The Inhibitory Core of the Myostatin Prodomain: Its Interaction with Both Type I and II Membrane Receptors, and Potential to Treat Muscle Atrophy

Myostatin, a muscle-specific transforming growth factor-β (TGF-β), negatively regulates skeletal muscle mass. The N-terminal prodomain of myostatin noncovalently binds to and suppresses the C-terminal mature domain (ligand) as an inactive circulating complex. However, which region of the myostatin p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-07, Vol.10 (7), p.e0133713-e0133713
Hauptverfasser: Ohsawa, Yutaka, Takayama, Kentaro, Nishimatsu, Shin-ichiro, Okada, Tadashi, Fujino, Masahiro, Fukai, Yuta, Murakami, Tatsufumi, Hagiwara, Hiroki, Itoh, Fumiko, Tsuchida, Kunihiro, Hayashi, Yoshio, Sunada, Yoshihide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0133713
container_issue 7
container_start_page e0133713
container_title PloS one
container_volume 10
creator Ohsawa, Yutaka
Takayama, Kentaro
Nishimatsu, Shin-ichiro
Okada, Tadashi
Fujino, Masahiro
Fukai, Yuta
Murakami, Tatsufumi
Hagiwara, Hiroki
Itoh, Fumiko
Tsuchida, Kunihiro
Hayashi, Yoshio
Sunada, Yoshihide
description Myostatin, a muscle-specific transforming growth factor-β (TGF-β), negatively regulates skeletal muscle mass. The N-terminal prodomain of myostatin noncovalently binds to and suppresses the C-terminal mature domain (ligand) as an inactive circulating complex. However, which region of the myostatin prodomain is required to inhibit the biological activity of myostatin has remained unknown. We identified a 29-amino acid region that inhibited myostatin-induced transcriptional activity by 79% compared with the full-length prodomain. This inhibitory core resides near the N-terminus of the prodomain and includes an α-helix that is evolutionarily conserved among other TGF-β family members, but suppresses activation of myostatin and growth and differentiation factor 11 (GDF11) that share identical membrane receptors. Interestingly, the inhibitory core co-localized and co-immunoprecipitated with not only the ligand, but also its type I and type II membrane receptors. Deletion of the inhibitory core in the full-length prodomain removed all capacity for suppression of myostatin. A synthetic peptide corresponding to the inhibitory core (p29) ameliorates impaired myoblast differentiation induced by myostatin and GDF11, but not activin or TGF-β1. Moreover, intramuscular injection of p29 alleviated muscle atrophy and decreased the absolute force in caveolin 3-deficient limb-girdle muscular dystrophy 1C model mice. The injection suppressed activation of myostatin signaling and restored the decreased numbers of muscle precursor cells caused by caveolin 3 deficiency. Our findings indicate a novel concept for this newly identified inhibitory core of the prodomain of myostatin: that it not only suppresses the ligand, but also prevents two distinct membrane receptors from binding to the ligand. This study provides a strong rationale for the use of p29 in the amelioration of skeletal muscle atrophy in various clinical settings.
