Titanium Dioxide Nanoparticles Trigger Loss of Function and Perturbation of Mitochondrial Dynamics in Primary Hepatocytes

Titanium dioxide (TiO2) nanoparticles are one of the most highly manufactured and employed nanomaterials in the world with applications in copious industrial and consumer products. The liver is a major accumulation site for many nanoparticles, including TiO2, directly through intentional exposure or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-08, Vol.10 (8), p.e0134541
Hauptverfasser: Natarajan, Vaishaali, Wilson, Christina L, Hayward, Stephen L, Kidambi, Srivatsan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page e0134541
container_title PloS one
container_volume 10
creator Natarajan, Vaishaali
Wilson, Christina L
Hayward, Stephen L
Kidambi, Srivatsan
description Titanium dioxide (TiO2) nanoparticles are one of the most highly manufactured and employed nanomaterials in the world with applications in copious industrial and consumer products. The liver is a major accumulation site for many nanoparticles, including TiO2, directly through intentional exposure or indirectly through unintentional ingestion via water, food or animals and increased environmental contamination. Growing concerns over the current usage of TiO2 coupled with the lack of mechanistic understanding of its potential health risk is the motivation for this study. Here we determined the toxic effect of three different TiO2 nanoparticles (commercially available rutile, anatase and P25) on primary rat hepatocytes. Specifically, we evaluated events related to hepatocyte functions and mitochondrial dynamics: (1) urea and albumin synthesis using colorimetric and ELISA assays, respectively; (2) redox signaling mechanisms by measuring reactive oxygen species (ROS) production, manganese superoxide dismutase (MnSOD) activity and mitochondrial membrane potential (MMP); (3) OPA1 and Mfn-1 expression that mediates the mitochondrial dynamics by PCR; and (4) mitochondrial morphology by MitoTracker Green FM staining. All three TiO2 nanoparticles induced a significant loss (p < 0.05) in hepatocyte functions even at concentrations as low as 50 ppm with commercially used P25 causing maximum damage. TiO2 nanoparticles induced a strong oxidative stress in primary hepatocytes. TiO2 nanoparticles exposure also resulted in morphological changes in mitochondria and substantial loss in the fusion process, thus impairing the mitochondrial dynamics. Although this study demonstrated that TiO2 nanoparticles exposure resulted in substantial damage to primary hepatocytes, more in vitro and in vivo studies are required to determine the complete toxicological mechanism in primary hepatocytes and subsequently liver function.
doi_str_mv 10.1371/journal.pone.0134541
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1702091132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A432707930</galeid><doaj_id>oai_doaj_org_article_102ca31cc32f4686b849332f75f90168</doaj_id><sourcerecordid>A432707930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-a2a99d2d39657e541d8c10bd552df7deb178d98553f66d29dd6cbb26307677253</originalsourceid><addsrcrecordid>eNqNkl9rFDEUxQdRbK1-A9GAIPiwa_7MJJOXQmmtXVht0dXXkEkyuymzyZpkpPvtzXanZQcUJA8Tbn735M7JKYrXCE4RYejjre-Dk910452ZQkTKqkRPimPECZ5QDMnTg_1R8SLGWwgrUlP6vDjCFJeMUHJcbBc2SWf7Nbiw_s5qA75K5zcyJKs6E8Ei2OXSBDD3MQLfgsveqWS9A9JpcGNC6kMj7wv58ItNXq2808HKDlxsnVxbFYF14CbYtQxbcGU2MjPbZOLL4lkru2heDd-T4sflp8X51WR-_Xl2fjafKMpxmkgsOddYE04rZvI_6loh2Oiqwrpl2jSI1ZrXVUVaSjXmWlPVNJgSyChjuCInxdu97qbzUQyuRYEYxJAjRHAmZntCe3krNvtRhZdW3Bd8WIrBD4EgVpIgpQhuS1rTpi45yXtWtRwiWmet0-G2vlkbrYxLQXYj0fGJsyux9L9FWWFWcZYF3g0Cwf_qTUz_GHmgljJPZV3rs5ha26jEWUkwg4wTmKnpX6i8tMkPk3PT2lwfNXwYNWQmmbu0lH2MYvb92_-z1z_H7PsDdmVkl1bRd_0uOHEMlntQhRy4YNpH5xAUu9g_uCF2sRdD7HPbm0PXH5seck7-AGpV_aI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1702091132</pqid></control><display><type>article</type><title>Titanium