container_issue 8
container_start_page e0133571
container_title PloS one
container_volume 10
creator Russo, Anna
Scognamiglio, Pasqualina Liana
Hong Enriquez, Rolando Pablo
Santambrogio, Carlo
Grandori, Rita
Marasco, Daniela
Giordano, Antonio
Scoles, Giacinto
Fortuna, Sara
description Short peptides can be designed in silico and synthesized through automated techniques, making them advantageous and versatile protein binders. A number of docking-based algorithms allow for a computational screening of peptides as binders. Here we developed ex-novo peptides targeting the maltose site of the Maltose Binding Protein, the prototypical system for the study of protein ligand recognition. We used a Monte Carlo based protocol, to computationally evolve a set of octapeptides starting from a polialanine sequence. We screened in silico the candidate peptides and characterized their binding abilities by surface plasmon resonance, fluorescence and electrospray ionization mass spectrometry assays. These experiments showed the designed binders to recognize their target with micromolar affinity. We finally discuss the obtained results in the light of further improvement in the ex-novo optimization of peptide based binders.
doi_str_mv 10.1371/journal.pone.0133571
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1702213244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_23375f66d28a4ef182a6797c4a04a0f0</doaj_id><sourcerecordid>1703245422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-b709d333aa20d74ba2c7d21aaf4d3504bfc3421a619b3fa6494926b9178fe1113</originalsourceid><addsrcrecordid>eNptkktvEzEUhUcIREvhHyCwxIbNBL_GzrBAoqGUSKla8Vhbd2xP6jCxB3tStWz46zjNNGoRkiW_zvl8r3WK4iXBE8IkebcKm-ihm_TB2wkmjFWSPCoOSc1oKShmj--tD4pnKa0wrthUiKfFARW0olyKw-LP3KNvrnM6oFPrbYTBBY9Ciy5sPzhjE2pu0FfbZwWgk2t9CX5p0Vnwg0UziF14jz4F_dP5ZXkMyRp0nm1r93vPOYNuCMmWx86breoihsE6jxZuCd6k58WTFrpkX4zzUfHj88n32ZdycX46n31clLqiYigbiWvDGAOg2EjeANXSUALQcsMqzJtWM573gtQNa0HwmtdUNDWR09YSQthR8XrH7buQ1Ph3SRGJKSWMcp4V853CBFipPro1xBsVwKnbgxCXCuLgdGcVZUxWrRCGToHblkwpCFlLzQHn0eLM-jC-tmnW1mjrhwjdA-jDG-8u1TJcKV7ROtMz4O0IiOHXxqZBrV3StuvA27C5rTsXXXFKs_TNP9L_d8d3Kh1DStG2-2IIVts83bnUNk9qzFO2vbrfyN50FyD2F9rjyNA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1702213244</pqid></control><display><type>article</type><title>In Silico Generation of Peptides by Replica Exchange Monte Carlo: Docking-Based Optimization of Maltose-Binding-Protein Ligands</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Russo, Anna ; Scognamiglio, Pasqualina Liana ; Hong Enriquez, Rolando Pablo ; Santambrogio, Carlo ; Grandori, Rita ; Marasco, Daniela ; Giordano, Antonio ; Scoles, Giacinto ; Fortuna, Sara</creator><contributor>Zhang, Yang</contributor><creatorcontrib>Russo, Anna ; Scognamiglio, Pasqualina Liana ; Hong Enriquez, Rolando Pablo ; Santambrogio, Carlo ; Grandori, Rita ; Marasco, Daniela ; Giordano, Antonio ; Scoles, Giacinto ; Fortuna, Sara ; Zhang, Yang</creatorcontrib><description>Short peptides can be designed in silico and synthesized through automated techniques, making them advantageous and versatile protein binders. A number of docking-based algorithms allow for a computational screening of peptides as binders. Here we developed ex-novo peptides targeting the maltose site of the Maltose Binding Protein, the prototypical system for the study of protein ligand recognition. We used a Monte Carlo based protocol, to computationally evolve a set of octapeptides starting from a polialanine sequence. We screened in silico the candidate peptides and characterized their binding abilities by surface plasmon resonance, fluorescence and electrospray ionization mass spectrometry assays. These experiments showed the designed binders to recognize their target with micromolar affinity. We finally discuss the obtained results in the light of further improvement in the ex-novo optimization of peptide based binders.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0133571</identifier><identifier>PMID: 26252476</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Amino Acid Sequence ; Binders ; Biotechnology ; Computer applications ; Docking ; Fluorescence ; Genetic algorithms ; Immobilized Proteins - metabolism ; Ionization ; Kinetics ; Ligands ; Maltose ; Maltose-binding protein ; Maltose-Binding Proteins - chemistry ; Maltose-Binding Proteins - metabolism ; Mass spectrometry ; Mass spectroscopy ; Medical research ; Molecular biology ; Molecular Docking Simulation ; Molecular Sequence Data ; Monte Carlo Method ; Octapeptides ; Optimization ; Peptides ; Peptides - chemistry ; Peptides - metabolism ; Pharmacy ; Protein Binding ; Proteins ; Spectrometry, Mass, Electrospray Ionization ; Surface Plasmon Resonance ; Target recognition ; Thermodynamics ; Tryptophan - metabolism</subject><ispartof>PloS one, 2015-08, Vol.10 (8), p.e0133571-e0133571</ispartof><rights>2015 Russo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Russo et al 