Loss of DDB1 Leads to Transcriptional p53 Pathway Activation in Proliferating Cells, Cell Cycle Deregulation, and Apoptosis in Zebrafish Embryos

DNA damage-binding protein 1 (DDB1) is a large subunit of the heterodimeric DDB complex that recognizes DNA lesions and initiates the nucleotide excision repair process. DDB1 is also a component of the CUL4 E3 ligase complex involved in a broad spectrum of cellular processes by targeted ubiquitinati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-07, Vol.10 (7), p.e0134299-e0134299
Hauptverfasser: Hu, Zhilian, Holzschuh, Jochen, Driever, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0134299
container_issue 7
container_start_page e0134299
container_title PloS one
container_volume 10
creator Hu, Zhilian
Holzschuh, Jochen
Driever, Wolfgang
description DNA damage-binding protein 1 (DDB1) is a large subunit of the heterodimeric DDB complex that recognizes DNA lesions and initiates the nucleotide excision repair process. DDB1 is also a component of the CUL4 E3 ligase complex involved in a broad spectrum of cellular processes by targeted ubiquitination of key regulators. Functions of DDB1 in development have been addressed in several model organisms, however, are not fully understood so far. Here we report an ENU induced mutant ddb1 allele (ddb1m863) identified in zebrafish (Danio rerio), and analyze its effects on development. Zebrafish ddb1 is expressed broadly, both maternally and zygotically, with enhanced expression in proliferation zones. The (ddb1m863 mutant allele affects the splice acceptor site of exon 20, causing a splicing defect that results in truncation of the 1140 amino acid protein after residue 800, lacking part of the β-propeller domain BPC and the C-terminal helical domain CTD. ddb1m863 zygotic mutant embryos have a pleiotropic phenotype, including smaller and abnormally shaped brain, head skeleton, eyes, jaw, and branchial arches, as well as reduced dopaminergic neuron groups. However, early forming tissues develop normally in zygotic ddb1m863 mutant embryos, which may be due to maternal rescue. In ddb1m863 mutant embryos, pcna-expressing proliferating cell populations were reduced, concurrent with increased apoptosis. We also observed a concomitant strong up-regulation of transcripts of the tumor suppressor p53 (tp53) and the cell cycle inhibitor cdkn1a (p21a/bCIP1/WAF1) in proliferating tissues. In addition, transcription of cyclin genes ccna2 and ccnd1 was deregulated in ddb1m863 mutants. Reduction of p53 activity by anti-sense morpholinos alleviated the apoptotic phenotype in ddb1m863 mutants. These results imply that Ddb1 may be involved in maintaining proper cell cycle progression and viability of dividing cells during development through transcriptional mechanisms regulating genes involved in cell cycle control and cell survival.
doi_str_mv 10.1371/journal.pone.0134299
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1700336674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A423642996</galeid><doaj_id>oai_doaj_org_article_6ff532d43e7c49d0a55093f84bc38e33</doaj_id><sourcerecordid>A423642996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c809t-cbcb69505423b5f1653b99180554f34a9a38335a62aa640cf515529f609e5ae03</originalsourceid><addsrcrecordid>eNqNk1Fv0zAQxyMEYmPwDRBYQkIgrcWOYzd-QSrtgEqVNsHggRfr4titqzQOdjLot-Aj47Td1KI9oDw4Ov_uf7l_7pLkOcFDQkfk3cp1voZq2LhaDzGhWSrEg-SUCJoOeIrpw4P3k-RJCCuMGc05f5ycpDxN2Yhnp8mfuQsBOYOm0w8EzTWUAbUOXXuog_K2aa2LRVDDKLqCdvkLNmisWnsD_QWyNbryrrJG-xioF2iiqyqcbw802ahKo6n2etFVW_4cQV2iceOa1gUb-vQfuvBgbFiii3XhNy48TR4ZqIJ-tj_Pkm8fL64nnwfzy0-zyXg-UDkW7UAVquCCYZaltGCGcEYLIUiOGcsMzUAAzSllwFMAnmFlGGEsFYZjoRloTM-SlzvdpnJB7s0MkowwppTzURaJ2Y4oHaxk4-0a_EY6sHIbcH4hwbc2Nim5MYymZUb1SGWixMAYFtTkWaForimNWu_31bpirUul69ZDdSR6fFPbpVy4G5mxFDNBosCbvYB3PzsdWrm2QUWbodau2343yQXmIo_oq3_Q-7vbUwuIDdjauFhX9aJyHD3l_TjxSA3voeJT6rVVcfKMjfGjhLdHCZFp9e92AV0Icvb1y_-zl9-P2dcH7FJD1S6Dq7p-rMIxmO1A5eNke23uTCZY9otz64bsF0fuFyemvTj8QXdJt5tC_wLpIhH3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1700336674</pqid></control><display><type>article</type><title>Loss of DDB1 Leads to Transcriptional p53 Pathway Activation in Proliferating Cells, Cell Cycle Deregulation, and Apoptosis in Zebrafish