Dioxide Nanoparticles Trigger Loss of Function and Perturbation of Mitochondrial Dynamics in Primary Hepatocytes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Natarajan, Vaishaali ; Wilson, Christina L ; Hayward, Stephen L ; Kidambi, Srivatsan</creator><contributor>López Lluch, Guillermo</contributor><creatorcontrib>Natarajan, Vaishaali ; Wilson, Christina L ; Hayward, Stephen L ; Kidambi, Srivatsan ; López Lluch, Guillermo</creatorcontrib><description>Titanium dioxide (TiO2) nanoparticles are one of the most highly manufactured and employed nanomaterials in the world with applications in copious industrial and consumer products. The liver is a major accumulation site for many nanoparticles, including TiO2, directly through intentional exposure or indirectly through unintentional ingestion via water, food or animals and increased environmental contamination. Growing concerns over the current usage of TiO2 coupled with the lack of mechanistic understanding of its potential health risk is the motivation for this study. Here we determined the toxic effect of three different TiO2 nanoparticles (commercially available rutile, anatase and P25) on primary rat hepatocytes. Specifically, we evaluated events related to hepatocyte functions and mitochondrial dynamics: (1) urea and albumin synthesis using colorimetric and ELISA assays, respectively; (2) redox signaling mechanisms by measuring reactive oxygen species (ROS) production, manganese superoxide dismutase (MnSOD) activity and mitochondrial membrane potential (MMP); (3) OPA1 and Mfn-1 expression that mediates the mitochondrial dynamics by PCR; and (4) mitochondrial morphology by MitoTracker Green FM staining. All three TiO2 nanoparticles induced a significant loss (p &lt; 0.05) in hepatocyte functions even at concentrations as low as 50 ppm with commercially used P25 causing maximum damage. TiO2 nanoparticles induced a strong oxidative stress in primary hepatocytes. TiO2 nanoparticles exposure also resulted in morphological changes in mitochondria and substantial loss in the fusion process, thus impairing the mitochondrial dynamics. Although this study demonstrated that TiO2 nanoparticles exposure resulted in substantial damage to primary hepatocytes, more in vitro and in vivo studies are required to determine the complete toxicological mechanism in primary hepatocytes and subsequently liver function.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0134541</identifier><identifier>PMID: 26247363</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Anatase ; Animals ; Apoptosis ; Biocompatibility ; Cell Survival - drug effects ; Cells, Cultured ; Colorimetry ; Consumer products ; Contamination ; Dynamic Light Scattering ; Dynamics ; Enzyme-linked immunosorbent assay ; Exposure ; Food contamination ; Health aspects ; Health risks ; Hepatocytes ; Hepatocytes - cytology ; Hepatocytes - drug effects ; Hepatocytes - metabolism ; In vivo methods and tests ; Ingestion ; Liver ; Male ; Manganese ; Membrane potential ; Membrane Potential, Mitochondrial - drug effects ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - toxicity ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondrial DNA ; Mitochondrial Dynamics - drug effects ; Motivation ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Oxidative stress ; Oxidative Stress - drug effects ; Oxygen ; Particle Size ; Rats ; Rats, Sprague-Dawley ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Superoxide dismutase ; Superoxide Dismutase - metabolism ; Superoxides ; Surgical implants ; Titanium ; Titanium - chemistry ; Titanium dioxide ; Toxicology ; Urea</subject><ispartof>PloS one, 2015-08, Vol.10 (8), p.e0134541</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Natarajan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Natarajan et al 2015 