doi_str_mv 10.1371/journal.pone.0133713
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1700336392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A423642937</galeid><doaj_id>oai_doaj_org_article_d84e91bda6ef4f7da64228030dc9be37</doaj_id><sourcerecordid>A423642937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-bbae0fc223d279a6c93a224cb6ec02acbf871ae759436c6831b3cc67ad72b6223</originalsourceid><addsrcrecordid>eNqNk22L1DAQx4so3nn6DUQDgii4a5p009YXwrr4ULjljnP1bZim022OtlmTVN2P4Tc2-3DHrtwLKTRl8pt_Zv7NRNHTmI5jnsZvr81ge2jHK9PjmMY8xPi96DTOORsJRvn9g--T6JFz15ROeCbEw-iECcYET-hp9GfRICn6RpfaG7smM2ORmJr4EJ6vjfPgdU8uralMB7p_RwrvAu_RgvLa9OSX9g35YMJrsV4FKQJ9RYqCzLErLfRIrlDhKmi7N9utS-Ox9xpa4g1ZWARP5oNTLZKpt2bVrB9HD2poHT7Zr2fRt08fF7Mvo_OLz8Vsej5SImd-VJaAtFaM8YqlOQiVc2AsUaVARRmoss7SGDCd5AkXSmQ8LrlSIoUqZWVon59Fz3e6q9Y4uXfTyTillHPB8w1R7IjKwLVcWd2BXUsDWm4Dxi4lWK9D7bLKEszjsgKBdVKnYU0YyyinlcpL5GnQer8_bSg7rFTwwEJ7JHq80-tGLs1PmUwYFVkSBF7tBaz5MaDzstNOYdsGj82wrTvOcppxGtAX_6B3d7enlhAa0H1twrlqIyqnCeOhgXxb9_gOKjwVdlqFq1frED9KeH2UEBiPv_0SBudk8fXq_9mL78fsywO2QWh940w7bC6hOwaTHaiscc5ifWtyTOVmcm7ckJvJkfvJCWnPDn_QbdLNqPC_ZyoUAw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1700336392</pqid></control><display><type>article</type><title>The Inhibitory Core of the Myostatin Prodomain: Its Interaction with Both Type I and II Membrane Receptors, and Potential to Treat Muscle Atrophy</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ohsawa, Yutaka ; Takayama, Kentaro ; Nishimatsu, Shin-ichiro ; Okada, Tadashi ; Fujino, Masahiro ; Fukai, Yuta ; Murakami, Tatsufumi ; Hagiwara, Hiroki ; Itoh, Fumiko ; Tsuchida, Kunihiro ; Hayashi, Yoshio ; Sunada, Yoshihide</creator><contributor>Mouly, Vincent</contributor><creatorcontrib>Ohsawa, Yutaka ; Takayama, Kentaro ; Nishimatsu, Shin-ichiro ; Okada, Tadashi ; Fujino, Masahiro ; Fukai, Yuta ; Murakami, Tatsufumi ; Hagiwara, Hiroki ; Itoh, Fumiko ; Tsuchida, Kunihiro ; Hayashi, Yoshio ; Sunada, Yoshihide ; Mouly, Vincent</creatorcontrib><description>Myostatin, a muscle-specific transforming growth factor-β (TGF-β), negatively regulates skeletal muscle mass. The N-terminal prodomain of myostatin noncovalently binds to and suppresses the C-terminal mature domain (ligand) as an inactive circulating complex. However, which region of the myostatin prodomain is required to inhibit the biological activity of myostatin has remained unknown. We identified a 29-amino acid region that inhibited myostatin-induced transcriptional activity by 79% compared with the full-length prodomain. This inhibitory core resides near the N-terminus of the prodomain and includes an α-helix that is evolutionarily conserved among other TGF-β family members, but suppresses activation of myostatin and growth and differentiation factor 11 (GDF11) that share identical membrane receptors. Interestingly, the inhibitory core co-localized and co-immunoprecipitated with not only the ligand, but also its type I and type II membrane receptors. Deletion of the inhibitory core in the full-length prodomain removed all capacity for suppression of myostatin. A synthetic peptide corresponding to the inhibitory core (p29) ameliorates impaired myoblast differentiation induced by myostatin and GDF11, but not activin or TGF-β1. Moreover, intramuscular injection of p29 alleviated muscle atrophy and decreased the absolute force in caveolin 3-deficient limb-girdle muscular dystrophy 1C model mice. The injection suppressed activation of myostatin signaling and restored the decreased numbers of muscle precursor cells caused by caveolin 3 deficiency. Our findings indicate a novel concept for this newly identified inhibitory core of the prodomain of myostatin: that it not only suppresses the ligand, but also prevents two distinct membrane receptors from binding to the ligand. This study provides a strong rationale for the use of p29 in the amelioration of skeletal muscle atrophy in various clinical settings.