Embryos</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed (Medline)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Hu, Zhilian ; Holzschuh, Jochen ; Driever, Wolfgang</creator><contributor>Thummel, Ryan</contributor><creatorcontrib>Hu, Zhilian ; Holzschuh, Jochen ; Driever, Wolfgang ; Thummel, Ryan</creatorcontrib><description>DNA damage-binding protein 1 (DDB1) is a large subunit of the heterodimeric DDB complex that recognizes DNA lesions and initiates the nucleotide excision repair process. DDB1 is also a component of the CUL4 E3 ligase complex involved in a broad spectrum of cellular processes by targeted ubiquitination of key regulators. Functions of DDB1 in development have been addressed in several model organisms, however, are not fully understood so far. Here we report an ENU induced mutant ddb1 allele (ddb1m863) identified in zebrafish (Danio rerio), and analyze its effects on development. Zebrafish ddb1 is expressed broadly, both maternally and zygotically, with enhanced expression in proliferation zones. The (ddb1m863 mutant allele affects the splice acceptor site of exon 20, causing a splicing defect that results in truncation of the 1140 amino acid protein after residue 800, lacking part of the β-propeller domain BPC and the C-terminal helical domain CTD. ddb1m863 zygotic mutant embryos have a pleiotropic phenotype, including smaller and abnormally shaped brain, head skeleton, eyes, jaw, and branchial arches, as well as reduced dopaminergic neuron groups. However, early forming tissues develop normally in zygotic ddb1m863 mutant embryos, which may be due to maternal rescue. In ddb1m863 mutant embryos, pcna-expressing proliferating cell populations were reduced, concurrent with increased apoptosis. We also observed a concomitant strong up-regulation of transcripts of the tumor suppressor p53 (tp53) and the cell cycle inhibitor cdkn1a (p21a/bCIP1/WAF1) in proliferating tissues. In addition, transcription of cyclin genes ccna2 and ccnd1 was deregulated in ddb1m863 mutants. Reduction of p53 activity by anti-sense morpholinos alleviated the apoptotic phenotype in ddb1m863 mutants. These results imply that Ddb1 may be involved in maintaining proper cell cycle progression and viability of dividing cells during development through transcriptional mechanisms regulating genes involved in cell cycle control and cell survival.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0134299</identifier><identifier>PMID: 26225764</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alleles ; Amino acids ; Analysis ; Animals ; Antisense RNA ; Apoptosis ; Apoptosis - genetics ; B cells ; Brain ; Cancer ; Cell activation ; Cell cycle ; Cell Cycle - genetics ; Cell Proliferation - genetics ; Cell survival ; Cyclin-dependent kinase inhibitor p21 ; Danio rerio ; Defects ; Deoxyribonucleic acid ; Deregulation ; Developmental biology ; Disease ; DNA ; DNA damage ; DNA methylation ; DNA repair ; DNA-Binding Proteins - genetics ; Dopamine receptors ; Drosophila ; Embryos ; Ethyl nitrosourea ; Gene mutation ; Genes ; Genes, p53 ; Genetic aspects ; Genomes ; Genotype &amp; phenotype ; Insects ; Jaw ; Kinases ; Lesions ; Ligases ; Medical research ; Morphology ; Mutagenesis ; Mutants ; Nucleotide excision repair ; p53 Protein ; Proliferating cell nuclear antigen ; Protein binding ; Proteins ; Regulators ; Splicing ; Tissues ; Transcription (Genetics) ; Transcription activation ; Transcription, Genetic ; Transcriptional Activation ; Tumor proteins ; Tumor suppressor genes ; Ubiquitin ; Ubiquitin-protein ligase ; Ubiquitination ; Viability ; Zebrafish ; Zebrafish - embryology</subject><ispartof>PloS one, 2015-07, Vol.10 (7), p.e0134299-e0134299</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Hu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Hu et al 2015 Hu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c809t-cbcb69505423b5f1653b99180554f34a9a38335a62aa640cf515529f609e5ae03</citedby><cites>FETCH-LOGICAL-c809t-cbcb69505423b5f1653b99180554f34a9a38335a62aa640cf515529f609e5ae03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4520591/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4520591/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26225764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Thummel, Ryan</contributor><creatorcontrib>Hu, Zhilian</creatorcontrib><creatorcontrib>Holzschuh, Jochen</creatorcontrib><creatorcontrib>Driever, Wolfgang</creatorcontrib><title>Loss