Natarajan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-a2a99d2d39657e541d8c10bd552df7deb178d98553f66d29dd6cbb26307677253</citedby><cites>FETCH-LOGICAL-c692t-a2a99d2d39657e541d8c10bd552df7deb178d98553f66d29dd6cbb26307677253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4527597/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4527597/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26247363$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>López Lluch, Guillermo</contributor><creatorcontrib>Natarajan, Vaishaali</creatorcontrib><creatorcontrib>Wilson, Christina L</creatorcontrib><creatorcontrib>Hayward, Stephen L</creatorcontrib><creatorcontrib>Kidambi, Srivatsan</creatorcontrib><title>Titanium Dioxide Nanoparticles Trigger Loss of Function and Perturbation of Mitochondrial Dynamics in Primary Hepatocytes</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Titanium dioxide (TiO2) nanoparticles are one of the most highly manufactured and employed nanomaterials in the world with applications in copious industrial and consumer products. The liver is a major accumulation site for many nanoparticles, including TiO2, directly through intentional exposure or indirectly through unintentional ingestion via water, food or animals and increased environmental contamination. Growing concerns over the current usage of TiO2 coupled with the lack of mechanistic understanding of its potential health risk is the motivation for this study. Here we determined the toxic effect of three different TiO2 nanoparticles (commercially available rutile, anatase and P25) on primary rat hepatocytes. Specifically, we evaluated events related to hepatocyte functions and mitochondrial dynamics: (1) urea and albumin synthesis using colorimetric and ELISA assays, respectively; (2) redox signaling mechanisms by measuring reactive oxygen species (ROS) production, manganese superoxide dismutase (MnSOD) activity and mitochondrial membrane potential (MMP); (3) OPA1 and Mfn-1 expression that mediates the mitochondrial dynamics by PCR; and (4) mitochondrial morphology by MitoTracker Green FM staining. All three TiO2 nanoparticles induced a significant loss (p &lt; 0.05) in hepatocyte functions even at concentrations as low as 50 ppm with commercially used P25 causing maximum damage. TiO2 nanoparticles induced a strong oxidative stress in primary hepatocytes. TiO2 nanoparticles exposure also resulted in morphological changes in mitochondria and substantial loss in the fusion process, thus impairing the mitochondrial dynamics. Although this study demonstrated that TiO2 nanoparticles exposure resulted in substantial damage to primary hepatocytes, more in vitro and in vivo studies are required to determine the complete toxicological mechanism in primary hepatocytes and subsequently liver function.</description><subject>Anatase</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biocompatibility</subject><subject>Cell Survival - drug effects</subject><subject>Cells, Cultured</subject><subject>Colorimetry</subject><subject>Consumer products</subject><subject>Contamination</subject><subject>Dynamic Light Scattering</subject><subject>Dynamics</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Exposure</subject><subject>Food contamination</subject><subject>Health aspects</subject><subject>Health risks</subject><subject>Hepatocytes</subject><subject>Hepatocytes - cytology</subject><subject>Hepatocytes - drug effects</subject><subject>Hepatocytes - metabolism</subject><subject>In vivo methods and tests</subject><subject>Ingestion</subject><subject>Liver</subject><subject>Male</subject><subject>Manganese</subject><subject>Membrane potential</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - toxicity</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial DNA</subject><subject>Mitochondrial Dynamics - drug effects</subject><subject>Motivation</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxygen</subject><subject>Particle Size</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Superoxide