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0133713</identifier><identifier>PMID: 26226340</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Activation ; Activin ; Activins - metabolism ; Amino acids ; Animals ; Atrophy ; Binding sites ; Biological activity ; Bone morphogenetic proteins ; Caveolin ; Caveolin 3 - metabolism ; Cell Differentiation - physiology ; Cell Line ; Cell Membrane Structures - metabolism ; Cercopithecus aethiops ; Clonal deletion ; Comparative analysis ; COS Cells ; Differentiation ; Dystrophy ; Growth Differentiation Factors - metabolism ; Growth factors ; HEK293 Cells ; Humans ; Injection ; Kinases ; Life sciences ; Ligands ; Male ; Medical research ; Medical schools ; Membranes ; Mice ; Muscle, Skeletal - metabolism ; Muscles ; Muscular Atrophy - metabolism ; Muscular Dystrophies, Limb-Girdle - metabolism ; Muscular dystrophy ; Musculoskeletal system ; Myoblasts - metabolism ; Myostatin ; Myostatin - metabolism ; N-Terminus ; Neurology ; Peptides ; Pharmaceutical sciences ; Pharmacy ; Protein Structure, Tertiary - physiology ; Proteins ; Receptors ; Receptors, Cell Surface - metabolism ; Rodents ; Signaling ; Skeletal muscle ; Transcription ; Transforming Growth Factor beta1 - metabolism ; Transforming growth factor-a ; Transforming growth factor-b ; Transforming growth factor-b1 ; Transforming growth factors</subject><ispartof>PloS one, 2015-07, Vol.10 (7), p.e0133713-e0133713</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Ohsawa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Ohsawa et al 2015 Ohsawa et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-bbae0fc223d279a6c93a224cb6ec02acbf871ae759436c6831b3cc67ad72b6223</citedby><cites>FETCH-LOGICAL-c692t-bbae0fc223d279a6c93a224cb6ec02acbf871ae759436c6831b3cc67ad72b6223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4520684/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4520684/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26226340$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mouly, Vincent</contributor><creatorcontrib>Ohsawa, Yutaka</creatorcontrib><creatorcontrib>Takayama, Kentaro</creatorcontrib><creatorcontrib>Nishimatsu, Shin-ichiro</creatorcontrib><creatorcontrib>Okada, Tadashi</creatorcontrib><creatorcontrib>Fujino, Masahiro</creatorcontrib><creatorcontrib>Fukai, Yuta</creatorcontrib><creatorcontrib>Murakami, Tatsufumi</creatorcontrib><creatorcontrib>Hagiwara, Hiroki</creatorcontrib><creatorcontrib>Itoh, Fumiko</creatorcontrib><creatorcontrib>Tsuchida, Kunihiro</creatorcontrib><creatorcontrib>Hayashi, Yoshio</creatorcontrib><creatorcontrib>Sunada, Yoshihide</creatorcontrib><title>The Inhibitory Core of the Myostatin Prodomain: Its Interaction with Both Type I and II Membrane Receptors, and Potential to Treat Muscle Atrophy</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Myostatin, a muscle-specific transforming growth factor-β (TGF-β), negatively regulates skeletal muscle mass. The N-terminal prodomain of myostatin noncovalently binds to and suppresses the C-terminal mature domain (ligand) as an inactive circulating complex. However, which region of the myostatin prodomain is required to inhibit the biological activity of myostatin has remained unknown. We identified a 29-amino acid region that inhibited myostatin-induced transcriptional activity by 79% compared with the full-length prodomain. This inhibitory core resides near the N-terminus of the prodomain and includes an α-helix that is evolutionarily conserved among other TGF-β family members, but suppresses activation of myostatin and growth and differentiation factor 11 (GDF11) that share identical membrane receptors. Interestingly, the inhibitory core co-localized and co-immunoprecipitated with not only the ligand, but also its type I and type II membrane receptors. Deletion of the inhibitory core in the full-length prodomain removed all capacity for suppression of myostatin. A synthetic peptide corresponding to the inhibitory core (p29) ameliorates impaired myoblast differentiation induced by myostatin and GDF11, but