of DDB1 Leads to Transcriptional p53 Pathway Activation in Proliferating Cells, Cell Cycle Deregulation, and Apoptosis in Zebrafish Embryos</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>DNA damage-binding protein 1 (DDB1) is a large subunit of the heterodimeric DDB complex that recognizes DNA lesions and initiates the nucleotide excision repair process. DDB1 is also a component of the CUL4 E3 ligase complex involved in a broad spectrum of cellular processes by targeted ubiquitination of key regulators. Functions of DDB1 in development have been addressed in several model organisms, however, are not fully understood so far. Here we report an ENU induced mutant ddb1 allele (ddb1m863) identified in zebrafish (Danio rerio), and analyze its effects on development. Zebrafish ddb1 is expressed broadly, both maternally and zygotically, with enhanced expression in proliferation zones. The (ddb1m863 mutant allele affects the splice acceptor site of exon 20, causing a splicing defect that results in truncation of the 1140 amino acid protein after residue 800, lacking part of the β-propeller domain BPC and the C-terminal helical domain CTD. ddb1m863 zygotic mutant embryos have a pleiotropic phenotype, including smaller and abnormally shaped brain, head skeleton, eyes, jaw, and branchial arches, as well as reduced dopaminergic neuron groups. However, early forming tissues develop normally in zygotic ddb1m863 mutant embryos, which may be due to maternal rescue. In ddb1m863 mutant embryos, pcna-expressing proliferating cell populations were reduced, concurrent with increased apoptosis. We also observed a concomitant strong up-regulation of transcripts of the tumor suppressor p53 (tp53) and the cell cycle inhibitor cdkn1a (p21a/bCIP1/WAF1) in proliferating tissues. In addition, transcription of cyclin genes ccna2 and ccnd1 was deregulated in ddb1m863 mutants. Reduction of p53 activity by anti-sense morpholinos alleviated the apoptotic phenotype in ddb1m863 mutants. These results imply that Ddb1 may be involved in maintaining proper cell cycle progression and viability of dividing cells during development through transcriptional mechanisms regulating genes involved in cell cycle control and cell survival.</description><subject>Alleles</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Animals</subject><subject>Antisense RNA</subject><subject>Apoptosis</subject><subject>Apoptosis - genetics</subject><subject>B cells</subject><subject>Brain</subject><subject>Cancer</subject><subject>Cell activation</subject><subject>Cell cycle</subject><subject>Cell Cycle - genetics</subject><subject>Cell Proliferation - genetics</subject><subject>Cell survival</subject><subject>Cyclin-dependent kinase inhibitor p21</subject><subject>Danio rerio</subject><subject>Defects</subject><subject>Deoxyribonucleic acid</subject><subject>Deregulation</subject><subject>Developmental biology</subject><subject>Disease</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA methylation</subject><subject>DNA repair</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Dopamine receptors</subject><subject>Drosophila</subject><subject>Embryos</subject><subject>Ethyl nitrosourea</subject><subject>Gene mutation</subject><subject>Genes</subject><subject>Genes, p53</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genotype &amp; phenotype</subject><subject>Insects</subject><subject>Jaw</subject><subject>Kinases</subject><subject>Lesions</subject><subject>Ligases</subject><subject>Medical research</subject><subject>Morphology</subject><subject>Mutagenesis</subject><subject>Mutants</subject><subject>Nucleotide excision repair</subject><subject>p53 Protein</subject><subject>Proliferating cell nuclear antigen</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Regulators</subject><subject>Splicing</subject><subject>Tissues</subject><subject>Transcription (Genetics)</subject><subject>Transcription activation</subject><subject>Transcription, Genetic</subject><subject>Transcriptional