2015 Russo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-b709d333aa20d74ba2c7d21aaf4d3504bfc3421a619b3fa6494926b9178fe1113</citedby><cites>FETCH-LOGICAL-c526t-b709d333aa20d74ba2c7d21aaf4d3504bfc3421a619b3fa6494926b9178fe1113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529233/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529233/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26252476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhang, Yang</contributor><creatorcontrib>Russo, Anna</creatorcontrib><creatorcontrib>Scognamiglio, Pasqualina Liana</creatorcontrib><creatorcontrib>Hong Enriquez, Rolando Pablo</creatorcontrib><creatorcontrib>Santambrogio, Carlo</creatorcontrib><creatorcontrib>Grandori, Rita</creatorcontrib><creatorcontrib>Marasco, Daniela</creatorcontrib><creatorcontrib>Giordano, Antonio</creatorcontrib><creatorcontrib>Scoles, Giacinto</creatorcontrib><creatorcontrib>Fortuna, Sara</creatorcontrib><title>In Silico Generation of Peptides by Replica Exchange Monte Carlo: Docking-Based Optimization of Maltose-Binding-Protein Ligands</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Short peptides can be designed in silico and synthesized through automated techniques, making them advantageous and versatile protein binders. A number of docking-based algorithms allow for a computational screening of peptides as binders. Here we developed ex-novo peptides targeting the maltose site of the Maltose Binding Protein, the prototypical system for the study of protein ligand recognition. We used a Monte Carlo based protocol, to computationally evolve a set of octapeptides starting from a polialanine sequence. We screened in silico the candidate peptides and characterized their binding abilities by surface plasmon resonance, fluorescence and electrospray ionization mass spectrometry assays. These experiments showed the designed binders to recognize their target with micromolar affinity. We finally discuss the obtained results in the light of further improvement in the ex-novo optimization of peptide based binders.</description><subject>Algorithms</subject><subject>Amino Acid Sequence</subject><subject>Binders</subject><subject>Biotechnology</subject><subject>Computer applications</subject><subject>Docking</subject><subject>Fluorescence</subject><subject>Genetic algorithms</subject><subject>Immobilized Proteins - metabolism</subject><subject>Ionization</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Maltose</subject><subject>Maltose-binding protein</subject><subject>Maltose-Binding Proteins - chemistry</subject><subject>Maltose-Binding Proteins - metabolism</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Medical research</subject><subject>Molecular biology</subject><subject>Molecular Docking Simulation</subject><subject>Molecular Sequence Data</subject><subject>Monte Carlo Method</subject><subject>Octapeptides</subject><subject>Optimization</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Peptides - metabolism</subject><subject>Pharmacy</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Spectrometry, Mass, Electrospray Ionization</subject><subject>Surface Plasmon Resonance</subject><subject>Target recognition</subject><subject>Thermodynamics</subject><subject>Tryptophan - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptkktvEzEUhUcIREvhHyCwxIbNBL_GzrBAoqGUSKla8Vhbd2xP6jCxB3tStWz46zjNNGoRkiW_zvl8r3WK4iXBE8IkebcKm-ihm_TB2wkmjFWSPCoOSc1oKShmj--tD4pnKa0wrthUiKfFARW0olyKw-LP3KNvrnM6oFPrbYTBBY9Ciy5sPzhjE2pu0FfbZwWgk2t9CX5p0Vnwg0UziF14jz4F_dP5ZXkMyRp0nm1r93vPOYNuCMmWx86breoihsE6jxZuCd6k58WTFrpkX4zzUfHj88n32ZdycX46n31clLqiYigbiWvDGAOg2EjeANXSUALQcsMqzJtWM573gtQNa0HwmtdUNDWR09YSQthR8XrH7buQ1Ph3SRGJKSWMcp4V853CBFipPro1xBsVwKnbgxCXCuLgdGcVZUxWrRCGToHblkwpCFlLzQHn0eLM-jC-tmnW1mjrhwjdA-jDG-8u1TJcKV7ROtMz4O0IiOHXxqZBrV3StuvA27C5rTsXXXFKs_TNP9L_d8d3Kh1DStG2-2IIVts83bnUNk9qzFO2vbrfyN50FyD2F9rjyNA</recordid><startdate>20150807</startdate><enddate>20150807</enddate><creator>Russo, Anna</creator><creator>Scognamiglio, Pasqualina Liana</creator><creator>Hong Enriquez, Rolando Pablo</creator><creator>Santambrogio, Carlo</creator><creator>Grandori, Rita</creator><creator>Marasco, Daniela</creator><creator>Giordano, Antonio</creator><creator>Scoles, Giacinto</creator><creator>Fortuna, Sara</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150807</creationdate><title>In Silico Generation of Peptides by Replica Exchange Monte Carlo: Docking-Based Optimization of Maltose-Binding-Protein Ligands</title><author>Russo, Anna ; Scognamiglio, Pasqualina Liana ; Hong Enriquez, Rolando Pablo ; Santambrogio, Carlo ; Grandori, Rita ; Marasco, Daniela ; Giordano, Antonio ; Scoles, Giacinto ; Fortuna, Sara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-b709d333aa20d74ba2c7d21aaf4d3504bfc3421a619b3fa6494926b9178fe1113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Amino Acid Sequence</topic><topic>Binders</topic><topic>Biotechnology</topic><topic>Computer