not activin or TGF-β1. Moreover, intramuscular injection of p29 alleviated muscle atrophy and decreased the absolute force in caveolin 3-deficient limb-girdle muscular dystrophy 1C model mice. The injection suppressed activation of myostatin signaling and restored the decreased numbers of muscle precursor cells caused by caveolin 3 deficiency. Our findings indicate a novel concept for this newly identified inhibitory core of the prodomain of myostatin: that it not only suppresses the ligand, but also prevents two distinct membrane receptors from binding to the ligand. This study provides a strong rationale for the use of p29 in the amelioration of skeletal muscle atrophy in various clinical settings.</description><subject>Activation</subject><subject>Activin</subject><subject>Activins - metabolism</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Atrophy</subject><subject>Binding sites</subject><subject>Biological activity</subject><subject>Bone morphogenetic proteins</subject><subject>Caveolin</subject><subject>Caveolin 3 - metabolism</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Line</subject><subject>Cell Membrane Structures - metabolism</subject><subject>Cercopithecus aethiops</subject><subject>Clonal deletion</subject><subject>Comparative analysis</subject><subject>COS Cells</subject><subject>Differentiation</subject><subject>Dystrophy</subject><subject>Growth Differentiation Factors - metabolism</subject><subject>Growth factors</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Injection</subject><subject>Kinases</subject><subject>Life sciences</subject><subject>Ligands</subject><subject>Male</subject><subject>Medical research</subject><subject>Medical schools</subject><subject>Membranes</subject><subject>Mice</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Muscular Atrophy - metabolism</subject><subject>Muscular Dystrophies, Limb-Girdle - metabolism</subject><subject>Muscular dystrophy</subject><subject>Musculoskeletal system</subject><subject>Myoblasts - metabolism</subject><subject>Myostatin</subject><subject>Myostatin - metabolism</subject><subject>N-Terminus</subject><subject>Neurology</subject><subject>Peptides</subject><subject>Pharmaceutical sciences</subject><subject>Pharmacy</subject><subject>Protein Structure, Tertiary - physiology</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Rodents</subject><subject>Signaling</subject><subject>Skeletal muscle</subject><subject>Transcription</subject><subject>Transforming Growth Factor beta1 - metabolism</subject><subject>Transforming growth factor-a</subject><subject>Transforming growth factor-b</subject><subject>Transforming growth factor-b1</subject><subject>Transforming growth factors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk22L1DAQx4so3nn6DUQDgii4a5p009YXwrr4ULjljnP1bZim022OtlmTVN2P4Tc2-3DHrtwLKTRl8pt_Zv7NRNHTmI5jnsZvr81ge2jHK9PjmMY8xPi96DTOORsJRvn9g--T6JFz15ROeCbEw-iECcYET-hp9GfRICn6RpfaG7smM2ORmJr4EJ6vjfPgdU8uralMB7p_RwrvAu_RgvLa9OSX9g35YMJrsV4FKQJ9RYqCzLErLfRIrlDhKmi7N9utS-Ox9xpa4g1ZWARP5oNTLZKpt2bVrB9HD2poHT7Zr2fRt08fF7Mvo_OLz8Vsej5SImd-VJaAtFaM8YqlOQiVc2AsUaVARRmoss7SGDCd5AkXSmQ8LrlSIoUqZWVon59Fz3e6q9Y4uXfTyTillHPB8w1R7IjKwLVcWd2BXUsDWm4Dxi4lWK9D7bLKEszjsgKBdVKnYU0YyyinlcpL5GnQer8_bSg7rFTwwEJ7JHq80-tGLs1PmUwYFVkSBF7tBaz5MaDzstNOYdsGj82wrTvOcppxGtAX_6B3d7enlhAa0H1twrlqIyqnCeOhgXxb9_gOKjwVdlqFq1frED9KeH2UEBiPv_0SBudk8fXq_9mL78fsywO2QWh940w7bC6hOwaTHaiscc5ifWtyTOVmcm7ckJvJkfvJCWnPDn_QbdLNqPC_ZyoUAw</recordid><startdate>20150730</startdate><enddate>20150730</enddate><creator>Ohsawa, Yutaka</creator><creator>Takayama, Kentaro</creator><creator>Nishimatsu, Shin-ichiro</creator><creator>Okada, Tadashi</creator><creator>Fujino, Masahiro</creator><creator>Fukai, Yuta</creator><creator>Murakami, Tatsufumi</creator><creator>Hagiwara, Hiroki</creator><creator>Itoh, Fumiko</creator><creator>Tsuchida, Kunihiro</creator><creator>Hayashi, Yoshio</creator><creator>Sunada, Yoshihide</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150730</creationdate><title>The