Activation</subject><subject>Tumor proteins</subject><subject>Tumor suppressor genes</subject><subject>Ubiquitin</subject><subject>Ubiquitin-protein ligase</subject><subject>Ubiquitination</subject><subject>Viability</subject><subject>Zebrafish</subject><subject>Zebrafish - embryology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1Fv0zAQxyMEYmPwDRBYQkIgrcWOYzd-QSrtgEqVNsHggRfr4titqzQOdjLot-Aj47Td1KI9oDw4Ov_uf7l_7pLkOcFDQkfk3cp1voZq2LhaDzGhWSrEg-SUCJoOeIrpw4P3k-RJCCuMGc05f5ycpDxN2Yhnp8mfuQsBOYOm0w8EzTWUAbUOXXuog_K2aa2LRVDDKLqCdvkLNmisWnsD_QWyNbryrrJG-xioF2iiqyqcbw802ahKo6n2etFVW_4cQV2iceOa1gUb-vQfuvBgbFiii3XhNy48TR4ZqIJ-tj_Pkm8fL64nnwfzy0-zyXg-UDkW7UAVquCCYZaltGCGcEYLIUiOGcsMzUAAzSllwFMAnmFlGGEsFYZjoRloTM-SlzvdpnJB7s0MkowwppTzURaJ2Y4oHaxk4-0a_EY6sHIbcH4hwbc2Nim5MYymZUb1SGWixMAYFtTkWaForimNWu_31bpirUul69ZDdSR6fFPbpVy4G5mxFDNBosCbvYB3PzsdWrm2QUWbodau2343yQXmIo_oq3_Q-7vbUwuIDdjauFhX9aJyHD3l_TjxSA3voeJT6rVVcfKMjfGjhLdHCZFp9e92AV0Icvb1y_-zl9-P2dcH7FJD1S6Dq7p-rMIxmO1A5eNke23uTCZY9otz64bsF0fuFyemvTj8QXdJt5tC_wLpIhH3</recordid><startdate>20150730</startdate><enddate>20150730</enddate><creator>Hu, Zhilian</creator><creator>Holzschuh, Jochen</creator><creator>Driever, Wolfgang</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150730</creationdate><title>Loss of DDB1 Leads to Transcriptional p53 Pathway Activation in Proliferating Cells, Cell Cycle Deregulation, and Apoptosis in Zebrafish Embryos</title><author>Hu, Zhilian ; Holzschuh, Jochen ; Driever, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c809t-cbcb69505423b5f1653b99180554f34a9a38335a62aa640cf515529f609e5ae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alleles</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Animals</topic><topic>Antisense RNA</topic><topic>Apoptosis</topic><topic>Apoptosis - genetics</topic><topic>B cells</topic><topic>Brain</topic><topic>Cancer</topic><topic>Cell activation</topic><topic>Cell cycle</topic><topic>Cell Cycle - genetics</topic><topic>Cell Proliferation - genetics</topic><topic>Cell survival</topic><topic>Cyclin-dependent kinase inhibitor p21</topic><topic>Danio rerio</topic><topic>Defects</topic><topic>Deoxyribonucleic acid</topic><topic>Deregulation</topic><topic>Developmental biology</topic><topic>Disease</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA methylation</topic><topic>DNA repair</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Dopamine receptors</topic><topic>Drosophila</topic><topic>Embryos</topic><topic>Ethyl nitrosourea</topic><topic>Gene mutation</topic><topic>Genes</topic><topic>Genes, p53</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genotype &amp; phenotype</topic><topic>Insects</topic><topic>Jaw</topic><topic>Kinases</topic><topic>Lesions</topic><topic>Ligases</topic><topic>Medical research</topic><topic>Morphology</topic><topic>Mutagenesis</topic><topic>Mutants</topic><topic>Nucleotide excision repair</topic><topic>p53 Protein</topic><topic>Proliferating cell nuclear antigen</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Regulators</topic><topic>Splicing</topic><topic>Tissues</topic><topic>Transcription (Genetics)</topic><topic>Transcription activation</topic><topic>Transcription, Genetic</topic><topic>Transcriptional Activation</topic><topic>Tumor proteins</topic><topic>Tumor suppressor genes</topic><topic>Ubiquitin</topic><topic>Ubiquitin-protein ligase</topic><topic>Ubiquitination</topic><topic>Viability</topic><topic>Zebrafish</topic><topic>Zebrafish - embryology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Zhilian</creatorcontrib><creatorcontrib>Holzschuh, Jochen</creatorcontrib><creatorcontrib>Driever, Wolfgang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Zhilian</au><au>Holzschuh, Jochen</au><au>Driever, Wolfgang</au><au>Thummel, Ryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss of DDB1 Leads to Transcriptional p53 Pathway Activation in Proliferating Cells, Cell Cycle Deregulation, and Apoptosis in Zebrafish Embryos</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-07-30</date><risdate>2015</risdate><volume>10</volume><issue>7</issue><spage>e0134299</spage><epage>e0134299</epage><pages>e0134299-e0134299</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>DNA