applications</topic><topic>Docking</topic><topic>Fluorescence</topic><topic>Genetic algorithms</topic><topic>Immobilized Proteins - metabolism</topic><topic>Ionization</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Maltose</topic><topic>Maltose-binding protein</topic><topic>Maltose-Binding Proteins - chemistry</topic><topic>Maltose-Binding Proteins - metabolism</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Medical research</topic><topic>Molecular biology</topic><topic>Molecular Docking Simulation</topic><topic>Molecular Sequence Data</topic><topic>Monte Carlo Method</topic><topic>Octapeptides</topic><topic>Optimization</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Peptides - metabolism</topic><topic>Pharmacy</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Spectrometry, Mass, Electrospray Ionization</topic><topic>Surface Plasmon Resonance</topic><topic>Target recognition</topic><topic>Thermodynamics</topic><topic>Tryptophan - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Russo, Anna</creatorcontrib><creatorcontrib>Scognamiglio, Pasqualina Liana</creatorcontrib><creatorcontrib>Hong Enriquez, Rolando Pablo</creatorcontrib><creatorcontrib>Santambrogio, Carlo</creatorcontrib><creatorcontrib>Grandori, Rita</creatorcontrib><creatorcontrib>Marasco, Daniela</creatorcontrib><creatorcontrib>Giordano, Antonio</creatorcontrib><creatorcontrib>Scoles, Giacinto</creatorcontrib><creatorcontrib>Fortuna, Sara</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Russo, Anna</au><au>Scognamiglio, Pasqualina Liana</au><au>Hong Enriquez, Rolando Pablo</au><au>Santambrogio, Carlo</au><au>Grandori, Rita</au><au>Marasco, Daniela</au><au>Giordano, Antonio</au><au>Scoles, Giacinto</au><au>Fortuna, Sara</au><au>Zhang, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Silico Generation of Peptides by Replica Exchange Monte Carlo: Docking-Based Optimization of Maltose-Binding-Protein Ligands</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-08-07</date><risdate>2015</risdate><volume>10</volume><issue>8</issue><spage>e0133571</spage><epage>e0133571</epage><pages>e0133571-e0133571</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Short peptides can be designed in silico and synthesized through automated techniques, making them advantageous and versatile protein binders. A number of docking-based algorithms allow for a computational screening of peptides as binders. Here we developed ex-novo peptides targeting the maltose site of the Maltose Binding Protein, the prototypical system for the study of protein ligand recognition. We used a Monte Carlo based protocol, to computationally evolve a set of octapeptides starting from a polialanine sequence. We screened in silico the candidate peptides and characterized their binding abilities by surface plasmon resonance, fluorescence and electrospray ionization mass spectrometry assays. These experiments showed the designed binders to recognize their target with micromolar affinity. We finally discuss the obtained results in the light of further improvement in the ex-novo optimization of peptide based binders.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26252476</pmid><doi>10.1371/journal.pone.0133571</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-08, Vol.10 (8), p.e0133571-e0133571
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1702213244
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Amino Acid Sequence
Binders
Biotechnology
Computer applications
Docking
Fluorescence
Genetic algorithms
Immobilized Proteins - metabolism
Ionization
Kinetics
Ligands
Maltose
Maltose-binding protein
Maltose-Binding Proteins - chemistry
Maltose-Binding Proteins - metabolism
Mass spectrometry
Mass spectroscopy
Medical research
Molecular biology
Molecular Docking Simulation
Molecular Sequence Data
Monte Carlo Method
Octapeptides
Optimization
Peptides
Peptides - chemistry
Peptides - metabolism
Pharmacy
Protein Binding
Proteins
Spectrometry, Mass, Electrospray Ionization
Surface Plasmon Resonance
Target recognition
Thermodynamics
Tryptophan - metabolism
title In Silico Generation of Peptides by Replica Exchange Monte Carlo: Docking-Based Optimization of Maltose-Binding-Protein Ligands
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A44%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Silico%20Generation%20of%20Peptides%20by%20Replica%20Exchange%20Monte%20Carlo:%20Docking-Based%20Optimization%20of%20Maltose-Binding-Protein%20Ligands&rft.jtitle=PloS%20one&rft.au=Russo,%20Anna&rft.date=2015-08-07&rft.volume=10&rft.issue=8&rft.spage=e0133571&rft.epage=e0133571&rft.pages=e0133571-e0133571&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0133571&rft_dat=%3Cproquest_plos_%3E1703245422%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1702213244&rft_id=info:pmid/26252476&rft_doaj_id=oai_doaj_org_article_23375f66d28a4ef182a6797c4a04a0f0&rfr_iscdi=true