Inhibitory Core of the Myostatin Prodomain: Its Interaction with Both Type I and II Membrane Receptors, and Potential to Treat Muscle Atrophy</title><author>Ohsawa, Yutaka ; Takayama, Kentaro ; Nishimatsu, Shin-ichiro ; Okada, Tadashi ; Fujino, Masahiro ; Fukai, Yuta ; Murakami, Tatsufumi ; Hagiwara, Hiroki ; Itoh, Fumiko ; Tsuchida, Kunihiro ; Hayashi, Yoshio ; Sunada, Yoshihide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-bbae0fc223d279a6c93a224cb6ec02acbf871ae759436c6831b3cc67ad72b6223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Activation</topic><topic>Activin</topic><topic>Activins - metabolism</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Atrophy</topic><topic>Binding sites</topic><topic>Biological activity</topic><topic>Bone morphogenetic proteins</topic><topic>Caveolin</topic><topic>Caveolin 3 - metabolism</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Line</topic><topic>Cell Membrane Structures - metabolism</topic><topic>Cercopithecus aethiops</topic><topic>Clonal deletion</topic><topic>Comparative analysis</topic><topic>COS Cells</topic><topic>Differentiation</topic><topic>Dystrophy</topic><topic>Growth Differentiation Factors - metabolism</topic><topic>Growth factors</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Injection</topic><topic>Kinases</topic><topic>Life sciences</topic><topic>Ligands</topic><topic>Male</topic><topic>Medical research</topic><topic>Medical schools</topic><topic>Membranes</topic><topic>Mice</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Muscular Atrophy - metabolism</topic><topic>Muscular Dystrophies, Limb-Girdle - metabolism</topic><topic>Muscular dystrophy</topic><topic>Musculoskeletal system</topic><topic>Myoblasts - metabolism</topic><topic>Myostatin</topic><topic>Myostatin - metabolism</topic><topic>N-Terminus</topic><topic>Neurology</topic><topic>Peptides</topic><topic>Pharmaceutical sciences</topic><topic>Pharmacy</topic><topic>Protein Structure, Tertiary - physiology</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Rodents</topic><topic>Signaling</topic><topic>Skeletal muscle</topic><topic>Transcription</topic><topic>Transforming Growth Factor beta1 - metabolism</topic><topic>Transforming growth factor-a</topic><topic>Transforming growth factor-b</topic><topic>Transforming growth factor-b1</topic><topic>Transforming growth factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohsawa, Yutaka</creatorcontrib><creatorcontrib>Takayama, Kentaro</creatorcontrib><creatorcontrib>Nishimatsu, Shin-ichiro</creatorcontrib><creatorcontrib>Okada, Tadashi</creatorcontrib><creatorcontrib>Fujino, Masahiro</creatorcontrib><creatorcontrib>Fukai, Yuta</creatorcontrib><creatorcontrib>Murakami, Tatsufumi</creatorcontrib><creatorcontrib>Hagiwara, Hiroki</creatorcontrib><creatorcontrib>Itoh, Fumiko</creatorcontrib><creatorcontrib>Tsuchida, Kunihiro</creatorcontrib><creatorcontrib>Hayashi, Yoshio</creatorcontrib><creatorcontrib>Sunada, Yoshihide</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohsawa, Yutaka</au><au>Takayama, Kentaro</au><au>Nishimatsu, Shin-ichiro</au><au>Okada, Tadashi</au><au>Fujino, Masahiro</au><au>Fukai, Yuta</au><au>Murakami, Tatsufumi</au><au>Hagiwara, Hiroki</au><au>Itoh, Fumiko</au><au>Tsuchida, Kunihiro</au><au>Hayashi, Yoshio</au><au>Sunada, Yoshihide</au><au>Mouly, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Inhibitory Core of the Myostatin Prodomain: Its Interaction with Both Type I and II Membrane Receptors, and Potential to Treat Muscle Atrophy</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-07-30</date><risdate>2015</risdate><volume>10</volume><issue>7</issue><spage>e0133713</spage><epage>e0133713</epage><pages>e0133713-e0133713</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Myostatin, a muscle-specific transforming growth factor-β (TGF-β), negatively regulates skeletal muscle mass. The N-terminal prodomain of myostatin noncovalently binds to and suppresses the C-terminal mature domain (ligand) as