dismutase</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Superoxides</subject><subject>Surgical implants</subject><subject>Titanium</subject><subject>Titanium - chemistry</subject><subject>Titanium dioxide</subject><subject>Toxicology</subject><subject>Urea</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl9rFDEUxQdRbK1-A9GAIPiwa_7MJJOXQmmtXVht0dXXkEkyuymzyZpkpPvtzXanZQcUJA8Tbn735M7JKYrXCE4RYejjre-Dk910452ZQkTKqkRPimPECZ5QDMnTg_1R8SLGWwgrUlP6vDjCFJeMUHJcbBc2SWf7Nbiw_s5qA75K5zcyJKs6E8Ei2OXSBDD3MQLfgsveqWS9A9JpcGNC6kMj7wv58ItNXq2808HKDlxsnVxbFYF14CbYtQxbcGU2MjPbZOLL4lkru2heDd-T4sflp8X51WR-_Xl2fjafKMpxmkgsOddYE04rZvI_6loh2Oiqwrpl2jSI1ZrXVUVaSjXmWlPVNJgSyChjuCInxdu97qbzUQyuRYEYxJAjRHAmZntCe3krNvtRhZdW3Bd8WIrBD4EgVpIgpQhuS1rTpi45yXtWtRwiWmet0-G2vlkbrYxLQXYj0fGJsyux9L9FWWFWcZYF3g0Cwf_qTUz_GHmgljJPZV3rs5ha26jEWUkwg4wTmKnpX6i8tMkPk3PT2lwfNXwYNWQmmbu0lH2MYvb92_-z1z_H7PsDdmVkl1bRd_0uOHEMlntQhRy4YNpH5xAUu9g_uCF2sRdD7HPbm0PXH5seck7-AGpV_aI</recordid><startdate>20150806</startdate><enddate>20150806</enddate><creator>Natarajan, Vaishaali</creator><creator>Wilson, Christina L</creator><creator>Hayward, Stephen L</creator><creator>Kidambi, Srivatsan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150806</creationdate><title>Titanium Dioxide Nanoparticles Trigger Loss of Function and Perturbation of Mitochondrial Dynamics in Primary Hepatocytes</title><author>Natarajan, Vaishaali ; Wilson, Christina L ; Hayward, Stephen L ; Kidambi, Srivatsan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-a2a99d2d39657e541d8c10bd552df7deb178d98553f66d29dd6cbb26307677253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anatase</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biocompatibility</topic><topic>Cell Survival - drug effects</topic><topic>Cells, Cultured</topic><topic>Colorimetry</topic><topic>Consumer products</topic><topic>Contamination</topic><topic>Dynamic Light Scattering</topic><topic>Dynamics</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Exposure</topic><topic>Food contamination</topic><topic>Health aspects</topic><topic>Health risks</topic><topic>Hepatocytes</topic><topic>Hepatocytes - cytology</topic><topic>Hepatocytes - drug effects</topic><topic>Hepatocytes - metabolism</topic><topic>In vivo methods and tests</topic><topic>Ingestion</topic><topic>Liver</topic><topic>Male</topic><topic>Manganese</topic><topic>Membrane potential</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - toxicity</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial DNA</topic><topic>Mitochondrial Dynamics - drug effects</topic><topic>Motivation</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxygen</topic><topic>Particle Size</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Superoxide dismutase</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Superoxides</topic><topic>Surgical implants</topic><topic>Titanium</topic><topic>Titanium - chemistry</topic><topic>Titanium dioxide</topic><topic>Toxicology</topic><topic>Urea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Natarajan, Vaishaali</creatorcontrib><creatorcontrib>Wilson, Christina L</creatorcontrib><creatorcontrib>Hayward, Stephen L</creatorcontrib><creatorcontrib>Kidambi, Srivatsan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Natarajan, Vaishaali</au><au>Wilson, Christina L</au><au>Hayward, Stephen L</au><au>Kidambi, Srivatsan</au><au>López Lluch, Guillermo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Titanium Dioxide Nanoparticles Trigger Loss of Function and Perturbation of Mitochondrial Dynamics in Primary Hepatocytes</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-08-06</date><risdate>2015</risdate><volume>10</volume><issue>8</issue><spage>e0134541</spage><pages>e0134541-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Titanium dioxide (TiO2) nanoparticles are one of the most highly manufactured and employed nanomaterials in the