damage-binding protein 1 (DDB1) is a large subunit of the heterodimeric DDB complex that recognizes DNA lesions and initiates the nucleotide excision repair process. DDB1 is also a component of the CUL4 E3 ligase complex involved in a broad spectrum of cellular processes by targeted ubiquitination of key regulators. Functions of DDB1 in development have been addressed in several model organisms, however, are not fully understood so far. Here we report an ENU induced mutant ddb1 allele (ddb1m863) identified in zebrafish (Danio rerio), and analyze its effects on development. Zebrafish ddb1 is expressed broadly, both maternally and zygotically, with enhanced expression in proliferation zones. The (ddb1m863 mutant allele affects the splice acceptor site of exon 20, causing a splicing defect that results in truncation of the 1140 amino acid protein after residue 800, lacking part of the β-propeller domain BPC and the C-terminal helical domain CTD. ddb1m863 zygotic mutant embryos have a pleiotropic phenotype, including smaller and abnormally shaped brain, head skeleton, eyes, jaw, and branchial arches, as well as reduced dopaminergic neuron groups. However, early forming tissues develop normally in zygotic ddb1m863 mutant embryos, which may be due to maternal rescue. In ddb1m863 mutant embryos, pcna-expressing proliferating cell populations were reduced, concurrent with increased apoptosis. We also observed a concomitant strong up-regulation of transcripts of the tumor suppressor p53 (tp53) and the cell cycle inhibitor cdkn1a (p21a/bCIP1/WAF1) in proliferating tissues. In addition, transcription of cyclin genes ccna2 and ccnd1 was deregulated in ddb1m863 mutants. Reduction of p53 activity by anti-sense morpholinos alleviated the apoptotic phenotype in ddb1m863 mutants. These results imply that Ddb1 may be involved in maintaining proper cell cycle progression and viability of dividing cells during development through transcriptional mechanisms regulating genes involved in cell cycle control and cell survival.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26225764</pmid><doi>10.1371/journal.pone.0134299</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-07, Vol.10 (7), p.e0134299-e0134299
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1700336674
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); PubMed (Medline); EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Alleles
Amino acids
Analysis
Animals
Antisense RNA
Apoptosis
Apoptosis - genetics
B cells
Brain
Cancer
Cell activation
Cell cycle
Cell Cycle - genetics
Cell Proliferation - genetics
Cell survival
Cyclin-dependent kinase inhibitor p21
Danio rerio
Defects
Deoxyribonucleic acid
Deregulation
Developmental biology
Disease
DNA
DNA damage
DNA methylation
DNA repair
DNA-Binding Proteins - genetics
Dopamine receptors
Drosophila
Embryos
Ethyl nitrosourea
Gene mutation
Genes
Genes, p53
Genetic aspects
Genomes
Genotype & phenotype
Insects
Jaw
Kinases
Lesions
Ligases
Medical research
Morphology
Mutagenesis
Mutants
Nucleotide excision repair
p53 Protein
Proliferating cell nuclear antigen
Protein binding
Proteins
Regulators
Splicing
Tissues
Transcription (Genetics)
Transcription activation
Transcription, Genetic
Transcriptional Activation
Tumor proteins
Tumor suppressor genes
Ubiquitin
Ubiquitin-protein ligase
Ubiquitination
Viability
Zebrafish
Zebrafish - embryology
title Loss of DDB1 Leads to Transcriptional p53 Pathway Activation in Proliferating Cells, Cell Cycle Deregulation, and Apoptosis in Zebrafish Embryos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20of%20DDB1%20Leads%20to%20Transcriptional%20p53%20Pathway%20Activation%20in%20Proliferating%20Cells,%20Cell%20Cycle%20Deregulation,%20and%20Apoptosis%20in%20Zebrafish%20Embryos&rft.jtitle=PloS%20one&rft.au=Hu,%20Zhilian&rft.date=2015-07-30&rft.volume=10&rft.issue=7&rft.spage=e0134299&rft.epage=e0134299&rft.pages=e0134299-e0134299&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0134299&rft_dat=%3Cgale_plos_%3EA423642996%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1700336674&rft_id=info:pmid/26225764&rft_galeid=A423642996&rft_doaj_id=oai_doaj_org_article_6ff532d43e7c49d0a55093f84bc38e33&rfr_iscdi=true