an inactive circulating complex. However, which region of the myostatin prodomain is required to inhibit the biological activity of myostatin has remained unknown. We identified a 29-amino acid region that inhibited myostatin-induced transcriptional activity by 79% compared with the full-length prodomain. This inhibitory core resides near the N-terminus of the prodomain and includes an α-helix that is evolutionarily conserved among other TGF-β family members, but suppresses activation of myostatin and growth and differentiation factor 11 (GDF11) that share identical membrane receptors. Interestingly, the inhibitory core co-localized and co-immunoprecipitated with not only the ligand, but also its type I and type II membrane receptors. Deletion of the inhibitory core in the full-length prodomain removed all capacity for suppression of myostatin. A synthetic peptide corresponding to the inhibitory core (p29) ameliorates impaired myoblast differentiation induced by myostatin and GDF11, but not activin or TGF-β1. Moreover, intramuscular injection of p29 alleviated muscle atrophy and decreased the absolute force in caveolin 3-deficient limb-girdle muscular dystrophy 1C model mice. The injection suppressed activation of myostatin signaling and restored the decreased numbers of muscle precursor cells caused by caveolin 3 deficiency. Our findings indicate a novel concept for this newly identified inhibitory core of the prodomain of myostatin: that it not only suppresses the ligand, but also prevents two distinct membrane receptors from binding to the ligand. This study provides a strong rationale for the use of p29 in the amelioration of skeletal muscle atrophy in various clinical settings.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26226340</pmid><doi>10.1371/journal.pone.0133713</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-07, Vol.10 (7), p.e0133713-e0133713
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1700336392
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Activation
Activin
Activins - metabolism
Amino acids
Animals
Atrophy
Binding sites
Biological activity
Bone morphogenetic proteins
Caveolin
Caveolin 3 - metabolism
Cell Differentiation - physiology
Cell Line
Cell Membrane Structures - metabolism
Cercopithecus aethiops
Clonal deletion
Comparative analysis
COS Cells
Differentiation
Dystrophy
Growth Differentiation Factors - metabolism
Growth factors
HEK293 Cells
Humans
Injection
Kinases
Life sciences
Ligands
Male
Medical research
Medical schools
Membranes
Mice
Muscle, Skeletal - metabolism
Muscles
Muscular Atrophy - metabolism
Muscular Dystrophies, Limb-Girdle - metabolism
Muscular dystrophy
Musculoskeletal system
Myoblasts - metabolism
Myostatin
Myostatin - metabolism
N-Terminus
Neurology
Peptides
Pharmaceutical sciences
Pharmacy
Protein Structure, Tertiary - physiology
Proteins
Receptors
Receptors, Cell Surface - metabolism
Rodents
Signaling
Skeletal muscle
Transcription
Transforming Growth Factor beta1 - metabolism
Transforming growth factor-a
Transforming growth factor-b
Transforming growth factor-b1
Transforming growth factors
title The Inhibitory Core of the Myostatin Prodomain: Its Interaction with Both Type I and II Membrane Receptors, and Potential to Treat Muscle Atrophy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A22%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Inhibitory%20Core%20of%20the%20Myostatin%20Prodomain:%20Its%20Interaction%20with%20Both%20Type%20I%20and%20II%20Membrane%20Receptors,%20and%20Potential%20to%20Treat%20Muscle%20Atrophy&rft.jtitle=PloS%20one&rft.au=Ohsawa,%20Yutaka&rft.date=2015-07-30&rft.volume=10&rft.issue=7&rft.spage=e0133713&rft.epage=e0133713&rft.pages=e0133713-e0133713&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0133713&rft_dat=%3Cgale_plos_%3EA423642937%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1700336392&rft_id=info:pmid/26226340&rft_galeid=A423642937&rft_doaj_id=oai_doaj_org_article_d84e91bda6ef4f7da64228030dc9be37&rfr_iscdi=true