world with applications in copious industrial and consumer products. The liver is a major accumulation site for many nanoparticles, including TiO2, directly through intentional exposure or indirectly through unintentional ingestion via water, food or animals and increased environmental contamination. Growing concerns over the current usage of TiO2 coupled with the lack of mechanistic understanding of its potential health risk is the motivation for this study. Here we determined the toxic effect of three different TiO2 nanoparticles (commercially available rutile, anatase and P25) on primary rat hepatocytes. Specifically, we evaluated events related to hepatocyte functions and mitochondrial dynamics: (1) urea and albumin synthesis using colorimetric and ELISA assays, respectively; (2) redox signaling mechanisms by measuring reactive oxygen species (ROS) production, manganese superoxide dismutase (MnSOD) activity and mitochondrial membrane potential (MMP); (3) OPA1 and Mfn-1 expression that mediates the mitochondrial dynamics by PCR; and (4) mitochondrial morphology by MitoTracker Green FM staining. All three TiO2 nanoparticles induced a significant loss (p &lt; 0.05) in hepatocyte functions even at concentrations as low as 50 ppm with commercially used P25 causing maximum damage. TiO2 nanoparticles induced a strong oxidative stress in primary hepatocytes. TiO2 nanoparticles exposure also resulted in morphological changes in mitochondria and substantial loss in the fusion process, thus impairing the mitochondrial dynamics. Although this study demonstrated that TiO2 nanoparticles exposure resulted in substantial damage to primary hepatocytes, more in vitro and in vivo studies are required to determine the complete toxicological mechanism in primary hepatocytes and subsequently liver function.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26247363</pmid><doi>10.1371/journal.pone.0134541</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-08, Vol.10 (8), p.e0134541
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1702091132
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Anatase
Animals
Apoptosis
Biocompatibility
Cell Survival - drug effects
Cells, Cultured
Colorimetry
Consumer products
Contamination
Dynamic Light Scattering
Dynamics
Enzyme-linked immunosorbent assay
Exposure
Food contamination
Health aspects
Health risks
Hepatocytes
Hepatocytes - cytology
Hepatocytes - drug effects
Hepatocytes - metabolism
In vivo methods and tests
Ingestion
Liver
Male
Manganese
Membrane potential
Membrane Potential, Mitochondrial - drug effects
Metal Nanoparticles - chemistry
Metal Nanoparticles - toxicity
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Mitochondrial DNA
Mitochondrial Dynamics - drug effects
Motivation
Nanomaterials
Nanoparticles
Nanotechnology
Oxidative stress
Oxidative Stress - drug effects
Oxygen
Particle Size
Rats
Rats, Sprague-Dawley
Reactive oxygen species
Reactive Oxygen Species - metabolism
Superoxide dismutase
Superoxide Dismutase - metabolism
Superoxides
Surgical implants
Titanium
Titanium - chemistry
Titanium dioxide
Toxicology
Urea
title Titanium Dioxide Nanoparticles Trigger Loss of Function and Perturbation of Mitochondrial Dynamics in Primary Hepatocytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A17%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Titanium%20Dioxide%20Nanoparticles%20Trigger%20Loss%20of%20Function%20and%20Perturbation%20of%20Mitochondrial%20Dynamics%20in%20Primary%20Hepatocytes&rft.jtitle=PloS%20one&rft.au=Natarajan,%20Vaishaali&rft.date=2015-08-06&rft.volume=10&rft.issue=8&rft.spage=e0134541&rft.pages=e0134541-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0134541&rft_dat=%3Cgale_plos_%3EA432707930%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1702091132&rft_id=info:pmid/26247363&rft_galeid=A432707930&rft_doaj_id=oai_doaj_org_article_102ca31cc32f4686b849332f75f90168&rfr_iscdi=true